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HEUN’S EQUATION, GENERALIZED HYPERGEOMETRIC

FUNCTION AND EXCEPTIONAL JACOBI POLYNOMIAL

KOUICHI TAKEMURA

Abstract. We study Heun’s differential equation in the case that one of the sin-
gularities is apparent. In particular we conjecture a relationship with generalized
hypergeometric differential equation and establish it in some cases. We apply our
results to exceptional Jacobi polynomials.

1. Introduction

The hypergeometric differential equation

(1.1) z(1 − z)
d2y

dz2
+ (γ − (α + β + 1)z)

dy

dz
− αβy = 0,

is one of the most important differential equation in mathematics and physics. Sev-
eral properties of the hypergeometric differential equation, i.e. integral representation
of solutions, explicit description of monodromy, algebraic solutions, orthogonal poly-
nomials, etc. are studied very well, and they are applied to various problems in
mathematics and physics. The hypergeometric differential equation has three sin-
gularities {0, 1,∞} and it is a canonical form of Fuchsian differential equations of
second order with three singularities.

Several generalizations of the hypergeometric differential equation have been stud-
ied so far.

A generalization is given by adding regular singularities. Heun’s differential equa-
tion is a canonical form of a second-order Fuchsian equation with four singularities,
which is given by

(1.2)
d2y

dz2
+

(

γ

z
+

δ

z − 1
+

ǫ

z − t

)

dy

dz
+

αβz − q

z(z − 1)(z − t)
y = 0,

with the condition

(1.3) γ + δ + ǫ = α + β + 1, t 6= 0, 1.

It has been applied to several problems in physics (e.g. see ([10, 12])). The parame-
ter q is independent from the local exponents and is called an accessory parameter.
Although it is much more difficult to study global structure of Heun’s differential
equation than that of the hypergeometric differential equation, several special solu-
tions of Heun’s differential equation have been investigated. In the case that one of
the regular singularities {0, 1, t,∞} is apparent, the solutions of Heun’s differential
equation have integral representations ([14]). On the other hand, if α ∈ Z≤0 and
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q is special, then Heun’s differential equation has polynomial solutions. We will in-
vestigate the case that Heun’s differential equation has polynomial solutions and the
regular singularity z = t is apparent. Propositions on the structure between two
conditions will be given in section 5.

Another generalization of the hypergeometric equation is given by increasing the
degree of the differential. Let pFq (a1, . . . , ap; b1, . . . , bq; z) be the generalized hyper-
geometric function defined by

pFq (a1, . . . , ap; b1, . . . , bq; z) =pFq

(

a1, a2, . . . , ap
b1, b2, . . . , bq

; z

)

=

∞
∑

n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)nn!

zn,

(1.4)

where (a)n = a(a+1) . . . (a+n−1). Then it satisfies the generalized hypergeometric
differential equation

{

d

dz

(

z
d

dz
+ b1 − 1

)

. . .

(

z
d

dz
+ bq − 1

)

−

(

z
d

dz
+ a1

)

. . .

(

z
d

dz
+ ap

)}

y = 0.

(1.5)

In the case p = 2 and q = 1, the function 2F1 (α, β; γ; z) is called Gauss hypergeomet-
ric function, and Eq.(1.5) is just the hypergeometric differential equation. If p = q+1,
then the differential equation (1.5) is Fuchsian with singularities z = 0, 1,∞, and it is
known to be rigid ([4]), i.e. there is no accessory parameter in Eq.(1.5). Consequently
we have integral representations of solutions of the generalized hypergeometric differ-
ential equation.

In this paper we study some cases that the generalized hypergeometric differential
equation is factorized and Heun’s differential equation appears as a factorized com-
ponent. Let La1,...,aq+1;b1...bq be the monic differential operator of order q+1 such that
La1,...,aq+1;b1...bqy = 0 is equivalent to Eq.(1.5). For example

La1,a2,a3;b1,b2 =
d3

dz3
+

(a1 + a2 + a3 + 3)z − (b1 + b2 + 1)

z(z − 1)

d2

dz2
(1.6)

+
(a1a2 + a1a3 + a2a3 + a1 + a2 + a3 + 1)z − b1b2

z2(z − 1)

d

dz
+

a1a2a3
z2(z − 1)

.

Letessier, Valent andWimp ([7]) studied generalized hypergeometric differential equa-
tions in reducible cases. They proved that the function

(1.7) p+rFq+r

(

a1, . . . , ap, e1 + 1, . . . , er + 1
b1, b2, . . . , bq, e1, . . . , er

; z

)

satisfies a linear differential equation of order max(p, q + 1) whose coefficients are
polynomials. We now explain it in the case p = 2, q = 1, r = 1. Let f0(z) =

2F1 (α, β; γ; z). Then the function f1(z) = zf ′
0(z)/e1 + f0(z) is equal to the function

3F2

(

α, β, e1 + 1
γ, e1

; z

)

and it satisfies Lα,β,e1+1;γ,e1f1(z) = 0. On the other hand, it

also satisfies

L̃α,β;γ;e1f1(z) = 0,(1.8)
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where

L̃α,β;γ;e1 =
d2

dz2
+

(

γ

z
+

α + β − γ + 2

z − 1
−

1

z − t

)

d

dz
+

αβz − q

z(z − 1)(z − t)
,(1.9)

t =
e1(e1 + 1− γ)

