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Here we present a simple stochastic threshold model consisting of a deterministic slowly
decaying term and a fast stochastic noise term. The process shows a pseudo-resonance,
in the sense that for small and large intensities of the noise the signal is irregular and
the distribution of threshold crossings is broad, while for a tuned intermediate value of
noise intensity the signal becomes quasi-periodic and the distribution of threshold cross-
ings is narrow. The mechanism captured by the model might be relevant for explaining
apparent quasi-periodicity of observed climatic variations where no internal or external
periodicities can be identified.
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1. Introduction

In many cases the dynamics of complex systems are only partially understood from

governing principles. Often the dynamics has to be inferred from observed behavior

of the system. Typically a time series of measurements or observations of a rep-

resentative parameter must be analyzed. Cyclic variations are often observed in

natural systems; linear harmonic oscillators, non-linear oscillators and limit cycles

are internal to the system while phenomena like stochastic resonance (SR)[2] is

dynamical amplification of a weak external periodic forcing. Another situation is

coherence resonance[9] where a limit cycle in the Fitz Hugh-Nagumo system is ex-

cited by a stochastic noise. Identification of periodic behavior is appealing because

it provides a possibility of predicting future development of the system, however,

for noisy systems observed over a limited time period competing models might be

equally well matching the observations. One example is the famous Canadian Lynx

catch time series: This has been explained by variations of Lotka-Voltarra non-linear

oscillator phenomenon [1] and alternatively as a result of a threshold autoregressive

(TAR) process [11]. Likewise, the apparent regularity of climate variations over time

cannot presently be reproduced from first principles. Thus we rely on identifying
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mechanisms governing the behavior from simpler models.

2. Climate cycles

The climate has changed in the ice age cycles with a characteristic time scale of

approximately 100 kyr (kilo-year) over the past million years. These variations

are attributed to changes in the incoming solar radiation, the insolation, resulting

from changes in Earth’s orbit around the sun. The main variations are due to the

precession of the axis of rotation with periods around 20 kyr, the harmonically

changing inclination of the axis of rotation with respect to the ecliptic plane, the

obliquity, with a period of 41 kyr and finally the changes in the eccentricity of the

orbit, which has several harmonic components, all in the order of 100 kyr. The

variation of ice ages is of the order of the eccentricity cycle. This has long been a

mystery, since the magnitude of variations in insolation due to this cycle is an order

of magnitude smaller than that of the other two orbital cycles.

The mechanism of stochastic resonance (SR) [2] was proposed to solve this

enigma. SR is a mechanism for noise assisted amplifying a non-linear response in a

system to a (weak) periodic forcing. SR does not offer an explanation for why the

dominant 20 kyr and 41 kyr periods do not dominate the late Pleistocene ice age

cycles. Today, this is not considered as a plausible explanation for the ice ages and it

is generally accepted that the 100 kyr glacial time scale cannot be attributed to the

eccentricity cycle [6]. In the Plio- and early Pleistocene, 3–1 My BP, the dominant

period of variation was indeed the 41 kyr obliquity variation.

The glacial cycles have been proposed to be a result of the glacial ice volume

being a TAR process [7] with a constant drift until a threshold is reached, where the

ice sheets collapse and the process is reset to zero. In the low noise limit, this process

becomes periodic, with the period set by the ratio of the threshold (maximum ice

volume) and the constant drift (ice growth). Here, in contrast to the SR model, an

external periodic driver need not to be assumed. The Achilles heal of this model

is the interpretation in terms of ice sheet build up and collapse. The natural time

scale for build up of the big ice sheets is an order of magnitude shorter than 100

kyr.

Within the last glacial period, which is recorded in high resolution paleoclimatic

ice cores and ocean sediments, more or less regular episodes of warmer climates, the

Dansgaards-Oeschger (DO) events [4], are seen. These occur at the millennial time

scale more or less regularly. A quasi-periodicity of 1470 years has been proposed

[10], this is, however, not significantly different from what would be expected from

a purely random occurrence [5]. For the DO events no external periodic forcing has

been identified, though a ghost resonance as a response to the beating of periodic

solar luminosity variations has been proposed [3].

