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I. INTRODUCTION

Group field theories (GFTSs) are generalization of matrix models as higher rank tensor quantum field theories over
a group manifold [I]. They provide a relevant framework for the quantization of gravity [2H6] as well as possess, as
recently shown for the particular class of colored GFT models [7HI], an equivalent formulation of a large 1/N limit
expansion [I0HIZ] and exhibit a critical behavior [I3], [14].

It should be emphasized that the presence of colored fields in GFT plays an increasing role in the search of symmetry
of these theories. Indeed, some investigations pertaining to the symmetry aspects of such colored GFTs have been
led recently [I5HI8] and one proved that, to mention a few, the colored theories are endowed with a genuine quantum
group symmetry [I5] which encodes a notion of diffeomorphism symmetry in GFTs [17].

Let us remind that the partition function of GFT models in the sense of Boulatov-Ooguri [I] are defined through
an interaction and a Gaussian measure with a degenerate covariance. This covariance is indeed made of a group
averaging and product of delta functions which in fact projects onto the gauge invariant sector of the space of square
integrable functions L?(GP, C), for a D dimensional GFT. Hence the kinetic term in the Lagrange formulation of the
action, can be seen as trivial (this term is of the mass kind when restricting field on the gauge invariant sector) or
even inexistent from the quantum field theory point of view. This peculiar feature, in returns, renders unclear the
ordinary definition of classical symmetry and the corresponding notion of Noether theorem (the notion of Noether
currents may only reduce to the Lagrangian density itself for translations for instance). At the current stage of
investigations on symmetries of GFTs, there are three ways to address this issue: either to deal with a quantum group
symmetry and making use of Hopf algebra techniques [I5], or to introduce a nontrivial kinetic term (motivated indeed
by renormalization requirements in [25] [4]), or, finally, to state directly the Noether theorem for a given symmetry at
the quantum level. The latter is well-known to be related with the identification of Ward-Takahashi (WT) identities
associated with a particular field symmetry. To shed more light on the last aspect is the purpose of the present work.

In this paper, we study the WT identities for the colored Boulatov GFT model using a generic unitary field trans-
formation. This general unitary field transformation turns out to be a symmetry for the Boulatov action provided a
specific way that one chooses to act on the field arguments. Associated with that symmetry, reduced WT equations
satisfied by the correlations functions are determined. These various kind of identities should be useful for in-depth
perturbative and nonperturbative renormalization programs of GFTs [I8-25]. For example, in quantum electrody-
namics the WT identities relate the full three-point function with the two-point function hence the wave function
renormalization with the vertex renormalization. In the context of noncommutative quantum field theory, they play
a crucial role in the proof of asymptotic safety at all orders of perturbation theory [26] 27].

The paper is organized as follows: Section 2 reviews the basics of the Boulatov model. Section 3 introduces the
unitary field transformation that will be used in order to define the variation of the different parts entering in the
definition of the partition function. Mainly, one can define a general unitary transformation and one more specific
unitary with the property that it preserves the gauge invariance of fields and is a symmetry of the interaction term.
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For the general and the more specific symmetry the study of WT identities are discussed in Section 4. A summary of
the results is given in Section 5 and, finally, a detailed appendix provides basics facts on the theory, on unitary field
transformations and other precisions on derivations used in the text.

II. THE COLORED BOULATOV MODEL

Let G be some compact multiplicative Lie group, and denote h its elements, e its unit, and [ dh the integral with
respect to the Haar measure. Let ¢%, o', i = 0,1,2,3 be four couples of complex scalar fields over three copies of G,
' GxGxG — C. We denote 6V (h) the delta function over G with some cutoff such that 57V (e) is finite, but diverges
(polynomially) when N goes to infinity. For G = SU(2) (denoting x’(h) the character of h in the representation j)
respectively G = U(1) we can choose

N
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where d; = 25 + 1.
The partition function of the colored Boulatov model [7] over (G is the path integral
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with normalized Gaussian measure of covariance C' (denoting ¢npq := ¢(h,p,q) and the Haar measure over a group
variable h as [, := [ dh):