(e1 − α)(e1 − β)
, q =

αβ(e1 + 1)(γ − e1 − 1)

(e1 − α)(e1 − β)
,

and we have the factorization

Lα,β,e1+1;γ,e1 =

(

d

dz
+

e1 + 1

z
+

1

z − 1
+

1

z − t

)

L̃α,β;γ;e1 .(1.10)

Since the point z = t is not singular with respect to the differential equation Lα,β,e1+1;γ,e1y =

0, it is an apparent singularity with respect to L̃α,β;γ;e1y = 0. Maier ([8]) observed the
fact conversely and he established that Heun’s equation with the apparent singularity
z = t whose exponents are 0, 2 appears as a right factor of the generalized hyper-
geometric equation Lα,β,e1+1;γ,e1y = 0 with a suitable value e1 (see Proposition 4.1).
In this paper we generalize Maier’s result and propose a conjecture that solutions of
the Fuchsian differential equation with singularities z = 0, 1,∞, t1, . . . , tM such that
the singularities z = t1, . . . , tM are apparent also satisfy a generalized hypergeometric
equation (see Conjecture 1).

Gomez-Ullate, Kamran and Milson ([3]) introduced X1-Jacobi polynomials as an
orthogonal system within the Sturm-Liouville theory. They are remarkable and are
stuck out the classical framework because the sequence of polynomials starts from
a polynomial of degree one. Sasaki et al. ([9, 11]) extended it to two types of Xℓ-
Jacobi polynomials (ℓ = 1, 2, . . . ) and studied properties of them. It is known that
X1-Jacobi polynomials satisfy Heun’s differential equation. We apply results in this
paper to X1-Jacobi polynomials. Then we may understand a position of X1-Jacobi
polynomials in the theory of Heun’s differential equation. Moreover we establish that
X1-Jacobi polynomials are also expressed by generalized hypergeometric functions.

This paper is organized as follows. In section 2, we review definitions and prop-
erties of Heun’s differential equation, apparent singularity and Heun polynomial. In
section 3, we recall an integral transformation of Heun’s differential equation and its
application to the case that singularity z = t is apparent. In section 4, we give a
conjecture on Heun’s differential equation with an apparent singularity and reducible
generalized hypergeometric equation, and verify it for some cases. In section 5, we
explain propositions in the case that Heun’s differential equation has polynomial solu-
tions and the regular singularity z = t is apparent. In section 6, we give applications
to X1-Jacobi polynomials.

2. Heun’s differential equation, apparent singularity and Heun

polynomial

2.1. Local solution. Let us consider local solutions of Heun’s differential equation

(2.1)
d2y

dz2
+

(

γ

z
+

δ

z − 1
+

ǫ

z − t

)

dy

dz
+

αβz − q

z(z − 1)(z − t)
y = 0,
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(γ + δ + ǫ = α + β + 1) about z = t. The exponents about z = t are 0 and 1− ǫ. If
ǫ 6∈ Z, then we have a basis of local solutions about z = t as follows;

f(z) =
∞
∑

j=0

cj(z − t)j , (c0 6= 0), g(z) = (z − t)1−ǫ
∞
∑

j=0

c̃j(z − t)j, (c̃0 6= 0).(2.2)

The coefficients ci are recursively determined by ǫt(t− 1)c1 + (αβt− q)c0 = 0 and

i(i+ ǫ− 1)t(t− 1)ci + (i+ α− 2)(i+ β − 2)ci−2(2.3)

+ [(i− 1)(i− 2)(2t− 1) + (i− 1){(γ + δ + 2ǫ)t− γ − ǫ}+ αβt− q]ci−1 = 0,

for i ≥ 2. Hence ci is a polynomial of the variable q of order i.

2.2. Apparent singularity. We now define an apparent singularity in the case ǫ ∈
Z. If ǫ ∈ Z≤0, then we have a basis of local solutions as follows;

f(z) =
∞
∑

j=0

cj(z − t)j + A g(z) log(z − t), g(z) = (z − t)1−ǫ
∞
∑

j=0

c̃j(z − a)j ,(2.4)

If the logarithmic term in Eq.(2.4) disappears, i.e. A = 0, then the singularity z = t
is called apparent. Note that the apparency of a regular singularity is equivalent to
that the monodromy about z = t is trivial i.e. the monodromy matrix is the unit.

Now we describe an explicit condition that the regular singularity z = t of Heun’s
differential equation is apparent in the case ǫ ∈ Z≤1. It is written as

(α− ǫ− 1)(β − ǫ− 1)c−ǫ−1(2.5)

+ [ǫ(ǫ+ 1)(2t− 1)− ǫ{(γ + δ + 2ǫ)t− γ − ǫ} + αβt− q]c−ǫ = 0,

where c1, . . . , c−ǫ are determined recursively by Eq.(2.3). Note that the equation is
obtained by Eq.(2.3) in the case i = 1−ǫ. By setting n = 1−ǫ, we have δ = α+β−γ+n
and the condition that the singularity z = t is apparent is written as P app(q) = 0,
where P app(q) is a polynomial of the variable q of order n, which is also a polynomial
of t, α, β, γ.