Here we will propose a stochastic threshold model, which shows a pseudo res-

onance behavior in such a way that the waiting times between threshold cross-

ings are irregular for small and large noise intensities, while the signal becomes
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quasi-periodic for intermediate values of the noise intensity. This kind of apparent

periodicity arising with no external periodic forcing could explain the observed ap-

parent regularity in the climate record. It is distinct from a stochastic resonance

phenomenon where an external periodic forcing is amplified.

3. The quasi-periodic stochastic dynamics

We propose the following stochastic threshold process,

dx =

{

−(x− x1)dt/τ, x+ y < x2

−x2, x+ y ≥ x2
(3.1)

dy = −αydt+ σ̃dB (3.2)

with (x(0), y(0)) = (0, 0). The ”fast” process y(t) is a simple Ohrnstein-Uhlenbeck

process with variance σ2 = σ̃2/2α, α−1 ≪ τ . dB is the usual Brownian white noise.

For the ”slow” process x(t) the scalar x2 is a threshold with x2 > x1 > 0. The

model can as well be seen as consisting of a purely deterministic relaxation process

x and a stochastic threshold x2 − y.

In the following we shall compare the stochastic threshold model with the thres-

hold autoregressive (TAR) model. The TAR model is defined as the following dis-

crete stochastic process:

xn =

{

a0 + a1xn−1 + ...+ amxn−m + σ1ηn, xn−1 < z

b0 + b1xn−1 + ...+ bmxn−m + σ2ηn, xn−1 ≥ z
(3.3)

where ηn is a unit variance uncorrelated gaussian noise, z is a threshold and the

a’s and b’s are linear regression coefficients. Here we shall only consider the simple

case of a linear trend TAR [7]:

xn =

{

a+ xn−1 + σηn, xn−1 < z

0, xn−1 ≥ z
(3.4)

(3.5)

This process has, in the limit of small noise σ → 0, a saw-tooth shape with period

T = z/a. The times Tc where the threshold is crossed is another stochastic variable,

the distance between which we denote ”waiting times”. At each threshold crossing

we may reset time n → n − Tc. We shall be interested in the distribution of the

waiting times. This is equivalent to a first passage problem. These are notoriously

difficult to solve analytically, but easy to simulate: In figure 1, left panels, real-

izations of the stochastic threshold process are shown for increasing values of the

variance σ. For visibility the processes are shown in light grey, while smoothed sig-

nals are shown in black. These are compared to realizations of the linear drift TAR

process, right panels. It is seen that for the intermediate value of the variance the

threshold crossing is most periodic. This is in contrast to the case of the linear drift
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TAR process in the right panels. In this case the signal becomes perfectly periodic

in the limit σ = 0. Figure 2 shows the waiting time distributions for for the six

cases calculated from simulations (much longer than the ones shown).

In the limit σ = 0 the process x will approach x1: x(t) = x1(1 − exp(−t/τ))

and never reach the threshold x2. In the small noise limit the process will reach

the asymptote x(t) → x1 before a noise induced crossing of the level x2. We can

then estimate the mean waiting time for crossing from the stationary distribution

of y(t):

p(σ) ≡ Prob(y > x2 − x1) = Φ((x2 − x1)/σ) =
1√
2π

∫ (x2−x1)/σ

−∞

e−x2/2dx

where Φ(x) is the error-function. The correlation time for y(t) is τy = α−1, we

can thus estimate the mean waiting time 〈T 〉 from a discrete series, where the

(independent) probability of up-crossing in any time interval nτy < t ≤ (n+1)τy is

p(σ):

〈T 〉 ≈ τy

∞
∑

n=1

n(1− p(σ))n−1 ∗ p(σ) = τy
1− p(σ)

Similarly in the large noise limit, the mean waiting time is determined by the waiting

time for y(t) to exceed x2, thus we get

〈T 〉 ≈ τy
1− q(σ)

where q(σ) = Φ(x2/σ). The two estimates are shown in figure 3, top left panel, where

the thick curve is the mean waiting time for the process obtained by simulation.