C:gmhg;hgh’lh; = /dUC’(@iv¢i) @];Lohlhgw‘z]‘ah/lh/z = 6kj/ 5N(h0h(h6)71)5N(hlh(hll)il)éN(hZh(hIQ)il) ) (3)

h
and interaction wisely chosen

A

int __ 0 -1 2 -3
S - Phoshozhor Phiohizhiz Phoyhaohas Phashsi hao
\/ 6N (6 hij

= 1 =2
+T/ <,0203h02h01@hlohwhlz<,0h21h20h23g0232h31h30 s (4)
VN (e) Jni;

where one should identify h;; = hj; and the symbol [, h,, eans that the integral is performed over all variables labelled

by h;; (here above six copies of (). The resulting pairing of field arguments of this nonlocal interaction can be dually
and graphically associated with a tetrahedron (each argument for each edge) and Feyman graphs, in this theory, are
noting but a collection of tetrahedra (simplicial complexes) glued along one of their faces (triangle) following the
covariance rule. More precisions on the GFT diagrammatics can be found in [3]. For a colored theory, there is an
additional gluing constraint enforcing that only colors of the same index can be glued together (hence the presence of
67% in the covariance). One also notes that, in the ordinary colored GFT [7], the interaction with coupling constant
A is of the form ¢p!¢?p? and the one with coupling A can be chosen as its complex conjugate. Here, we have just
renamed '3 as 13 (and vice-versa) in order to have a correct notion of field transformation with respect to colors.
Hence, in the following, the formalism that we will develop holds without loss of generality in the ordinary colored
GFT, with another field transformation.

As an operator, C' can act also onto functions. We will use indifferently the compact notations, when no confusion
may occur
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III. UNITARY TRANSFORMATIONS
A. General unitary transformations

From now on, we will restrict to the situation where G = SU(2) though most of the ensuing developments may
found an extension for an arbitrary Lie group.



Consider the partition function Z including source terms and the associated free energy W for the Boulatov model,
namely

e~ W) — Z(i,n) = /duc(tﬁ,w)efsm (¢,2)+@n+en , (6)

where notations remain the same as earlier and the source term incorporates color indices:
557’ + 5077 = Z/ (952}1929377:]19293 + 7_7211929390;]19293) . (7)
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In order to avoid confusion, we will use different notation for a single index a and a triple index [a] = (ajaz,a3).
Hence the composition of the covariance and a field will be written henceforth Cjqjp)pp and an operator T acting
onto a single group element of fields will be denoted as Typp.

Let us consider now a general unitary operator U satisfying a composition law U[Z ]] [v] U[” = 677 5 [a][e]> With 41
the kernel of the unit operator, such that the fields transform under U as
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(one can prove that such operators exist, see Appendices [B and [B2)). Let us keep at the moment these as formal
expressions.
Under U, S™ transforms as
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The partition function under can be mapped onto (see Eq. of Appendix [C 1))
Z(n,m) = /leUCU*I(@HP) ™S e U)oV n+ily (10)
By Lemma (3| (see Appendix |A]), we write this modified partition function as
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Close to the identity, we can set U[ij][b] = 51”5[@] + zB[a][b] where B is an Hermitian kernel in the sense that

B[bl][ | = B allb]” At first order in B, the variation of the interaction part is of the form (see Appendleor precisions

concerning the notations and derivations of the following infinitesimal variations)
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and varying the covariance, we get
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B. Right invariant unitary transformations

Among unitary operators, there exists a particular class that we propose also to study. This class includes unitary
operators called right invariant unitaries for having the particular property to preserve the gauge invariance of ﬁeld&EI
and let S™ invariant. A detailed discussion about these right invariant unitaries can be found in Appendix .

Working with a right invariant unitary U in the sense of the 1-action of Appendix Eq. , we get a change
of field variables such that
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and colors 2 and 3 transform like 0 and 1, respectively. The subscript a or b refers to a unique group element and
the dot notifies the position of the remaining arguments. Thus 0 and 2 are transformed with respect to their first
argument whereas 1 and 3 to their last argument.

Sint yemains invariant under this transformation (see Appendix for details of the identities in the remaining of
this section)

USint — Sint ) (16)

In fact, for the colored Boulatov model there are six such right invariant unitaries, namely one for each couple of
arguments in the interaction, leaving the colored GFT interaction invariant. More generally, a D dimensional colored
GFT will be invariant under D(D + 1)/2 of such basic transformations that one can think as minimal symmetries.
In the sequel, we will use one of these minimal symmetry in order to simplify some general WT identities and,
consequently, to prove that the WT identities derived in this work have a non-trivial content.

Under , the partition function takes the form

Z(q,m) = / dpy-rcu(pyp)e" VeRUTDTRU e (17)
where the action of U on the covariance is defined by
= ii=0,2 _ = i=0,2 | —174i=0,2
Uh’ Ch()h ha; hiR, R, Uhoc - /bh y UhocUhoaUh{Jc’ Uh’b Spahlhg ‘th' Ry * [UCU ]chth; c¢’hihl
abhg

& 1=1,3 _ & & i=1,3 —174i=1,3
Uhéc’ Chohlhz; h{y R R, thc - Dhah thcUh2aUh’2c’ Uh/ b@hohlag@h/ h/ : [UCU ]hohlc; Rk e (18)
a 2Ny

Turning the discussion to infinitesimal transformations, we have §gS™™ = 0,
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whereas varying source terms yields
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Having collected all infinitesimal terms, we are in position to study the WT identities of the model and that will be
the focus of the rest of this work.