Example 1. (i) If ǫ = 0 (n = 1), then the condition that the regular singularity z = t
is apparent is written as P app(q) = q − αβt = 0 and it follows that the singularity
z = t disappears.
(ii) If ǫ = −1 (n = 2), then the condition that the regular singularity z = t is apparent
is written as

P app(q) = q2 − {(2αβ + α + β)t− γ + 1}q + αβt{(α+ 1)(β + 1)t− γ} = 0.(2.6)

(iii) If ǫ = −2 (n = 3), then the condition that the regular singularity z = t is
apparent is written as

P app(q) = q3 + {(−3αβ − 3α− 3β − 1)t+ (3γ − 4)}q2
(2.7)

+ [{3α2β2 + 6αβ(α+ β) + 10αβ + 2(α2 + β2) + 2α+ 2β}t2

+ {(−6αβ − 4α− 4β)γ + 4αβ + 4α+ 4β}t+ 2(γ − 1)(γ − 2)]q

− αβt{(α+ 1)(α + 2)(β + 1)(β + 2)t2 − γ(3αβ + 4α + 4β + 4)t+ 2γ(γ − 1)} = 0.
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(iv) If ǫ = −3 (n = 4), then the condition that the regular singularity z = t is apparent
is written as

P app(q) = q4 − 2{(2αβ + 3α + 3β + 2)t− 3γ + 5}q3 + [{6α2β2 + 18αβ(α+ β)

(2.8)

+ 44αβ + 11α2 + 11β2 + 18α+ 18β + 4}t2 + {−(18αβ + 22α+ 22β + 8)γ + 20αβ

+ 30α + 30β + 12}t+ 11γ2 − 40γ + 33]q2 + [−{4α3β3 + 18α2β2(α + β) + 76α2β2

+ 22αβ(α2 + β2) + 84αβ(α+ β) + 80αβ + 6α3 + 6β3 + 18α2 + 18β2 + 12α+ 12β}t3

+ {(18α2β2 + 44αβ(α+ β) + 82αβ + 18α2 + 18β2 + 18α+ 18β)γ

− (10α2β2 + 30αβ(α+ β) + 66αβ + 18α2 + 18β2 + 18α + 18β)}t2

+ {(−22αβ − 18α− 18β)γ2 + (50αβ + 54α+ 54β)γ − 24αβ − 36α− 36β}t

+ 6(γ − 1)(γ − 2)(γ − 3)]q + αβt[(α + 1)(α+ 2)(α + 3)(β + 1)(β + 2)(β + 3)t3

− 2γ{3α2β2 + 11αβ(α+ β) + 37αβ + 9α2 + 9β2 + 27α+ 27β + 18}t2

+ γ{(10αβ + 18α+ 18β + 18)(γ − 1) + αβγ}t− 6γ(γ − 1)(γ − 2)] = 0.

2.3. Heun polynomial. We determine a condition that Heun’s differential equation
has a non-zero polynomial solutions of degree N − 1. Then the solution has an
asymptotic (1/z)1−N as z → ∞ and we have 1 − N = α or 1 − N = β, because the
exponents about z = ∞ are α and β. We now assume that 1 − α = N ∈ Z≥0. If
the accessory parameter q satisfies cN = 0 where cN is determined by Eq.(2.3), then
it follows from Eq.(2.3) in the case i = N + 1 that cN+1 = 0. Thus we have ci = 0
for i ≥ N + 2 and we obtain a polynomial solution of degree N − 1. The polynomial
is called Heun polynomial. Note that the condition cN = 0 is written as P pol(q) = 0
by multiplying a suitable constant, where P pol(q) is a polynomial of the variable q of
order N , which is also a polynomial of t, β, γ, ǫ. (δ = β −N − γ − ǫ+ 2)

Example 2. (i) If α = 0 (N = 1) and β 6∈ Z, then the condition for existence of
non-zero polynomial solution of Heun’s equation is written as P pol(q) = q = 0 and a
polynomial solution is y = 1.
(ii) If α = −1 (N = 2) and β 6∈ Z, then the condition for existence of non-zero
polynomial solution of Heun’s equation is written as

P pol(q) = q2 + ((β − ǫ)t + γ + ǫ)q + βγt = 0,(2.9)

and a polynomial solution is

y = t(t− 1)ǫ+ (q + βt)(z − t).(2.10)

(iii) If α = −2 (N = 3) and β 6∈ Z, then the condition for existence of non-zero
polynomial solution of Heun’s equation is written as

P pol(q) = q3 + {(3β − 3ǫ− 1)t+ 3γ + 3ǫ+ 2}q2(2.11)

+ {2(β − ǫ)(β − ǫ− 1)t2 − 4(ǫ2 + (γ − β + 2)ǫ− (2γ + 1)β)t

+ 2(γ + ǫ)(γ + ǫ+ 1)}q + 4βγt((β − ǫ)t + γ + ǫ+ 1) = 0,
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and a polynomial solution is

y = 2t2(t− 1)2ǫ(ǫ+ 1) + 2t(t− 1)(ǫ+ 1)(q + 2βt)(z − t)(2.12)

+ {q2 + ((3β − ǫ+ 1)t+ γ + ǫ)q + 2βt((β + 1)t+ γ)}(z − t)2.

