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Abstract

We introduce and study a class of Lie algebroids associated to faithful modules which is

motivated by the notion of cotangent Lie algebroids of Poisson manifolds. We also give a

classification of transitive Lie algebroids and describe Poisson algebras by using the notions of

algebroid and Lie connections.

1 Introduction

Let (M, {., .}) be a Poisson manifold equipped with the bracket {., .}, which is determined by a
Poisson bivector P ∈ ΓΛ2TM . It is well known that the cotangent bundle T ∗M carries a natural Lie
algebroid structure (see Section 2 for definitions), that is, on differential 1−forms (sections of T ∗M)
the following bracket can be defined (see [2], Proposition 14.19),

[[α, β]] = iPαdβ − iPβdα+ d(β(Pα)), (1)

where P : T ∗M → TM is the vector bundle morphism canonically induced by P through β(Pα) =
P(α, β). Moreover, the following Leibniz-like rule is satisfied, for any smooth function f ∈ C∞(M):

[[α, fβ]] = f [[α, β]] + (Pα)(f) · β.

That means that the corresponding anchor map is just P . Note that in the case when α, β in (1) are
exact (α = df and β = dg for some f, g ∈ C∞(M)), we have P(α, β) = {f, g} and formula (1) reads:

[[df, dg]] = d{f, g}.

Moreover, the bracket (1) of two closed forms is again closed.
In fact, the properties above characterize the Lie algebroid structure on the tangent bundle that
comes from a Poisson bracket on the base manifold (see [6]). More precisely, given a Lie algebroid
(T ∗M, [[·, ·]], ρ) on the tangent bundle T ∗M , there exists a Poisson bracket {., .} on M such that
ρ = P if and only if the following conditions are satisfied:

(a) ρ is skew-symmetric, i.e. β(ρ(α)) = −α(ρ(β)), for all α, β ∈ Ω1(M).

(b) If α, β ∈ Ω1(M) are closed, then [[α, β]] is also closed.

The aim of the present paper is to put the study of cotangent Lie algebroids of Poisson manifolds
in an algebraic framework. In the first part (Section 3), we study and characterize a class of Lie
algebroids with properties similar to (a), (b), which we call Lie algebroids of Poisson type. To this
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end, we will work in a slightly more general context than that of vector bundles over manifolds, using
the notion of Lie-Rinehart algebra (see [9, 10]), also called a Lie pseudoalgebra (see [14, 17, 18, 19]
and, particularly, [15] for many interesting remarks on the evolution of these notions and as a general
reference), although we will continue using the denomination “Lie algebroid” for them (as they are
the algebraic version of the geometric Lie algebroids). We give several examples illustrating the
different situations that can appear.
In the second part (Sections 4 and 5), we deepen in the relationship between transitive algebroids
and Poisson structures for a certain class of spaces, those of the form Der(A) ⊕ V , where A is
a commutative algebra and V an A−module. We describe parametrizations of the transitive Lie
algebroids on Der(A) ⊕ V following the techniques exposed in [20, 21], which are based on the use
of a connection on a Lie algebroid. For completeness, we include a subsection in the preliminaries
devoted to the topic of connections in an algebraic setting. Once the parametrization is given, we
apply it to prove that a transitive algebroid endowed with a connection is isomorphic to one of the
form Der(A)⊕V . Finally, we obtain new classes of Poisson algebras on A⊕V starting from Poisson
algebras on A.

2 Preliminaries

Throughout the paper, unless otherwise explicitly stated, A denotes an associative, commutative
algebra with identity element 1A, over a commutative ring R with identity element 1R.

2.1 Derivations and connections in commutative algebras

In subsequent sections, we will need to introduce connections on an algebroid. In our algebraic
setting, the most appropriate notion of connection is Koszul’s one, which is given in terms of deriva-
tions.

Definition 2.1. A derivation of the algebra A over R is a map X ∈ HomR(A,A) satisfying the
Leibniz rule

X(f · g) = X(f) · g + f ·X(g).

The set of derivations of A over R is denoted DerR(A) or simply Der(A) when there is no risk of
confusion about the ring R.

Remark 2.2. The definition just given can be extended to the case of derivations of A over R into
an A−module M . These are abelian groups morphisms X : A → M satisfying the Leibniz rule
above, and form an A−module denoted DerR(A,M) or simply Der(A,M).

The set Der(A) has an R−Lie algebra structure when endowed with the commutator of endomor-
phisms, given by [X,Y ] = X ◦ Y − Y ◦X .
Note also that, if A as an R−module is faithful, then for every X ∈ Der(A) we have X(1A) = 0 and
indeed X(r) = 0 for every r ∈ R viewed as a subalgebra of A.

Definition 2.3. Let M be a unitary A−module. A derivation law, or Koszul connection, on M is
an A−linear mapping ∇ : Der(A) → HomR(M,M) (the image of X ∈ Der(A) denoted ∇X) such
that

∇X(f ·m) = X(f) ·m+ f · ∇X(m).

Not every A−module M admits a connection in this sense, but it is easy to see that any free
A−module does. Of course, arbitrary A−modules do not need to be free. So, in order to obtain a
big enough class of modules for which we can guarantee the existence of a Koszul connection, we
will make a brief digression on modules of differentials and Connes connections (see [3]).
Let Ω1(A) be the A−module defined by the kernel of the multiplication A ⊗R A → A. Define the
map d : A → Ω1(A) by da = 1⊗ a− a⊗ 1, which is a derivation of A over R with values into Ω1(A).
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It is clear from the definition that Ω1(A) = SpanA{df : f ∈ A}: Since the elements of Ω1(A) lie in
the kernel of the multiplication map, if

∑

aj ⊗ bj ∈ Ω1(A), then
∑

ajbj = 0 and therefore

∑

aj ⊗ bj =
∑

(aj ⊗ bj − ajbj ⊗ 1) =
∑

ajdbj .

In fact, Ω1(A) is the submodule of C1(Der(A),A) (the 1−component of the differential algebra
C(Der(A),A) of Chevalley-Eilernberg cochains of the Lie algebra Der(A) with values in the Der(A)−module
A) generated by the elements df , f ∈ A (see [5]). Note, in particular, that this implies Ω1(A) ⊂
Der∗(A).

Definition 2.4. Let M be an A−module. A Connes connection on M is an A−linear map δ : M →
Ω1(A)⊗A M such that, for all f ∈ A,m ∈ M ,

δ(fm) = fδ(m) + da⊗A m.

Remark 2.5. Connes’ definition of a connection (see [3]) actually does not require that A be a
commutative algebra. The definition goes back to a work by N. Katz [12].

Starting from a Connes connection, we can obtain a Koszul one. If X ∈ Der(A), then we define
a right A−linear pairing ϕ : Der(A) ⊗R Ω1(A) → A by

(X,
∑

ajdbj) 7→
∑

ajX(bj).

The Koszul connection ∇ associated to δ can be constructed as follows: for X ∈ Der(A), ∇X ∈
HomR(M,M) is the map given by applying the connection δ and then contracting the Ω1(A) com-
ponent with ϕ. Thus, if m ∈ M is such that δ(m) =

∑

ajdbj ⊗ mj , for certain aj , bj ∈ A and
mj ∈ M , we have for each f ∈ A that δ(fm) = f

∑

ajdbj ⊗mj + df ⊗m, and

∇X(fm) =
∑

ϕ(X, fajdbj)mj + ϕ(X, df)m

= f
∑

ajX(bj)mj +X(f)m

= f∇X(m) +X(f)m.