The dashed line corresponds to the natural time scale of the decay process τ . This

time scale does not govern the pseudo-resonance. The same phenomenon is seen for

a deterministic process x̃(t), such as x̃(t) = x1(1− (t+1)−γ), with γ > 0, where no

natural time scale can be defined.

In the case of the linear drift TAR process the mean waiting time is independent

of the noise level (figure 3, top right panel). We define the variance of the waiting

time distributions (shown in figure 2) to quantify the periodicity of the signals. The

bottom left panel in figure 3 shows the this for the stochastic threshold model as

a function of the variance σ. It is seen that there is indeed a distinct minimum, or

pseudo resonance, corresponding to a quasi-periodicity as a function of the noise

intensity. The corresponding quantity for the linear trend TAR is shown in the

bottom right panel, showing that the signal becomes periodic as the intensity of the

noise becomes small.

In the case of the climatic DO events some climate models suggest that the

onset of the events can be regarded as a shift into a non-equilibrium state of the

climate system, and that the return to equilibrium happens in the form of a re-

laxation process. This makes our simple model a plausible candidate for explaining
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the apparent regularity in the climate record. In figure 4 top panel a sequence of

the climate record from the NGRIP ice core from Greenland[8] is shown. The δ18O

record is an isotopic proxy for temperature, so the record shows rapid changes into

a warm climate followed by slow relaxations toward the cold glacial climate. The

bottom panel shows for comparison a realization of the stochastic threshold model

with σ = 0.4 and τ = 3000. Note that −x is plotted in order to have the jump in

the positive direction.

In summary, we have introduced a stochastic threshold model, which exhibits a

pseudo resonance quasi-periodicity as a function of the noise intensity. The model is

not forced at that frequency, and thus offers an explanation of apparent regularity

in observed time series completely different from that of the linear trend TAR model

and the stochastic resonance model.
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FIGURE CAPTIONS

Fig. 1 Left columns show realizations of the stochastic threshold model for increas-

ing values of the noise intensity σ. For small and large noise intensities the

signal is irregular while for an optimally chosen intermediate value the sig-

nal is quasi-periodic. The signals are in light gray, for better visibility 10

point running mean curves are shown in black. The other parameters used

in the simulations are x1 = 1.5, x2 = 2, τ = 100, α = 1. Right columns show

similar realizations for the linear trend TAR with a = 0.01. In this case the

signal becomes increasingly periodic as the noise intensity decreases.

Fig. 2 The probability densities for the up-crossing waiting times in the six cases

shown in figure 1. These are calculated from much longer simulations that

the ones shown in figure 1.

Fig. 3 Top left panel shows the mean waiting time for the stochastic threshold

model as a function of noise intensity σ. The thin curves are the estimates

for the low (left) and high (right) limits of noise intensities. Bottom left

panel shows the width of the waiting time distributions (shown for three

values of σ in figure 2). The minimum defines the resonance with a quasi-

periodic signal (middle left panel in figures 1 and 2). The right panels show

the similar graphs for the linear trend TAR. In this case the σ = 0 is

perfectly periodic.

Fig. 4 Top panel shows a part of the climate record from the NGRIP ice core from

Greenland[8] . The δ18O record is an isotopic proxy for temperature, so the

record shows rapid changes into a warm climate followed by slow relaxations

toward the cold glacial climate. The bottom panel shows a smoothed real-

ization of the stochastic threshold model with σ = 0.4 and τ = 3000. Note

that −x is plotted.
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