Polynomial-type solutions of Heun’s differential equation are written as

y = zσ0(z − 1)σ1(z − t)σtp(z),(2.13)

where p(z) is a polynomial, σ0 ∈ {0, 1 − γ}, σ1 ∈ {0, 1 − δ}, σt ∈ {0, 1 − ǫ}. We
described above the condition for existing a non-zero polynomial-type solution in the
case σ0 = σ1 = σt = 0. The condition for existing a polynomial-type solution in the
case σ0 = 1− γ, σ1 = 1− δ and σt = 0 is described as ǫ−α ∈ Z≤−1 (or ǫ−β ∈ Z≤−1)

and P̃ (q) = 0, where P̃ (q) is a polynomial of the variable q of order −ǫ+α (or −ǫ+β).
Then the order of p(z) is −ǫ+ α− 1 (or −ǫ+ β − 1).

3. Integral transformation and its application

Let p be an element of the Riemann sphere C ∪ {∞} and γp be a cycle on the
Riemann sphere with variable w which starts from w = o, goes around w = p in
a counter-clockwise direction and ends at w = o. Let [γz, γp] = γzγpγ

−1
z γ−1

p be the
Pochhammer contour. Kazakov and Slavyanov ([5]) established that Heun’s differen-
tial equation admits integral transformations.

Proposition 3.1. ([5, 13]) Set

(η − α)(η − β) = 0, γ′ = γ − η + 1, δ′ = δ − η + 1, ǫ′ = ǫ− η + 1,(3.1)

{α′, β ′} = {2− η, α+ β − 2η + 1},

q′ = q + (1− η)(ǫ+ δt + (γ − η)(t+ 1)).

Let v(w) be a solution of

(3.2)
d2v

dw2
+

(

γ′

w
+

δ′

w − 1
+

ǫ′

w − t

)

dv

dw
+

α′β ′w − q′

w(w − 1)(w − t)
v = 0.

Then the function

y(z) =

∫

[γz,γp]

v(w)(z − w)−ηdw(3.3)

is a solution of

(3.4)
d2y

dz2
+

(

γ

z
+

δ

z − 1
+

ǫ

z − t

)

dy

dz
+

αβz − q

z(z − 1)(z − t)
y = 0,

for p ∈ {0, 1, t,∞}.

It was obtained in ([14]) that polynomial-type solutions of Heun’s equation corre-
spond to solutions which have an apparent singularity by the integral transformation.
In particular we have the following proposition by setting η = β in Proposition 3.1.
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Proposition 3.2. ([14]) If ǫ ∈ Z≤0, α, β, β − γ, β − δ 6∈ Z and the singularity z = t
of Eq.(3.4) is apparent, then there exists a non-zero solution of Eq.(3.2) which can
be written as v(w) = wβ−γ(w − 1)β−δh(w) where h(w) is a polynomial of degree −ǫ
and the functions

∫

[γz ,γp]

wβ−γ(w − 1)β−δh(w)(z − w)−βdw,(3.5)

(p = 0, 1) are non-zero solutions of Eq.(3.4).

We may drop the condition α, β, β − γ, β − δ 6∈ Z in Proposition 3.2 by replacing
to that h(w) is a polynomial of degree no more than −ǫ and the solutions in Eq.(3.5)
for p = 0, 1 may be zero.

Corollary 3.3. If ǫ ∈ Z≤0, α, β, β − γ, β − δ 6∈ Z and the singularity z = t of
Eq.(3.4) is apparent, then any solutions of Eq.(3.4) can be expressed by a finite sum
of hypergeometric functions.

Proof. It follow from Proposition 3.2 in the case ǫ = 0 and q = αβt that the functions

Fp(z) =

∫

[γz,γp]

wβ−γ(w − 1)γ−α−1(z − w)−βdw,(3.6)

(p = 0, 1) are non-zero solutions of hypergeometric differential equation, if α, β, β −
γ, β− δ 6∈ Z. Since F0(z) ∼ z1−γ (z → 0) and F1(z) ∼ (z− 1)γ−α−β (z → 1), we have

F0(z) = dα,β,γz
1−γF (α− γ + 1, β − γ + 1; 2− γ; z),(3.7)

F1(z) = d̃α,β,γ(1− z)γ−α−βF (γ − α, γ − β; γ − α− β + 1; 1− z),

where dα,β,γ, d̃α,β,γ are constants. By expanding h(w) =
∑−ǫ

i=0 c
′
iw

i (resp. h(w) =
∑−ǫ

i=0 c̃
′
i(1− w)i) and applying the formula, we have the corollary. �

We describe Proposition 3.2 and Corollary 3.3 in the case ǫ = −2 explicitly.

Proposition 3.4. Set ǫ = −2. The condition that the singularity z = t of Eq.(3.4)
is apparent is written as Eq.(2.7). Then there exists a non-zero solution of Eq.(3.2)
written as v(w) = wβ−γ(w − 1)β−δh(w) where

h(w) = 2α(α+ 1)w2 + 2(α + 1){q − α(β + 2)t}w(3.8)

+ q2 − {2αβ + 3α+ β + 1)t− γ + 2}q + αt{t(α + 1)(β + 1)(β + 2)− βγ},

and the functions
∫

[γz ,γp]

wβ−γ(w − 1)β−δh(w)(z − w)−βdw,(3.9)

(p = 0, 1) are non-zero solutions of Eq.(3.4).