A basic result obtained by J. Cuntz and D. Quillen (see [4]) is that Connes connections on an
A−module M are in bijective correspondence with A−linear splittings of the natural action A ⊗R

M → M . As a consequence, M admits a Connes connection if and only if it is projective.
As said earlier, we will need later on to work with (Koszul) connections, so we need conditions on
A to assure their existence. From what we have seen, these connections exist on any A−module
M which is free or projective. Indeed, note that a free module is always projective, but there are
projective modules which are not free. In the literature, there are several well-known conditions on
A guaranteeing the projective character of M (for example, that A be semi-simple as a ring). When
we talk of a connection on M , unless otherwise explicitly stated, we will mean that any one of these
conditions is satisfied and that the connection is Koszul.

2.2 Lie algebroids

Definition 2.6. Let F be a faithful A-module. A Lie algebroid is a triple (F , [[·, ·]], ρ), where [[·, ·]]
is a Lie bracket on F and ρ : F → Der(A) is a morphism of A-modules, called the anchor map, such
that:

[[X, fY ]] = f [[X,Y ]] + ρ(X)(f)Y,

for all f ∈ A and for all X,Y ∈ F .

Remark 2.7. Sometimes, the condition that the anchor map be a morphism of Lie algebras is
included in the definition of Lie algebroid. However, this fact is a consequence of the conditions
in definition 2.6, as have been noted by J. C. Herz , Y. Kosmann-Schwarzbach, F. Magri and J.
Grabowski among others (see [8, 14, 7]).
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Definition 2.8. Let (F , [[·, ·]], ρ) and (F ′, [[·, ·]]′, ρ′) be Lie algebroids (over the same algebra A and
the same ring R). A morphism of Lie algebroids is a morphism of A-modules φ : F → F ′ such that

ρ′ ◦ φ = ρ and φ([[X,Y ]]) = [[φ(X), φ(Y )]]′,

for all X,Y ∈ F .

Let us consider some examples. The first is the classical one.

Example 2.9. Let M be a manifold. Let E
π
→ M be a vector bundle over M and F = Γ(E) the

C∞(M)-module of sections of E (i.e. A = C∞(M) and R = R). Then, the Lie algebroid structure
on Γ(E) is defined by a Lie bracket [[·, ·]] on Γ(E) with an anchor map

q : Γ(E) → DerRC
∞(M) ∼= Γ(TM),

such that for all f ∈ C∞(M) and for all X,Y ∈ Γ(E):

1. [[X, fY ]] = f [[X,Y ]] + q(X)(f)Y,

2. q(fX + Y ) = fq(X) + q(Y ).

In particular, if E = T ∗M , then the Lie algebroid structure is given by the bracket (1) where the
anchor is the Poisson mapping P . For E = TM we have the trivial Lie algebroid, where q = IdTM .

Example 2.10. Consider the R-algebra of dual numbers over A,

A′ = A[θ] = {x+ yθ : x, y ∈ A, θ2 = 0},

with the obvious operations. Clearly, A′ is an A′-module and we can endow it with the Lie algebra
structure given by the bracket:

[[x1 + y1θ, x2 + y2θ]] = (x1y2 − y1x2)θ

for x1 + y1θ, x2 + y2θ ∈ A′. Thus (A′, [[·, ·]], ρ) is a Lie algebroid with anchor map

ρ : A′ → Der(A′),
x+ yθ 7−→ adx

for x+ yθ ∈ A′. Here adx(x1 + y1θ) = [[x, x1 + y1θ]] is the adjoint map of x = pr1(x+ yθ).

The next example will be relevant in Section 4.

Example 2.11. Consider the A-module Der(A) ⊕ A. Denote by pr1 the projection onto the first
factor, pr1 : Der(A) ⊕A → Der(A), and define the following bracket:

[[(D1, a1), (D2, a2)]] = ([D1, D2], D1(a2)−D2(a1))

for (D1, a1), (D2, a2) ∈ Der(A) ⊕ A, where [D1, D2] is the commutator of endomorphisms. Then,
(Der(A)⊕A, [[·, ·]], pr1) is a Lie algebroid.

3 Lie algebroids of Poisson type

Definition 3.1. A Poisson algebra (A, { , }) is an associative algebra A together with a Lie bracket
which is also a derivation for the product in A, that is, there is an R−bilinear operation { , } :
A×A −→ A such that

1. {f, g} = −{g, f} (skew-symmetry),

2. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity),
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3. {f, gh} = {f, g}h+ g{f, h} (Leibniz identity),

for all f, g, h ∈ A.

If (A, { , }) is a Poisson algebra, then we can define the adjoint map ad : A −→ Der(A) by

adf (g) = {f, g},

for all g ∈ A. Then, extending the mapping df 7−→ adf by linearity, we get a morphism ρ : Ω1(A) −→
Der(A) uniquely defined by

ρ(df) = adf , ∀f ∈ A. (2)

Sometimes (by analogy with Poisson manifolds), adf is referred to as the Hamiltonian vector field
corresponding to f ∈ A, and denoted by Xf (we will use this notation and terminology later in
Section 5).
Also, given an α ∈ Ω1(A), we can define dα through the usual formula

dα(X,Y ) = X(α(Y ))− Y (α(X)) − α([X,Y ]),

for all X,Y ∈ Der(A).

Theorem 3.2. If (A, { , }) is a Poisson algebra, then (Ω1(A), [ , ], ρ) is a Lie algebroid with anchor
map ρ defined by (2) and the Lie bracket

[[α, β]] = ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α))). (3)

Proof. Let f ∈ A and α, β ∈ Ω1(A). Then,

[[α, fβ]] = ιρ(α)d(fβ)− ιρ(fβ)dα+ d(fβ(ρ(α)))
= ιρ(α)(df ∧ β) + fιρ(α)dβ − fιρ(β)dα+ dfβ(ρ(α)) + fd(β(ρ(α)))
= f [[α, β]] + ιρ(α)(df ∧ β) + dfβ(ρ(α))
= f [[α, β]] + df(ρ(α))β − β(ρ(α))df + dfβ(ρ(α))
= f [[α, β]] + ρ(α)(f)β.

The skew-symmetry and the R-bilinearity of [[·, ·]] are obvious. To verify the Jacobi identity, let us
consider a system {dfi}i∈I of generators of Ω1(A), so that for arbitrary elements α, β, γ ∈ Ω1(A),
we have α = gidfi, β = hjdfj , γ = mkdfk for some gi, hj,mk ∈ A. Note that for any f, g ∈ A, we
have

[[df, dg]] = ιρ(df)d(dg)− ιρ(dg)d(df) + d(dg(ρ(df))) = d{f, g}.

Then,
[[α, β]] = [[gidfi, hjdfj ]]

= hjgi[[dfi, dfj ]]− hjρ(dfj)(gi)dfi + giρ(dfi)(hj)dfj
= gihjd{fi, fj} − hj{fj, gi}dfi + gi{fi, hj}dfj .