1 GFTs can be indeed defined with gauge invariant fields. Hence, the mentioned transformation will preserve this property of fields.



IV. WARD-TAKAHASHI IDENTITIES FOR THE COLORED BOULATOV MODEL

A. General unitary transformation

Our starting point is the partition function . Considering the infinitesimal transformations , and ,
Z may be written
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Being interesting only on connected functions, we now derivate the free energy with respect to the infinitesimal
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After some algebra (the details of which are collected in Appendix |D 1)), the variation of the free energy function
can be recast as
§1n Z(n, 1)
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WT identity for two-point functions - The next stage is to differentiate the expression (24)) using the operat01E|
O Ok (- )|np nk o for getting the connected components of the correlation functions (we shall denote J = ¢n + 7jp
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2 The indices p, k are fixed in 9yp Ok ()] ,p =gk —o- Moreover, omitting for a moment these indices, Inr Oz (-)|,;p—7x —o Will be denoted by
0,05 in the following.
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A direct computation yields at first

Performing the explicit differentiation with respect to nf’m] and ﬁfn > one gets
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so that summing over [u] and [v], the following statement holds:

Theorem 1. Two-point functions of the colored Boulatov under a generic unitary field transformation satisfy the
relation, for i,7,p,k =0,1,2,3,
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for which repeated indices are summed.

The case of four external colors - Let us consider that the external color labels ¢, j, p, k are pairwise distinct. For
definiteness, let us assume that ¢ =0, j =1, p = 2 and k = 3, then the WT identity becomes
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This is an identity for a four-point function with four external color which might be useful in the study of the coupling
constant renormalization.
The case of two external colors - Let us assume now that i =k =0and j=p=1
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WT identities for four-point functions - To obtain higher order point functions, we derivate again the free energy.
Derivating twice In Z for computing the four-point function identities, we have
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Summing over [u] and [v], on this last expression rests our

Theorem 2. Four-point functions of the colored Boulatov model under a generic unitary field transformation satisfy
the relation, for,j,k,l,s,t=0,1,2,3,
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WT identities for even-pt functions - The WT identities for [n = 2p > 2]|-point functions can be deduced by
simple recursion from the aforementioned equations. We first need to introduce some notations
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It is by simple recursion that one proves that

[H OO0 |1 = |3 Fi [T 00900, ) + T 10,705, T F| € (36)
= k=1 l;ék =1
{H 377187%}7'”?7 =n=0 = Z]:k H 8m<]am<]] |n:ﬁ:0 : (37)
k=1 £k

From the last line , we explicitly obtain by fixing the derivative with respect to the indices such that (nl)[o”l] and
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The generalized WT identity for an even-point function can be written as
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Summing over the remaining running indices [u] and [v], we have in the same anterior notations:

Theorem 3. Even n-point functions of the colored Boulatov model under a generic unitary field transformation satisfy
the relation
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The WT identity is valid in full generality regarding a generic unitary field transformation without requiring
that transformation to be a symmetry of the action. We can make the following striking observation: the equation
(and hence the general WT identity ) generates without ambiguity the WT identities associated with independent
non identically distributed matrix models with invertible covariances as the models studied in [26], 27]. Indeed,
forgetting the color index and restricting all tensors to matrices, one has just to use the facts that, on one hand, these
models are covariant under a unitary symmetry in order to cancel the interaction terms in A, A and, on the other
hand, to invert two extra covariances such that and generate the corresponding WT equations for these
more simple cases. Hence, it is often useful to specify which kind of WT identities could be inferred from the same
reasoning with now a well defined symmetry of the model. It is the main purpose of the remaining of this paper.

B. Ward-Takahashi identities for the 1-action symmetry

We begin with the partition function now under infinitesimal transformations given by 655" = 0, (19) and
and that we symbolically write
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Derivating the free energy with respect to ¢, yields
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where repeated indices and (-) arguments (called henceforth dot arguments) are summed. The latter expression can
be computed to (see Appendix for derivations and notations)
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and therefore, differentiating by an even product of n[a [lf], we can readily identify the WT identities as given by
the equation
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_<‘Pu stz | Rt >c + <[5][akk]u P Plo ﬁ"[agz}‘P[b@_ >c
ik ik
~1,3 [51ak,1,3 B [—ae  Be ] Br,1,3 L350 —ar  Be ]
+(@52 0l e TT @] > (018t oo TT |2 vt >
04k ik
n o :
Br,1,3 —ap B ag,1,3 -1,3 B —a
_<‘P Rissmzre | Bt >C+ <[5] ulon] P Pl @[ai]‘P[bz] >}
£k £k
-1 20 3 3\ 1 -0 =2 31
= —A< [@'™°F%,. H [so[a,]@b,]} > A<<p.u 2°2** L T { " w[b,] >
=1 =1
+)\< 1520,3) ﬁ[ a 5z}>+)\< 0,2 551] ﬁ[ }> (44)
%0 "2 %0 e Plac] Plbe] 90 prpr u SO[W]‘P[IM] )
=1 =1