4. Generalized hypergeometric equation and Heun’s differential

equation with an apparent singularity

We propose a conjecture on Fuchsian differential equations which have apparent
singularities and generalized hypergeometric equations.
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Conjecture 1. Set

L̃ =
d2

dz2
+

(

γ

z
+

δ

z − 1
−

M
∑

k=1

mk

z − tk

)

d

dz
+

sMzM + · · ·+ s0
z(z − 1)(z − t1) . . . (z − tM)

,

and assume that 0, 1, t1, . . . , tM are distinct mutually, m1, . . .mM ∈ Z≥1 and the sin-

gularities z = tk of L̃y = 0 are apparent for k = 1, . . . ,M . Then there exists a gen-
eralized hypergeometric differential operator Lα,β,e1+1,...,eN+1;γ,e1,...,eN (N ≤

∑M
k=1mk)

which admits the factorization

Lα,β,e1+1,...,eN+1;γ,e1,...,eN = D̃L̃,(4.1)

where D̃ is a differential operator of order N whose coefficients are rational functions.

Here we verify the conjecture for the cases n = 1, m1 = 1, 2, 3. Set

H[ǫ=−n] =
d2

dz2
+

(

γ

z
+

n + α+ β − γ + 1

z − 1
−

n

z − t

)

d

dz
+

αβz − q

z(z − 1)(z − t)
.(4.2)

The case n = 1 and m1 = 1 is essentially due to Maier ([8]).

Proposition 4.1. ([8]) If the singularity z = t of Heun’s differential equation H[ǫ=−1]y =
0 is apparent (see Eq.(2.6)), then the generalized hypergeometric differential operator
Lα,β,e1+1;γ,e1 admits the factorization

Lα,β,e1+1;γ,e1 =

(

d

dz
+

e1 + 1

z
+

1

z − 1
+

1

z − t

)

H[ǫ=−1], e1 =
αβt

q − αβt
.(4.3)

Remark that if q−αβt = 0 in Proposition 4.1, then we have αβt(1−t) = 0. If α = 0
(resp. β = 0) and q = 0, then e1 = (βt+1−γ)/(t−1) (resp. e1 = (αt+1−γ)/(t−1)).

The following theorems are verified by straightforward calculations.

Theorem 4.2. If the singularity z = t of Heun’s differential equation written as
H[ǫ=−2]y = 0 is apparent (see Eq.(2.7)), then there exists a generalized hypergeometric
differential operator Lα,β,e1+1,e2+1;γ,e1,e2 which admits the factorization

Lα,β,e1+1,e2+1;γ,e1,e2 =

(

d2

dz2
+

(

e1 + e2 + 3

z
+

2

z − 1
+

2

z − t

)

d

dz
+ v(z)

)

H[ǫ=−2],

(4.4)

such that

v(z) = [(e1 + 3)(e2 + 3)z2 + {q − ((e1 + 1)(e2 + 1) + (α + 2)(β + 2))t(4.5)

− (e1 + 3)(e2 + 3) + 2(γ + 1)}z + t(e1 + 1)(e2 + 1)]/{z2(z − 1)(z − t)},

e1 + e2 = −3 +
q − (α + 2)(β + 2)t + 2γ

(1− t)
,

e1e2 =
αβt(q − (αβ + 2α+ 2β + 2)t+ 2(γ − 1))

(q − αβt)(1− t)
.

If q = αβt and αβ 6= 0, then we have (α+ β + 1)t = γ − 1, e1 + e2 = −1 and e1e2 =
−(α+1)(β+1)(γ−1)/(α+β−γ+2). Note that the condition α+β−γ+2 = 0 implies
t = 1 or γ = 1 = −α− β. If γ = 1 = −α− β, then we have e1 + e2 = −1 and e1e2 =
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αβt/(t− 1). If q = αβt and α = 0, then q = 0, e1+ e2 = {(2β+1)t+3− 2γ}/(t− 1)
and e1e2 = {β(β + 1)t2 − 2β(γ − 1)t+ (γ − 1)(γ − 2)}/(t− 1)2.

Theorem 4.3. If the singularity z = t of Heun’s differential equation written as
H[ǫ=−3]y = 0 is apparent (see Eq.(2.8)), then there exists a hypergeometric differential
operator Lα,β,e1+1,e2+1,e3+1;γ,e1,e2,e3 which admits the factorization

Lα,β,e1+1,e2+1,e3+1;γ,e1,e2,e3 =(4.6)
(

d3

dz3
+

(

e1 + e2 + e3 + 6

z
+

3

z − 1
+

3

z − t

)

d2

dz2
+ v(z)

d

dz
+ w(z)

)

H[ǫ=−2],

such that

e1 + e2 + e3 =
q − (αβ + 3α+ 3β + 3)t+ 3(γ − 2)

1− t
,

(4.7)

e1e2 + e1e3 + e2e3 =
1

2(t− 1)2
[q2 − {(2αβ + 5β + 5α + 4)t− 5γ + 9}q

+ {(αβ + 5α+ 5β + 19)αβ + 6α2 + 6β2 + 12α+ 12β + 4}t2

+ {−(5αβ + 12α+ 12β + 6)γ + 2(3αβ + 9α+ 9β + 5)}t+ 2(3γ2 − 12γ + 11)],

e1e2e3 =
αβt

(2(t− 1)2(q − αβt))
[q2 − {(2αβ + 5α + 5β + 6)t− 5γ + 7}q

+ {(αβ + 5α+ 5β + 21)αβ + 6α2 + 6β2 + 18α+ 18β + 12}t2

+ {−(5αβ + 12α+ 12β + 12)γ + 4(αβ + 3α + 3β + 3)}t+ 6(γ − 1)(γ − 2)].