A straightforward computation gives

[[[[α, β]], γ]] = mkhjgid{{fi, fj}, fk} −mk{fk, hjgi}d{fi, fj}+ hjgi{{fi, fj},mk}dfk
−mkhj{fj, gi}d{fi, fk}+mk{fk, hj{fj , gi}}dfi − hj{fj , gi}{fi,mk}dfk
+mkgi{fi, hj}d{fj, fk} −mk{fk, gi{fi, hj}}dfj + gi{fi, hj}{fj,mk}dfk,

It follows from here that the cyclic sum 	 [[[[α, β]], γ]] is zero,

	 [[[[α, β]], γ]] = mkhjgid 	
∑

({{fi, fj}, fk})
+ 	 ((−mk{fk, hjgi}+ gimk{fk, hj}+ hjmk{fk, gi})d{fi, fj})
+ 	 ((hjgi{{fi, fj},mk}+ hj{fj, gi{fi,mk}} − hj{fj, gi}{fi,mk}
− gi{fi, hj{fj,mk}}+ gi{fi, hj}{fj,mk})dfk)
= 	 gihj(({{fi, fj},mk}+ {fj, {fi,mk}} − {fi{fj,mk}})dfk) = 0.
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Example 3.3. Let (M, { , }) be a Poisson manifold, i.e., (C∞(M), { , }) is a Poisson algebra. Using
Theorem 2.9 we have that Ω1(C∞(M)) = Ω1(M) is a Lie algebroid with anchor map ρ = P (defined
by (2)) and the bracket (1):

[[α, β]] = ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α))),

for all α, β ∈ Ω1(M). The proof is based on the fact that there exist a finite subset {g1, ..., gk} ⊂
C∞(M) (with k ≤ 2dimM + 1) such that the C∞(M)−module Ω1(M) is spanned by {dg1, ..., dgk}.
This, in turn, is a consequence of Whitney’s embedding theorem and the fact that the sheaf of germs
of smooth functions is soft (see [1]).

Theorem 3.2 tells us that given a Poisson algebra we have a Lie algebroid canonically associated
to it. We are interested now in the reciprocal: When does a Lie algebroid (Ω1(A), [[·, ·]], ρ) determine
a Poisson structure on A?.
Given a Lie algebroid (Ω1(A), [[·, ·]], ρ), for any f, g ∈ A we can define

{f, g} = (dg)(ρ(df)) = (ρ(df))(g). (4)

The bracket { , } defined in this way is clearly R-bilinear and satisfies the Leibniz rule

{fg, h} = (ρ(d(fg)))(h) = (ρ(fdg + gdf))(h) = f(ρ(dg))(h) + g(ρ(df))(h)
= f{g, h}+ g{f, h},

for all f, g, h ∈ A.
Thus, in order to get a Poisson structure on A we only need to take care of the skew-symmetry and
the Jacobi identity.

Definition 3.4. The anchor map ρ of a Lie algebroid (Ω1(A), [[·, ·]], ρ) is said to be skew-symmetric
if

α(ρ(β)) = −β(ρ(α))

for all α, β ∈ Ω1(A).

If we assume that the anchor map is skew-symmetric, then the new operation defined by (4) is
also skew-symmetric. Now, let us turn our attention to the Jacobi identity.

Theorem 3.5. Let (Ω1(A), [[·, ·]], ρ) be a Lie algebroid, and define Q ∈ Λ2(Der(A)) by Q(df, dg) =
dg(ρ(df)) for f, g ∈ A. The following conditions are equivalent:

(i) The bracket { , } defined by {f, g} = ρ(df)(g) satisfies the Jacobi identity.

(ii) [Q,Q]SN = 0

(iii) [ρ(df), ρ(dg)] = ρ(d{f, g})

Here, [·, ·]SN denotes the Schouten-Nijenhuis bracket on multiderivations [13].

Proof. It is based on the computation of 1
2 [LQ, ιQ] = 1

2 ι[Q,Q]SN
, where on the left-hand side we

have the graded commutator of derivations on the graded algebra Λ(A). Due to the A-linearity we
only need to apply this operator to basis elements. The direct application of the definition of the
operators gives

1
2 [LQ, ιq](df ∧ dg ∧ dh) = 1

2 (LQιQ − (−1)2ιQLQ)(df ∧ dg ∧ dh)
= 1

2 (ιQ ◦ d ◦ ιQ + ιQ ◦ d ◦ ιQ)(df ∧ dg ∧ dh)
= ιQ ◦ d(ιQ(df ∧ dg)dh+ ιQ(dg ∧ dh)df + ιQ(dh ∧ df)dg)
= ιQ(dQ(df, dg) ∧ dh+ dQ(dg, dh) ∧ df + dQ(dh, df) ∧ dg)
= Q(dQ(df, dg), dh) +Q(dQ(dg, dh), df) +Q(dQ(dh, df), dg).
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The equivalence of the conditions (i) and (ii) follows from the following identities

Q(dQ(df, dg), dh) +Q(dQ(dg, dh), df) +Q(dQ(dh, df), dg)
= {Q(df, dg), h}+ {Q(dg, dh), f}+ {Q(dh, df), g}
= {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}.

On the other hand, this term can be computed as follows

−Q(dh, dQ(df, dg)) +Q(df, dQ(dh, dg))−Q(dQ(df, dh), dg)
= −ρ(dh)(Q(df, dg)) + ρ(df)(Q(dh, dg))− ρ(dQ(df, dh)(g)
= −ρ(dh)(ρ(df)(g)) + ρ(df)(ρ(dh)(g)) − ρ(d{f, h})(g)
= [ρ(df), ρ(dh)](g) − ρ(d{f, h})(g)
= ([ρ(df), ρ(dh)] − ρ(d{f, h}))(g).

But, from − 1
2 ι[Q,Q]SN

( , df, dh)(dg) = 1
2 [Q,Q]SN (df, dg, dh), we have the equality

(

−
1

2
ι[Q,Q]SN

( , df, dh)

)

(g) = ([ρ(df), ρ(dh)] − ρ(d{f, h}))(g),

which proves the equivalence between items (ii) and (iii).

This result motivate the following definition.

Definition 3.6. A Lie algebroid (Ω1(A), [[·, ·]], ρ) is of Poisson type if:

(1) The anchor ρ is skew-symmetric,

(2) One of the equivalent conditions (ii)-(iii) in Theorem 3.5 holds.

In other words, a Lie algebroid (Ω1(A), [[·, ·]], ρ) is of Poisson type if it determines a Poisson structure
on the algebra A.
Another important issue for us is to determine the form of the bracket of a Lie algebroid of Poisson
type. We know that the classical example of Poisson manifolds leads to brackets of the type (1).
The following result characterizes the class of such algebroids.

Proposition 3.7. If (Ω1(A), [[·, ·]], ρ) is a Lie algebroid for which ρ is skew-symmetric and [[df, dg]] =
d{f, g}, then the bracket of the Lie algebroid is of the form

[[α, β]] = ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α))).

Proof. Note first that, if α = df and β = dg for some f, g,∈ A, then

ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α))) = d(dg(ρ(df))) = d{f, g} = [[df, dg]] = [[α, β]].

Since every element of Ω1(A) is a linear combination of elements of the form dfi (fi ∈ A), it is
enough to prove the statement for α = f1dg1 and β = f2dg2:

ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α)))

=ιρ(f1dg1)df2 ∧ dg2 − ιρ(f2dg2)df1 ∧ dg1 + f2d(dg2(f1ρ(dg1))) + df2dg2(f1ρ(dg1))

=df2(ρ(f1dg1))dg2 − dg2(ρ(f1dg1))df2 − df1(ρ(f2dg2))dg1

+ dg1(ρ(f2dg2))df1 + f2d(f1dg2(ρ(dg1))) + f1df2dg2(ρ(dg1))

=f1df2(ρ(dg1))dg2 − f1dg2(ρ(dg1))df2 − f2df1(ρ(dg2))dg1 + f2dg1(ρ(dg2))df1

+ f1f2d(dg2(ρ(dg1))) + fvdg2(ρ(dg1))df1 + f1dg2(ρ(dg1))df2

=f1df2(ρ(dg1))dg2 − f2df1(ρ(dg2))dg1 + f2dg1(ρ(dg2))df1

+ f1f2d{g1, g2} − f2dg1(ρ(dg2))df1

=f1df2(ρ(dg1))dg2 − f2df1(ρ(dg2))dg1 + f1f2[[dg1, dg2]]

=[[f1dg1, f2dg2]]

=[[α, β]]

7



The hypothesis of this Proposition can be reformulated in an alternative way.