If q = αβt then we have

(2α + β + 2)(α+ 2β + 2)t2 − {4(α+ β + 1)(γ − 1) + αβ}t+ 2(γ − 1)(γ − 2) = 0,

(4.8)

e1 + e2 + e3 = −
3{(2α + β + 2)(α + 2β + 2)t− 2(γ − 2)(α + β + 1)}

2(α + β − γ + 2)
,

e1e2 + e1e3 + e2e3 =
3(2α+ β + 2)(α+ 2β + 2)t− γ(6α+ 6β + 4) + 10(α+ β) + 8

2(α + β − γ + 2)
,

e1e2e3 = −
(α + 1)(β + 1){(2(α+ β + 2)(γ − 1) + αβ)t− 2(γ − 1)(γ − 2)}

2(α+ β − γ + 2)(t− 1)
.

If α + β − γ + 2 = 0 and q = αβt, then it follows from t 6= 0, 1 that t = 2(α +
β)(α + β + 1)/{(2α + β + 2)(α + 2β + 2)}, αβ + 4α + 4β + 4 6= 0, e1 + e2 + e3 =
3(α+β)(αβ+2α+2β+2)/(αβ+4α+4β+4), e1e2+ e1e3+ e2e3 = −(3αβ(α+β)+
13αβ + 6α2 +6β2 + 10α+ 10β + 4)/(αβ + 4α+ 4β + 4) and e1e2e3 = −4(α+ β)(α+
β + 1)2(α + 1)(α+ 2)(β + 1)(β + 2)/(αβ + 4α+ 4β + 4)2.

5. Polynomial-type solutions with an apparent singularity

If ǫ ∈ Z≤0, then the condition that z = t is apparent is written as P app(q) = 0,
where P app(q) is monic polynomial of q with degree 1 − ǫ. On the other hand, if
α ∈ Z≤0 and β 6∈ Z≤0, then the condition that Eq.(3.4) has a polynomial solution is
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written as P pol(q) = 0, where P pol(q) is a monic polynomial of q with degree 1−α, and
the degree of the polynomial solution of Eq.(3.4) is −α. In this section we investigate
a relationship of equations P app(q) = 0 and P pol(q) = 0 in the case ǫ ∈ Z≤0 and
α ∈ Z≤0

Lemma 5.1. Assume that α ∈ Z, ǫ ∈ Z and the singularity z = t is apparent. Then
the monodromy representation of solutions of Eq.(3.4) is reducible.

Proof. Let y1(z), y2(z) be a basis of solutions of Eq.(3.4). Since the singularity
z = t is apparent, the monodromy matrix around z = t is a unit matrix. Let
M (p) (p = 0, 1,∞) be the monodromy matrix on the cycle around the singularity
w = p anti-clockwise with respect to the basis y1(z), y2(z). For the moment we
assume that γ, δ 6∈ Z. Then M (0) (resp. M (1)) is conjugate to the diagonal matrix

with eigenvalues 1 and e2π
√
−1γ (resp. 1 and e2π

√
−1δ). Since the exponents about

z = ∞ are α, β and we have the relation M (0)M (1) = (M (∞))−1, the matrix M (0)M (1)

has an eigenvalue 1. Then the matrices M (0) and M (1) have an common invariant
one-dimensional subspace, because if we set

M (0) =

(

1 0
0 g

)

, M (1) = P

(

1 0
0 d

)

P−1, P =

(

p q
r s

)

,(5.1)

the condition that M (0)M (1) has an eigenvalue 1 is written as 0 = 1− tr(M (0)M (1))+
det(M (0)M (1)) = qr(d−1)(g−1)/(qr−ps), and we have an common one-dimensional
eigenspace for the case q = 0, r = 0, d = 1 or g = 1 respectively. In the case
γ ∈ Z (resp. δ ∈ Z), the matrix M (0) (resp. M (1)) has the multiple eigenvalue 1,
and we can also show that the matrices M (0) and M (1) have an common invariant
one-dimensional subspace by expressing the matrices in the form of Jordan normal
forms. Hence the monodromy representation of solutions of Eq.(3.4) is reducible. �

Remark that Lemma 5.1 is also a consequence of the multiplicative Deligne-Simpson
problem for a special case ([4]).

Proposition 5.2. Assume that α ∈ Z, ǫ ∈ Z≤0 and the singularity z = t is apparent.
Set n = −ǫ(∈ Z≥0).
(i) If α > 0, then there exists a non-zero solution y(z) such that y(z) = z1−γ(z −
1)1−δh(z) and h(z) is a polynomial of degree no more than α+ n− 1.
(ii) If α < 1 − n, then there exists a non-zero solution y(z) such that y(z) is a
polynomial of degree no more than −α.
(iii) If 1 − n ≤ α ≤ 0, then there exists a non-zero solution y(z) such that y(z) is
a polynomial of degree −α or there exists a non-zero solution y(z) such that y(z) =
z1−γ(z − 1)1−δh(z) and h(z) is a polynomial of degree no more than α + n− 1.

Proof. Assume that β 6∈ Z, γ 6∈ Z and β − γ 6∈ Z for the moment. It follows from
reducibility of monodromy that there exists a non-zero solution y(z) of Eq.(3.4) such
that y(z) = zθ0(z−1)θ1(z− t)θth(z) such that h(z) is a polynomial, h(0)h(1)h(t) 6= 0,
θ0 ∈ {0, 1 − γ}, θ1 ∈ {0, 1 − δ}, θt ∈ {0, 1 + n}, and α = − deg h(z) − θ0 − θ1 − θt
or β = − deg h(z) − θ0 − θ1 − θt (see [14, Proposition 3.1]). Since n ∈ Z≥0 and
(z − t)n is a polynomial in z, we have a non-zero solution y(z) of Eq.(3.4) such that
y(z) = zθ0(z − 1)θ1h(z) such that h(z) is a polynomial, h(0)h(1) 6= 0, θ0 ∈ {0, 1− γ},
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θ1 ∈ {0, 1 − δ}, and α = − deg h(z) − θ0 − θ1 or β = − deg h(z) − θ0 − θ1. Because
deg h(z) is a non-negative integer, the possible cases under the consition α ∈ Z, β 6∈ Z,
γ 6∈ Z and β − γ = δ − n − 1 − α 6∈ Z are the cases deg h(z) = −α ∈ Z≥0 (α ≤ 0,
(θ0, θ1) = (0, 0)) and deg h(z) = α+n− 1 ∈ Z≥0 (α ≥ 1−n, (θ0, θ1) = (1− γ, 1− δ)).
Hence we have the proposition under the condition α ∈ Z, β 6∈ Z, γ 6∈ Z and
β − γ = δ − n− 1− α 6∈ Z.

Since the monic characteristic polynomial in q for existence of polynomial-type
solutions y(z) = zθ0(z− 1)θ1h(z) (h(z): a polynomial, (θ0, θ1) = (0, 0), (1− γ, 1− δ))
is continuos with respect to the parameters β and γ, we obtain the proposition for
all β and γ by continuity argument. �

Theorem 5.3. Assume that ǫ ∈ Z≤0, α ∈ Z≤0 and β 6∈ Z≤0.
(i) If −α ≤ −ǫ and Heun’s differential equation (Eq.(3.4)) has a polynomial solution
(i.e. the accessory parameter q satisfies P pol(q) = 0), then the singularity z = t is
apparent (i.e. P app(q) = 0).
(ii) If −ǫ ≤ −α and the singularity z = t is apparent (i.e. P app(q) = 0), then Eq.(3.4)
has a polynomial solution (i.e. P pol(q) = 0).

Proof. (ii) follows from Proposition 5.2 (ii).
We show (i). If ǫ ∈ Z≤0, then a basis of local solutions about z = t is written as

f(z) = (z − t)1−ǫ
∞
∑

j=0

cj(z − t)j , g(z) =
∞
∑

j=0

c̃j(z − t)j + Af(z) log(z − t).(5.2)

Apparency of the singularity z = t is described as the condition A = 0. If there exists
a polynomial solution y = p(z) of Eq.(3.4), then degz p(z) = −α ≤ −ǫ. Since the
expansion of f(z) starts from 1 − ǫ, the solution p(z) is proportional to g(z). Hence
A = 0 and we obtain (i). �

Proposition 5.2 and Theorem 5.3 are also valid for the case the singularity z = 0
or z = 1 is apparent.

6. X1 Jacobi polynomial

We now review a definition of X1-Jacobi polynomials and their properties ([3, 9,
11]). Let Pk(η) be the Jacobi polynomial parametrized as

(6.1) Pk(η) =
(g + 1

2
)k

k!

k
∑

j=0

(−k)j(k + g + h+ 2)j
j!(g + 1

2
)j

(

1− η

2

)j

.

The X1-Jacobi polynomials P̂k(η) (k = 0, 1, 2, . . . ) are defined in the case g, h 6∈
{−1/2,−3/2,−5/2, . . .} by

P̂k(η) =
1

k + h+ 1
2

(

(h+ 1
2
)ξ̃(η)Pk(η) + (1 + η)ξ(η)

d

dη
Pk(η)

)

,(6.2)

ξ(η) =
g − h

2
η +

g + h + 1

2
, ξ̃(η) =

g − h

2
η +

g + h+ 3

2
.
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Hence degη P̂k(η) = k + 1. The X1-Jacobi polynomials in the case g, h > −1/2 are
orthogonal with respect to the following inner product;

∫ 1

−1

P̂k(η)P̂k′(η)W(η)dη = Ckδk,k′, W(η) =
(1− η)g+

1

2 (1 + η)h+
1

2

2g+h+2ξ(η)2
,(6.3)

where Ck is a non-zero constant. The X1-Jacobi polynomial P̂k(η) satisfies the fol-
lowing differential equation;

(1− η2)
d2

dη2
P̂k(η) +

(

h− g − (g + h+ 3)η − 2
(1− η2)ξ′(η)

ξ(η)

)

d

dη
P̂k(η)(6.4)

+

(

−
2(h + 1

2
)(1− η)ξ̃′(η)

ξ(η)
+ k(k + g + h+ 2) + g − h

)

P̂k(η) = 0.

By setting η = 1− 2z and y = P̂k(η), we obtain a specific case of Heun’s differential
equation whose parameters are given by

α = −k − 1, β = k + g + h + 1, γ = g + 3/2, δ = α + β − γ + 3 = h+ 3/2,

(6.5)

ǫ = −2, t =
1− γ

α + β − 2γ + 3
=

g + 1/2

g − h
,

q =
(1− γ)(αβ + 2α + 2β − 2γ + 4)

α + β − 2γ + 3
=

(g + 1/2)

h− g
{k2 + (g + h+ 2)k + g − h}.