Proposition 3.8. If (Ω1(A), [[·, ·]], ρ) is a Lie algebroid with anchor ρ skew-symmetric, then the
following assertions are equivalent:

(i) [[df, dg]] = d(dg(ρ(df))) = d{f, g} for all f, g ∈ A,

(ii) dα = 0 = dβ implies d[[α, β]] = 0.

Proof. First, let us assume that item (i) holds. By Proposition 3.7 we know that the bracket is of
the form

[[α, β]] = ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α))),

and hence condition (ii) holds,

d[[α, β]] = d(ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α)))) = d2(β(ρ(α))) = 0,

whenever dα = 0 = dβ.
Now let us assume that condition (ii) holds. Define C(α, β) = [[α, β]] − d(β(ρ(α))) for α, β ∈ Ω1(A).
Notice that C is skew-symmetric and

dC(α, β) = d([[α, β]]) − d2(β(ρ(α)) = 0,

for any closed α and β.
Let us evaluate the following expression

C(df, hdh) = [[df, hdh]]− d(hdh(ρ(df)))
= h[[df, dh]] + ρ(df)(dh)dh − dh(dh(ρ(df)))− hd(hdh(ρ(df)))
= h[[df, dh]]− hd(hdh(ρ(df)))
= hC(df, dh).

Now, applying the operator d and taking into account that hdh is closed, we get

0 = dC(df, hdh) = d(hC(df, dh)) = dh ∧C(df, dh) + hdC(df, dh) = dh ∧C(df, dh).

Interchanging the roles of f and h, we have

0 = dC(dh, fdf) = df ∧ C(dh, df) = −df ∧ C(df, dh).

These relations imply that df , dh and C(df, dh) are linearly dependent for arbitrary f and h. In
particular, if df and dh are linearly independent, then C(df, dh) = 0, and hence

[[df, dh]] = d(dh(ρ(df))) = d{f, h}.

Let us summarize these results.

Theorem 3.9. Let (Ω1(A), [[·, ·]], ρ) be a Lie algebroid. Then, there is a Poisson algebra structure
{ , } : A×A → A on A such that

ρ(df) = adf , ∀f ∈ A,

if and only if:

(a) ρ is skew-symmetric

(b) One of the following conditions holds:

(1) dα = 0 = dβ implies d[[α, β]] = 0 ;
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(2) [[df, dg]] = d(dg(ρ(df))) for all f, g ∈ A.

Under these conditions, the Lie bracket [[·, ·]] is reconstructed from ρ by the formula

[[α, β]] = ιρ(α)dβ − ιρ(β)dα+ d(β(ρ(α))).

Of course, the basic example of this situation is the cotangent Lie algebroid of a symplectic manifold.
A Lie algebroid structure (Ω1(M), [[·, ·]], ρ) induces a Poisson bracket on C∞(M) if and only if ρ is
skew-symmetric and, whenever dα = 0 = dβ, then d[[α, β]] = 0. For this kind of examples, the
property [[df, dg]] = d{f, g} follows directly from the injectivity of the anchor map and the fact that
it is a Lie algebra morphism: ρ[[df, dg]] = [[ρ(df), ρ(dg)]] = ρ(d{f, g}). Let us consider the following
example, where the anchor map is not injective but the property [[df, dg]] = d{f, g} still holds.

Example 3.10. Let R = R and A = R[x1, x2, x3]. Then, Der(A) = Span {∂1, ∂2, ∂2} and Ω1(A) =
Span{dx1, dx2, dx3}. Define the following bracket

[[pidx
i, qjdx

j ]] = ((p1 (∂2 + ∂3) + p2 (−∂1 + ∂3) + p3 (−∂1 − ∂2)) (qi)

− (q1 (∂2 + ∂3) + q2 (−∂1 + ∂3) + q3 (−∂1 − ∂2)) (pi)) dx
i,

and the anchor map as

ρ : Ω1(A) → Der(A)
pidx

i 7→ −(p2 + p3)∂1 + (p1 − p3)∂2 + (p1 + p2)∂3.

Note that the matrix representation of ρ relative to the given basis in Der(A) and Ω1(A) is

ρ =





0 1 1
-1 0 1
-1 -1 0



 .

Therefore, ρ is skew-symmetric and of rank 2 (ρ is not injective). A long but straightforward
computation shows that (Ω1(A), ][·, ·]], ρ) is a Lie algebroid.
Let us show that this Lie algebroid is of Poisson type by checking the property [[df, dg]] = d{f, g}.
We have for p, q ∈ A:

{p, q} = d(ρ(dp)(q)) = d
(

ρ
(

∂ipdx
i
)

(q)
)

= d (−(∂2p+ ∂3p)∂1q + (∂1p− ∂3p)∂2q + (∂1p+ ∂2p)∂3q) .

The dx1 factor in the expansion of this expression (the other cases are similar) is:

− (∂2p+ ∂3p)∂
2
11q + (∂1p− ∂3p)∂

2
12q + (∂1p+ ∂2p)∂

2
13q

− (∂2
12p+ ∂2

13p)∂1q + (∂2
11p− ∂2

13p)∂2q + (∂2
11p+ ∂2

12p)∂3q.

On the other hand, the Lie algebroid bracket is

[[dp, dq]] = [[∂ipdx
i, ∂jqdx

j ]]

= ρ(dp)(∂kq)− ρ(dq)(∂kp))dx
k.

For k = 1, we compute the coefficient of dx1:

− (∂2p+ ∂3p)∂
2
11q + (∂1p− ∂3p)∂

2
12q + (∂1p+ ∂2p)∂

2
13q

+ (∂2q + ∂3q)∂
2
11p− (∂1q − ∂3q)∂

2
12p− (∂1q + ∂2q)∂

2
13p,

which is the same as above. Thus, (Ω1(A), [[·, ·]], ρ) is a Lie algebroid of Poisson type and its bracket
is just given by formula (3).
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Remark 3.11. The anchor map of the cotangent Lie algebroid is not injective in general. It is only
true in the symplectic case.

Finally, let us consider an example of Lie algebroid of Poisson type whose bracket does not have
the form (3).

Example 3.12. Let R = R and A = R[x1, x2, x3]. Define the structure of an Abelian Lie algebra
with generators {dx1, dx2, dx3},

[[dxi, dxj ]] = 0, i, j ∈ {1, 2, 3}.

Extending by R-bilinearity and the Leibniz identity gives

[[pidx
i, qjdx

j ]] = piρ(dx
i)(pj)dx

j − qjρ(dx
j)(pi)dx

i.

Next, let us think of the following skew-symmetric morphism of A-modules as the anchor map:

ρ : Ω1(A) → Der(A),
dx1 7→ x3∂2,

dx2 7→ −x3∂1,

dx3 7→ 0.

With these definitions the bracket in Ω1(A) can also be expressed in a form suitable for explicit
computations, as

[[pidx
i, pjdx

j ]] = x3((p×∇)3qi − (q ×∇)3pi)dx
i,

where an element p ∈ A is viewed as a vector p = (p1, p2, p3), ∇ = (∂1, ∂2, ∂3) and the subindex 3
denotes the third component of the cross product p×∇.
It can be checked that (Ω1(A), [[·, ·]], ρ) is a Lie algebroid of Poisson type. However, if p = 2x1 + x2

and q = x1 + x2, then
[[dp, dq]] = [[2dx1 + dx2, dx1 + dx2]] = 0,

whereas
d{p, q} = d(dq(ρ(dp))) = d((dx1 + dx2)ρ(2dx1 + dx2))

= d((dx1 + dx2)(2x3∂2 − x3∂1)) = dx3.

4 Transitive Lie algebroids

To motivate the definition of transitive Lie algebroids that we will give, let us consider for a moment
the geometric example of a Lie algebroid (E, [[·, ·]], q), where E → M is a vector bundle over a
manifold M (recall Example 2.9). If the anchor map q : Γ(E) → Γ(TM) is an epimorphism, the
algebroid (E, [[·, ·]], q) is said to be transitive. In this case, it is possible to construct the so-called
Atiyah sequence of the algebroid, which is the short exact sequence

g E TM
�

�

//

j
// //

q

where g = Kerq. Thus, the existence of a section for the anchor q (equivalently, a linear connection
on E) implies that, locally, E = TM ⊕ g. Note also that the fibre of the bundle g over the point
x ∈ M , gx is a Lie algebra (called the isotopy Lie algebra of the algebroid E at x ∈ M) with the
bracket given, for α, β ∈ gx, by

[α, β] = [[X,Y ]],

where X,Y ∈ Γ(E) are any sections such that X(x) = α and Y (x) = β.

Definition 4.1. A Lie algebroid (F , [[·, ·]], ρ) is transitive if there exist a short exact sequence of
A-modules:

V F Der(A)
�

�

//

j
// //

ρ

Remark 4.2. There is a more general notion, the extension of a Lie-Rinehart algebra, that gener-
alizes the transitivity condition for a geometric Lie algebroid (see [11]).
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4.1 Transitive algebroids induced by connections

Let V be a unitary A-module and ∇ a connection on V .

Definition 4.3. The curvature of ∇ is the mapping C∇ : Der(A) × Der(A) → Hom(V, V ) defined
by

C∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Definition 4.4. If V is endowed with a Lie algebra structure [·, ·]V , then a connection ∇ is said to
be a Lie connection if

∇X [v1, v2]V = [∇Xv1, v2]V + [v1,∇Xv2]V ,

for all v1, v2 ∈ V and for all X ∈ Der(A).

This subsection is devoted to the proof of the following result (see, also [17], [18]).

Theorem 4.5. Let V be an A-module endowed with a Lie algebra structure [ , ]V which is A-linear
(i.e., [fX, Y ]V = f [X,Y ]V ∀f ∈ A, X, Y ∈ V ). Let ∇ be a Lie connection on V . If there exists
a 2−form B ∈ Ω2(A;V ) with values in V , such that, for any X1, X2, X3 ∈ Der(A) and v ∈ V the
following conditions hold:

(a) [B(X1, X2), v]V = C∇(X1, X2)(v),

(b) The cyclic sum 	 (∇X1
(B(X2, X3))− B([X1, X2], X3)) = 0,

then (Der(A) ⊕ V, [[·, ·]], ρ) is a transitive Lie algebroid with anchor map ρ = pr1 and bracket

[[(X1, v1), (X2, v2)]] = ([X1, X2], [v1, v2]V +∇X1
v2 −∇X2

v1 − B(X1, X2)). (5)

Moreover,
ι2(B(X,Y )) = ι1([X,Y ])− [[ι1(X), ι1(Y )]], (6)

for X,Y ∈ Der(A). Here ι1 : Der(A) → Der(A) ⊕ V and ι2 : V → Der(A) ⊕ V are the inclusion
maps.

Proof. It is clear that Der(A)⊕V is an A-module. We must show that the bracket defined by (5) is
Lie. The skew-symmetry and the R-bilinearity are immediate. To check the Jacobi identity, let us
pick X1, X2, X3 ∈ Der(A) and v1, v2, v3 ∈ V . Then, we have:

11



	 ([[[[(X1, v1), (X2, v2)]], (X3, v3)]])

= ([[X1, X2], X3], [[v1, v2]V , v3]V + [∇X1
v2, v3]V − [∇X2

v1, v3]V

−[B(X1, X2), v3]V +∇[X1,X2]v3 −∇X3
([v1, v2]V +∇X1

v2 −∇X2
v1

−B(X1, X2))− B([X1, X2], X3))

+([[X2, X3], X1], [[v2, v3]V , v1]V + [∇X2
v3, v1]V − [∇X3

v2, v1]V

−[B(X2, X3), v1]V +∇[X2,X3]v1 −∇X1
([v2, v3]V +∇X2

v3 −∇X3
v2

−B(X2, X3))− B([X2, X3], X1))

+([[X3, X1], X2], [[v3, v1]V , v2]V + [∇X3
v1, v2]V − [∇X1

v3, v2]V

−[B(X3, X1), v2]V +∇[X3,X1]v2 −∇X2
([v3, v1]V +∇X3

v1 −∇X1
v3

−B(X3, X1))− B([X3, X1], X2))

= ([[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2],

[[v1, v2]V , v3]V + [[v2, v3]V , v1]V + [[v3, v1]V , v2]V

+[∇X1
v2, v3]V + [v2,∇X1

v3]V −∇X1
([v2, v3]V )

+[∇X2
v3, v1]V + [v3,∇X1

v2]V −∇X2
([v3, v1]V )

+[∇X3
v1, v2]V + [v1,∇X2

v3]V −∇X3
([v1, v2]V )

−[B(X1, X2), v3]V + C∇(X1, X2)(v3)

−[B(X2, X3), v1]V + C∇(X2, X3)(v1)

−[B(X3, X1), v2]V + C∇(X3, X1)(v2)

+∇X1
B(X2, X3)− B([X1, X2], X3) +∇X2

B(X3, X1)− B([X2, X3], X1)

+∇X3
B(X1, X2)− B([X3, X1], X2))

= (0, 0)

Now let us show that ρ satisfies Leibniz. We have

[[(X1, v1), f(X2, v2)]]

= ([X1, fX2], [v1, fv2]V +∇X1
(fv2)−∇fX2

(v1)− B(X1, fX2))

= (X1(f)X2 + fX1 ◦X2 − fX2 ◦X1, f [v1, v2]V +∇X1
(fv2)−∇fX2

(v1)− B(X1, fX2))

= (f [X1, X2] +X1(f)X2, f [v1, v2]V +∇X1
(fv2)− f∇X2

(v1)− fB(X1, X2)).

On the other hand,

f [[(X1, v1), (X2, v2)]] + ρ(X1, v1)(f)(X2, v2)
= f [(X1, v1), (X2, v2)] +X1(f).(X2, v2)
= (f [X1, X2] +X1(f)X2, f [v1, v2]V + f∇X1

v2 − f∇X2
v1 − fB(X1, X2) +X1(f)v2)

= (f [X1, X2] +X1(f)X2, f [v1, v2]V − f∇X2
v1 − fB(X1, X2) +∇X1

(fv2)).

Thus, [[(X1, v1), f(X2, v2)]] = f [[(X1, v1), (X2, v2)]] + ρ(X1, v1)(f)(X2, v2).
Since ρ = pr1 is clearly A-linear, we have that Der(A) ⊕ V is a Lie algebroid. The transitivity is
obvious in view of the sequence

V Der(A)⊕ V Der(A).
�

�

//

ι2
// //

ι1

Moreover, a direct computation shows that

ι1[X,Y ]− [[ι1(X), ι1(Y )]] = ([X,Y ], 0)− [[(X, 0), (Y, 0)]]
= ([X,Y ], 0)− ([X,Y ],−B(X,Y ))
= (0,B(X,Y )) = ι2(B(X,Y )).
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Remark 4.6. The conditions (a) and (b) in this theorem have the following interpretation. Condi-
tion (a) states that the curvature of the connection ∇ is given by the composition C∇ = adR ◦ B,
where adR : V → V is the right adjoint with respect to the bracket on V . On the other hand, (b)
expresses a modified Bianchi identity (see also [17], [18]).