The condition that the singularity z = t of the differential equation

(6.6)
d2y

dz2
+

(

γ

z
+

α + β − γ + 3

z − 1
−

2

z − t

)

dy

dz
+

αβz − q

z(z − 1)(z − t)
y = 0,

is apparent is written as Eq.(2.7). By substituting t = (1− γ)/(α+ β − 2γ + 3) into
Eq.(2.7), we have the factorization

(

q +
(γ − 1)(αβ + 2α+ 2β − 2γ + 4)

α+ β − 2γ + 3

)

·(6.7)

(

q2 −
4γ2 − (2αβ + 4α + 4β + 12)γ + (2αβ + 5α + 5β + 9)

α + β − 2γ + 3
q

−
αβ(γ − 1)(4γ2 − (αβ + 4α + 4β + 8)γ + (α + 1)(β + 1)

(α + β − 2γ + 3)2

)

= 0.

Hence the singularity z = t = (1−γ)/(α+β−2γ+3) is apparent with respect to the

second order differential equation which X1-Jacobi polynomial P̂k(1− 2z) satisfies.
Next we investigate the condition that Eq.(6.6) has a non-zero polynomial solution

under the assumption that the singularity z = t is apparent (see Eq.(2.7)). If α =
−k − 1, β 6= 0 and k ∈ Z≥1, then it follows from Theorem 5.3 that the differential
equation has a non-zero polynomial solution. If α = −1 (k = 0), then the condition
that the differential equation has a non-zero polynomial solution is written as Eq.(2.9)
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and we have

(q − 1 + γ)

(

q −
βγ

β − 2γ + 2

)

= 0.(6.8)

by substituting t = (1−γ)/(−1+β−2γ+3) and ǫ = −2. On the other hand we have
q = 1−γ by Eq.(6.5) in the case k = 0 (α = −1). Hence we confirm that there exists a
non-zero polynomial which corresponds to theX1-Jacobi polynomial in the case k = 0.
If α = 0, then the condition that the differential equation has a non-zero polynomial
solution is written as q = 0 and a solution is constant, and it does not agree with
Eq.(6.5), i.e. q = 2(1−γ)(β−γ+2)/(β−2γ+3). Hence the constant does not belong
to parameters of Heun’s differential equation concerning to X1-Jacobi polynomials. It
follows from apparency of the singularity z = t = (1−γ)/(β−2γ+3) and Proposition
5.2 that there exists a non-zero solution y(z) of Heun’s differential equation with the
parameters in Eq.(6.5) such that y(z) = z1−γ(z − 1)1−δh(z), deg h(z) = 1 and the
polynomial h(z) is calculated as h(z) = (β − 2γ + 3)z + γ − 2.

It follows from Theorem 4.2 and apparency of the singularity z = t that the poly-
nomial P̂k(1 − 2z) also satisfies the generalized hypergeometric differential equation
L−k−1,k+g+h+1,e1+1,e2+1;g+3/2,e1,e2y = 0, where

e1 + e2 = 2γ − 3 = 2g,(6.9)

e1e2 =
αβ(γ − 1)

−γ + 2 + α + β
=

−(k + 1)(k + g + h+ 1)(2g + 1)

2h+ 1
.

Thus we have the following proposition;

Theorem 6.1. The X1-Jacobi polynomials are expressed in terms of generalized hy-
pergeometric functions,

P̂k(η) = Dk ·4F3

(

−k − 1, k + g + h+ 1, e1 + 1, e2 + 1
g + 3/2, e1, e2

;
1− η

2

)

,(6.10)

e1 + e2 = 2g, e1e2 =
−(k + 1)(k + g + h+ 1)(2g + 1)

2h+ 1
,(6.11)

where Dk is a non-zero constant.

Proof. Let Q̂k(η) be the generalized hypergeometric function defined by the right

hand side of Eq.(6.10). Then the functions Q̂k(1−2z) and P̂k(1−2z) are holomorphic
solutions of the generalized hypergeometric differential equation

(6.12) L−k−1,k+g+h+1,e1+1,e2+1;g+3/2,e1,e2y = 0

about z = 0, where e1 and e2 are given by Eq.(6.11). The exponents of the differential
equation about z = 0 are 0, −g−1/2, 1−e1 and 1−e2. If g+1/2, e1, e2 6∈ Z, then the
dimension of holomorphic solutions of the differential equation is one and the function
P̂k(1 − 2z) is proportional to Q̂k(1 − 2z). By continuity argument, the function

P̂k(1− 2z) is proportional to Q̂k(1 − 2z) in the case g, h 6∈ {−1/2,−3/2,−5/2, . . . },
the case that the functions are well-defined. �
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7. Concluding remarks

It is known that two types of Xℓ-Jacobi polynomials (ℓ = 1, 2, . . . ) satisfies a
second-order Fuchsian differential equation which satisfies the assumption of Conjec-
ture 1 by setting η = 1−2z (see ([9, 11]) etc.). Thus relationships between Xℓ-Jacobi
polynomials and generalized hypergeometric polynomials should be studied further.
On the other hand, several researchers including the authors in ([1, 2, 6]) studied gen-
eralized Jacobi polynomials. It would be interesting to consider relationship among
those polynomials.
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