4.2 Parametrization of transitive algebroids on DerA⊕ V

The following result says that the converse of Theorem 4.5 is also true.

Theorem 4.7. Let (Der(A)⊕ V, [[·, ·]], ρ) be a transitive Lie algebroid with ρ = pr1. Then:

(i) The bracket on V , defined for v1, v2 ∈ V by

[v1, v2]V = pr2([[ι2(v1), ι2(v2)]]), (7)

is an A-linear Lie bracket.

(ii) The mapping ∇ : Der(A) → Hom(V, V ) given by

∇X(v) = pr2([[ι1(X), ι2(v)]]),

for v ∈ V and X ∈ Der(A), is a Lie connection on V .

(iii) The mapping B : Der(A) ×Der(A) → V defined by

B(X,Y ) = pr2([[ι1(X), ι1(Y )]]− ι1([X,Y ])),

is A-bilinear, skew-symmetric and it satisfies conditions (a) and (b) of Theorem 4.5.

Proof. First let us show that [ , ]V defined by (7) is a Lie bracket and A-linear. The skew-symmetry
and R−bilinearity are inherited from [[·, ·]] and ι2. Let v1, v2, v3 ∈ V , and f ∈ A. For the Jacobi
identity we have:

	 [[v1, v2]V , v3]V = 	 (pr2[[ι2(pr2[[ι2(v1), ι2(v2)]]), ι2(v3)]])
= 	 (pr2[[[[ι2(v1), ι2(v2)]], ι2(v3)]]) = 0.

And for the A-linearity:

[fv1, v2]V = pr2[[ι2(fv1), ι2(v2)]]
= pr2[[fι2(v1), ι2(v2)]]
= pr2(f [[ι2(v1), ι2(v2)]]− ρ(ι2(v2))(f)ι2(v1))
= fpr2([[ι2(v1), ι2(v2)]]
= f [v1, v2]V .

Now, let us show that ∇ is a Lie connection on V . Let X,Y, Z ∈ Der(A), f ∈ A, v, v1, v2 ∈ V and
s ∈ R. First, we observe that ∇ is A-linear:

∇fX+Y (v) = pr2([[ι1(fX + Y ), ι2(v)]])
= pr2([fι1(X), ι2(v)]] + [[ι1(Y ), ι2(v)]])
= pr2(f [[ι1(X), ι2(v)]]− ρ(ι2(v))(f)(ι1(X)) + [[ι1(Y ), ι1(v)]])
= fpr2([[ι1(X), ι2(v)]] + [[ι1(Y ), ι2(v)]])
= f∇X(v) +∇Y (v).

Also, ∇X is R−linear,

∇X(av1 + v2) = pr2([[ι1(X), ι2(av1 + v2)]])
= pr2([[ι1(X), aι2(v1) + ι2(v2)]]) = a∇X(v1) +∇X(v2).

13



The Leibniz rule can be verified as follows

∇X(fv) = pr2([[ι1(X), ι2(fv)]])
= pr2([[ι1(X), f ι2(v)]])
= pr2(f [[ι1(X), ι2(v)]] + ρ(ι1(X))(f)(ι2(v))
= pr2(f [[ι1(X), ι2(v)]] +X(f)(ι2(v))
= fpr2([[ι1(X), ι2(v)]]) +X(f)pr2(ι2(v))
= f∇X(v) +X(f)v.

Also, ∇ has the Lie property,

ι2([∇Xv1, v2]V + [v1,∇Xv2]V ) = ι2(pr2([[ι2(∇Xv1), ι2(v2)]])
+pr2([[ι2(v1), ι2(∇Xv2)]]))

= ι2(pr2([[ι2(pr2([[ι1(X), ι2(v)]])), ι2(v2)]])
+pr2([[ι2(v1), ι2(pr2([[ι1(X), ι2(v2)]]))]]))

= [[[ι1(X), ι2(v1)]], ι2(v2)]]
+[[ι2(v1), [[ι1(X), ι2(v2)]]]]

= [[ι1(X), [[ι2(v1), ι2(v2)]]]]
= [[ι1(X), ι2([v1, v2]V )]]
= ι2(pr2([[ι1(X), ι2([v1, v2]V )]]))
= ι2(∇X([v1, v2]V )),

which implies that ∇X [v1, v2]V = [∇Xv1, v2]V + [v1,∇Xv2]V .
Let us now check the properties of B: Let X1, X2, X3 ∈ Der(A) and f ∈ A. Then B is skew-
symmetric,

B(X1, X2) = pr2([[ι1(X1), ι1(X2)]]− ι1([X1, X2]))
= −(pr2([[ι1(X2), ι1(X1)]]− ι1([X2, X1])))
= −R(X2, X1),

and A-linear,

B(fX1 +X2, X3) = pr2([[ι1(fX1 +X2), ι1(X3)]]− ι1([fX1 +X2, X3]))
= pr2([fι1(X1), ι1(X3)]] + [[ι1(X2), ι1(X3)]]

−ι1([fX1, X3]) + [X2, X3]))
= pr2(f [[ι1(X1), ι1(X3)]]− ρ(ι1(X3))(f)ι1(X1)

+[[ι1(X2), ι1(X3)]]− ι1(f [X1, X3]
−X3(f)X1 + [X2, X3]))

= pr2(f [[ι1(X1), ι1(X3)]] + [[ι1(X2), ι1(X3)]]
−ι1(f [X1, X3]−X3(f)X1 + [X2, X3]))

= fB(X1, X3) + B(X2, X3).

Finally, it remains to see that conditions (a) and (b) of Theorem 4.5 are satisfied. For (a), we
have:

ι2(C∇(X,Y )(v)) = ι2([∇x,∇Y ](v)−∇[X,Y ](v))
= ι2(∇X(∇Y )(v))− ι2(∇Y (∇X)(v))

−[[ι1([X,Y ]), ι2(v)]]
= [[ι1(X), ι2(∇Y (v))]] − [[ι1(Y ), ι2(∇X(v))]]

−[[ι1([X,Y ]), ι2(v)]]
= [[ι1(X), [[ι1(Y ), ι2(v)]]]]

+[[ι1(Y ), [ι2(v), ι1(X)]]]]
−[[ι1([X,Y ]), ι2(v)]]

= −[ι2(v), [[ι1(X), ι1(Y )]]]]
−[[ι1([X,Y ]), ι2(v)]]

= [[([[ι1(X), ι1(Y )]]− ι1([X,Y ]), ι2(v)]]
= [[ι2(pr2([[ι1(X), ι1(Y )]]− ι1([X,Y ])), ι2(v)]]
= ι2([pr2([[ι1(X), ι1(Y )]]− ι1([X,Y ]), v]V )
= ι2([(B(X,Y )), v]V ).
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Hence, [(B(X,Y )), v]V = C∇(X,Y )(v). Next,

ι2(	 {∇X(B(Y, Z))− B([X,Y ], Z)}) = 	 {[[ι1(X), ι2(B(Y, Z))]]− ι2(B([X,Y ], Z))}
= 	 {[[ι1(X), ι1[Y, Z]]]
− [[ι1(X), [[ι1(Y ), ι1(Z)]]]]
− ι1[[X,Y ], Z] + [[ι1[X,Y ], ι1(Z)]]}
= 	 {[[ι1(X), ι1[Y, Z]]] + [[ι1[X,Y ], ι1(Z)]]}
= 0.

Thus, 	 {∇X(B(Y, Z))− B([X,Y ], Z)} = 0.

As a consequence of Theorems 4.5 and 4.7, we have the following.

Corollary 4.8. Let V be an A-module. There is a one to one correspondence between transitive Lie
algebroids (Der(A)⊕ V, [ , ]], ρ) with anchor ρ = pr1 and triples ([·, ·]V ,∇,B) consisting of:

(i) A A-linear Lie bracket [·, ·]V in V ;

(ii) A Lie connection ∇ on V ;

(iii) A 2−form B ∈ Ω2(A;V ) satisfying conditions (a) and (b) of Theorem 4.5.

4.3 Algebroid connections

In this subsection, we first generalize Theorem 4.7 to the case of a transitive Lie algebroid which
is not necessarily of the form Der(A) ⊕ V , but we require that it be endowed with a Lie algebroid
connection (see [16, 18]), considered as a section of the anchor map. Then, in Theorem 4.11 we
construct a Lie algebroid structure on Der(A)⊕ V which is isomorphic to the given algebroid.

Definition 4.9. Let (F , [[·, ·]], ρ) be a Lie algebroid. A morphism of A-modules γ : Der(A) → F is
called a Lie algebroid connection (on F) if it is a section of ρ, that is, ρ ◦ γ = IdDer(A).

Theorem 4.10. Let

V F Der(A)�

�

//

ι
// //

ρ
(8)

be a transitive Lie algebroid and γ : Der(A) → F a Lie algebroid connection for F . Then:

(i) The bracket [·, ·]V defined for v1, v2 ∈ V by

[v1, v2]V = [[ι(v1), ι(v2)]], (9)

is an A-linear Lie bracket.

(ii) The mapping ∇ : Der(A) → Hom(V, V ) given by

∇X(v) = [[γ(X), ι(v)]],

is a Lie connection on V (called the adjoint connection).

(iii) The mapping B : Der(A) ×Der(A) → V , defined by

B(X,Y ) = [[γ(X), γ(Y )]]− γ([X,Y ]),

is A-bilinear, skew-symmetric and satisfies the conditions (a) and (b) of Theorem 4.5.

15



Proof. First, note that the exactness of (8) allows us to identify V with its image under ι in F , and
that Imι = kerρ in F . Then, since ρ is a morphism of Lie algebras, we have

ρ[[ι(v1), ι(v2)]] = [ρι(v1), ρι(v2)] = 0.

Thus, the bracket [·, ·]V is well-defined. By a similar argument it can be proved that ∇ and B are well-
defined. Now, let us show that [ , ]V defined by (9) is a Lie bracket and A-linear. The R−bilinearity
and skew-symmetry are again inherited from [[·, ·]]. For the rest of properties, let v1, v2, v3 ∈ V and
f ∈ A. The Jacobi identity results from

	 [[v1, v2]V , v3]V = 	 [[ι([[ι(v1), ι(v2)]]), ι(v3)]]
= 	 [[[[ι(v1), ι(v2)]], ι(v3)]] = 0.

The A-linearity can be checked as follows:

[fv1, v2]V = [[ι(fv1), ι(v2)]]
= [[fι(v1), ι(v2)]]
= f [[ι(v1), ι(v2)]]− ρ(ι(v2))(f)ι(v1))
= f [[ι(v1), ι(v2)]]
= f [v1, v2]V .

Next, we show that ∇ is Lie connection in V . The R−linearity is inherited from ι and [[·, ·]]. If
X,Y, Z ∈ Der(A), f ∈ A, and v, v1, v2 ∈ V, s ∈ R, the A-linearity of ∇ follows from the computation

∇fX+Y (v) = [[γ(fX + Y ), ι(v)]]
= [[fγ(X), ι(v)]] + [γ(Y ), ι(v)]]
= f [[γ(X), ι(v)]]− ρ(ι(v))(f)(γ(X)) + [γ(Y ), γ(v)]]
= f [[γ(X), ι(v)]] + [γ(Y ), ι(v)]]
= f∇X(v) +∇Y (v).

For a fixed X ∈ Der(A), ∇X satisfies the Leibniz identity,

∇X(fv) = [[γ(X), ι(fv)]]
= [[γ(X), f ι(v)]]
= f [[γ(X), ι(v)]] + ρ(γ(X))(f)(ι(v))
= f [[γ(X), ι(v)]] +X(f)(ι(v))
= f [[γ(X), ι(v)]] +X(f)k(ι(v))
= f∇X(v) +X(f)v,

and ∇ is a Lie connection,

ι([∇Xv1, v2]V + [v1,∇Xv2]V ) = ι([[[γ(X), ι(v1)]], v2]V + [v1, [[γ(X), ι(v2)]]]V )
= [[[[γ(X), ι(v1)]], ι(v2)]] + [[ι(v1), [[γ(X), ι(v2)]]]]
= [[γ(X), [[ι(v1), ι(v2))]]]]
= [[γ(X), ι([v1, v2)]V )]]
= ι(∇X [v1, v2]).

This implies that ∇X [v1, v2]V = [∇Xv1, v2]V + [v1,∇Xv2]V .
By similar computations it can be shown that B ∈ Ω2(A;V ). The proof of the property which relates
B to the curvature of ∇ also follows the same guidelines,

ι(C∇(X,Y )(v)) = ι([∇x,∇Y ](v)−∇[X,Y ](v))
= ι(∇X(∇Y )(v)) − ι(∇Y (∇X)(v)) − [[γ([X,Y ]), ι(v)]]
= [[γ(X), ι(∇Y (v))]] − [[γ(Y ), ι(∇X(v))]] − [[γ([X,Y ]), ι(v)]]
= [[γ(X), [[γ(Y ), ι(v)]]]] + [[γ(Y ), [[ι(v), γ(X)]]]] − [[γ([X,Y ]), ι(v)]]
= −[[ι(v), [[γ(X), γ(Y )]]]]− [[γ([X,Y ]), ι(v)]]
= [[([[γ(X), γ(Y )]]− γ([X,Y ]), ι(v)]]
= [[ι([[γ(X), γ(Y )]]− γ([X,Y ])), ι(v)]]
= ι([[[γ(X), γ(Y )]]− γ([X,Y ]), v]V )
= ι([B(X,Y ), v]V ).
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Therefore, [B(X,Y ), v]V = C∇(X,Y )(v). Finally, we check the modified Bianchi identity,

ι(	 {∇X(B(Y, Z))− B([X,Y ], Z)}) = 	 {[[γ(X), ι(B(Y, Z))]]− ι(B([X,Y ], Z))}
= 	 {[[γ(X), γ([Y, Z])]]

−[[γ(X), [[γ(Y ), γ(Z)]]]]
−γ([[X,Y ], Z]) + [[γ([X,Y ]), γ(Z)]]}

= 	 {[[γ(X), γ([Y, Z])]] + [[γ([X,Y ]), γ(Z)]]} = 0.

Thus, 	 {∇X(B(Y, Z))− B([X,Y ], Z)} = 0.

Theorem 4.11. Let

V F Der(A)
�

�

//

ι
// //

ρ

be a transitive Lie algebroid and γ : Der(A) → F a Lie algebroid connection on F . Then (F , [[·, ·]], ρ)
is isomorphic to (Der(A)⊕ V, 〈·, ·〉, pr1), where the bracket is defined through

[(X1, v1), (X2, v2)] = ([X1, X2], [v1, v2]V +∇X1
(v2)−∇X2

(v1)− B(X1, X2)),

and [·, ·]V ,∇X , B are given in Theorem 4.10.

Proof. We know that (Der(A)⊕ V, 〈·, ·〉, pr1) is a Lie algebroid by Theorem 4.5. Moreover,

φ : Der(A)⊕ V −→ F
(X, v) 7−→ γ(X) + ι(v)

is an A-module isomorphism such that

(ρ ◦ φ)(X, v) = ρ(γ(X) + ι(v)) = X = pr1(X, v)

and

φ(〈(X1, v1), (X2, v2)〉) = φ([X1, X2], [v1, v2]V +∇X1
(v2)−∇X2

(v1)− B(X1, X2))
= φ([X1, X2], [[ι(v1), ι(v2)]] + [[γ(X1), ι(v2)]]

−[[γ(X2), ι(v1)]]− [[γ(X1), γ(X2)]]− γ([X1, X2]))
= γ([X1, X2]) + ι([[ι(v1), ι(v2)]]) + ι([[γ(X1), ι(v2)]])

−ι([[γ(X2), ι(v1)]]) − ι([[γ(X1), γ(X2)]])− γ([X1, X2])
= [[ι(v1), ι(v2)]] + [[γ(X1), ι(v2)]]− [[γ(X2), ι(v1)]] + [[γ(X1), γ(X2)]]
= [[γ(X1) + ι(v1), γ(X1) + ι(v1)]]
= [[φ(X1, v1), φ(X2, v2)]].

5 Poisson algebras on A⊕ V

Recall that, if (A, { , }) is a Poisson algebra, then we define for every f ∈ A the Hamiltonian
derivation Xf ∈ Der(A) as the adjoint map Xf = {f, ·}. The following standard properties will be
used below:

(i) Xf1f2 = f1Xf2 + f2Xf1 ,

(ii) The mapping f 7→ Xf is a Lie algebra morphism, i.e, X{f1,f2} = [Xf1 , Xf2 ].

Now, on A⊕ V we can define a product given by

(f1, v1) · (f2, v2) = (f1f2, f1v2 + f2v1), (10)

for f1, f2 ∈ A and v1, v2 ∈ V . This makes A⊕V a commutative ring. Under certain conditions, this
ring is also a Poisson algebra, as shown by the following result.
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Theorem 5.1. Let (A, {, }A) be a Poisson algebra. Suppose we have a transitive Lie algebroid

V Der(A)⊕ V Der(A),�

�

//

ι2
// //

ρ

with anchor ρ = pr1. Then, A⊕V is also a Poisson algebra with product defined by (10) and Poisson
bracket

{(f1, v1), (f2, v2)} = ({f1, f2}A,∇Xf1
(v2)−∇Xf2

(v1) + [v1, v2]V + B(Xf1 , Xf2)), (11)

where [·, ·]V , ∇ and B are given in Theorem 4.7.

Proof. Let f1, f2, f3 ∈ A and v1, v2, v3 ∈ V . The skew-symmetry of the bracket is immediate

{(f1, v1), (f2, v2)} = ({f1, f2}A,∇Xf1
(v2)−∇Xf2

(v1) + [v1, v2]V + B(Xf1 , Xf2))

= (−{f2, f1}A,∇Xf1
(v2)−∇Xf2

(v1)− [v2, v1]V − B(Xf2 , Xf1))
= −{(f2, v2), (f1, v1)}.

Next we verify the Leibniz identity, (where [[·, ·]] denotes the Lie bracket on Der(A)⊕ V )

{(f1, v1), (f2, v2) · (f3, v3)}
= {(f1, v1), (f2f3, f2v3 + f3v2)}
= ({f1, f2f3}A,∇Xf1

(f3v2 + f2v3)−∇Xf2f3
(v1) + [v1, f3v2 + f2v3]V + B(Xf1 , Xf2f3))

= (f2{f1, f3}A + f1{f2, f3}A, Xf1(f3)v2
+f3∇Xf1

(v2) +Xf1(f2)v3 + f2∇Xf1
(v3)

−∇Xf2f3
(v1) + f2[v1, v3]V + f3[v,v2]V

+pr2([[ι1(Xf1), ι1(Xf2f3)]]− ι1([Xf1 , Xf2f3 ]))
= (f2{f1, f3}A + f1{f2, f3}A, f2pr2([[ι1(Xf1), ι2(v3)]])

+f2pr2([[ι2(v1), ι1(Xf3)]]) + f2[v1, v3]V + f2pr2([[ι1(Xf1), ι1(Xf3)]])
−f2ι1([Xf1 , Xf3 ]) + {f1, f3}v2
+f3pr2([[ι1(Xf1), ι2(v2)]]) + f3pr2([[ι2(v1), ι1(Xf2)]]) + f3[v1, v2]V
+f3pr2([[ι1(Xf1), ι1(Xf2)]])− f3pr2(ι1([Xf1 , Xf2 ]) + {f1, f2}v3)

= (f2, v2){(f1, v1), (f3, v3)} + (f3, v3){(f1, v1), (f2, v2)},

Here we have used that the bracket [ , ]V is A-linear. Finally, for the Jacobi identity we have

{{(f1, v1), (f2, v2)}, (f3, v3)}
= {({f1, f2}A, ∇Xf1

(v2)−∇Xf2
(v1) + [v1, v2]V + B(Xf1 , Xf2)), (f3, v3)}

= ({{f,f2}A, f3}A,
pr2([[ι1([Xf1 , Xf2 ]), ι2(v3)]]
−[[ι1(Xf3), [[ι1(Xf1), ι2(v2)]]]]
+[[ι1(Xf3), [[ι1(Xf2), ι2(v1)]]]]
−[[ι1(Xf3), [[ι2(v1), ι2(v2)]]]]
−[[ι1(Xf3), [[ι1(Xf1), ι1(Xf2)]]]]
+[[ι1(Xf3), ι1([Xf1 , Xf2 ])]]
+[[[ι1(Xf1), ι2(v2)]], ι2(v3)]]
−[[[ι1(Xf2), ι2(v1)]], ι2(v3)]]
+[[[ι1(Xf1), ι1(Xf2)]], ι2(v3)]]
−[[ι1([Xf1 , Xf2 ]), ι2(v3)]]
+[[ι1([Xf1 , Xf2 ]), ι1(Xf3)]]
−ι1([[Xf1 , Xf2 ], Xf3 ]))
+[[v1, v2]V , v3]V ).
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It follows that

	 {{(f1, v1), (f2, v2)}, (f3, v3)}
= ({{f1, f2}A, f3}A + {{f2, f3}A, f1}A + {{f3, f1}A, f2}A,

+ 	 pr2(−[[ι1(Xf3), [[ι1(Xf1), ι2(v2)]]]]
−[[ι1(Xf1), [[ι1(Xf2), ι2(v3)]]]]
−[[ι1(Xf2), [[ι1(Xf3), ι2(v1)]]]])
+ 	 pr2(−[[ι1(Xf3), [[ι2(v1), ι2(v2)]]]]
−[[ι1(Xf1), [[ι2(v2), ι2(v3)]]]]
−[[ι1(Xf2), [[ι2(v3), ι2(v1)]]]])
+ 	 pr2(−[[ι1(Xf3), [[ι1(Xf1), ι1(Xf2)]]]])
+ 	 pr2(−ι1([[Xf1 , Xf2 ], Xf3 ]))
+ 	 ([[v1, v2]V , v3]V )) = (0, 0).

Corollary 5.2. V is an ideal of A⊕ V with respect to the Poisson bracket defined by (11).

The proof of this result follows from the fact {0, f}A = 0.

Corollary 5.3. If (A, {, }A) is a Poisson algebra and we have a transitive Lie algebroid

V Der(A)⊕ V Der(A),
�

�

//

ι2
// //

ρ

endowed with an algebroid connection γ, then, A⊕ V is a Poisson algebra.

Proof. By Theorem 4.11, we know that (F , [[·, ·]], ρ) is isomorphic to (Der(A) ⊕ V, 〈·, ·〉, pr1). The
statement follows from Theorem 5.1.
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