where [5][0;’]1-[’17? = (6" + 69)d 14 This leads us to the following statement

Theorem 4. FEven n-point functions of the colored Boulatov model under a right invariant unitary transformation
satisfy the relation

apa —a B - B o @ —ou _ B
{ 3 [0 0unr (Parannniy T [#2] >c*5 9 Syvns { Ponnamo Py T |#s 000 >

k=1 a=0,2 04k I4k

=8P 8y Pty P H [eefi) > 0 Gy (Plarsans Pl H L] > ]

o « « — — B
+ 0 o 5aw<%mak2mk]l—[[ et )0 Bk5ﬂbka<%bw“’[¢z’21 IT [#taefi] ).
£k

ANGE

a=1,3

— 5B 6bk3ﬂ<‘pbk1bkzu¢[ak] H [ 1P b ]] >c + 0% 5Hak3<90ak1ak2”<‘0[bk] H {4‘0[“@ Qp[bl]} > ]}
=AY [— <<pz_ [2' %P, [‘ﬁﬁil%ﬂ H

::]:

[%ﬂ]@ﬁﬂ > + < o5 o' %%,

= AIZP

a=0,2 4 {=1
3 Y [ (e 0l I [oivt] ).+ (2% - 10620 TT [#hetin] ) - (45)
a=1,3 =1 {=1

where @ = 2,0 if a« = 0,2, respectively, and @ = 3,1 if a = 1,3, respectively, and in the left hand side of the equality,
the notations explicitly mean

0 1, 2-3 0 -1 2 -3
Pu. " (2" @°].0 / PruhgPghishia PhoihhosPhashsiv
hgh”
2 1, 0-31 ._ 0 —1 2 -3
Pu. " [</? Y P ] Phoshhor PhiohisvPuhgPghsihso

hghi;
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901 [2°3%¢°].0, : / @203h02h<p}tgp,¢12/h20h23@?ngghgo )
hghij
(‘0 [<‘00<‘O2@1] ._/h N ¢gh02h01W}nghlz@imhmh@igﬂ’ (46)
ghij
and the analogous for %2 - [plp> Oga?’] Cand @43 - [0 @ 1]

At the first sight, one may wonder why Theorem [3]looks simpler than Theorem [l This is really an illusion because,
in the second case, the symmetry constrains much more the equality and fewer terms will survive. From the general
WT identity , we can derive some more specific relations characterizing particular graphs. Let us for instance
discuss the case of two-point graphs. For this category of graphs, simplifies to

D (8% (Pl ), — 5 S (s ),

a=0,2
—5“5°5b1u<¢3b2b3¢m>5 + 0" 0ua, <¢Sa2“3 Sﬁﬁﬁ >J
LD L € D e TR T A) )

a=1,3
faaﬁoabsy<soab2,@m> + 0% 80 (PPl ) |
*/\< [@'™°%,. so‘ﬁﬁwm /_\<</>1;;3~[950s52s03’] so‘[f{jsom

+ A (2 [P0 el ) +A< P el ) - (47)

where a sum is performed repeated color indices and on dot arguments whereas [a] and [b] are kept fixed. Using a
minimal symmetry, ©° — Y? and ¢? — Y3, which makes again S = U S the whole analysis gets simplified
further. We then assume that only remains terms involving @ = 0 and 3, then the above WT identity can be recast
in the following way

I S G ) SR AT (= o SR L P = e
00 (Pl ) — 63ﬁ°6#b3<soblb2,,¢ﬁ;j> 535°6bgu<wblbw¢m> + 5% 80 (P aas 91 )
= -2 (h. - [P, sbf;‘ﬁsoﬁ,w =3 (&% 18P . Bl )
+ A< [ @%¢% . @ﬁﬁsﬁfﬁ> + /\< %0 ¢ﬁ?wﬁ?> : (48)
From the fact that (see [2I] Lemma 2.1) in a color model, an even point function with a color missing on the

external legs has external colors appearing always in pairs, therefore, assuming further that two-point functions do
not vanish, we can require that ag = By = OE| Taking into account these assumptions, the relation (48)) becomes

5alu<¢2a2a3 @?b} >C — Oub, <¢?a] <P3b2b3>c - 5b1u<<ﬁ? ]Qogbzbg >C + Opa, <<ﬁ3a2a3<ﬂ([)b] >C
= —A< [@'° @, w[arp[b]> X< o, - [P°P*p']. V¢?a}<p?b]>c
+ )\< @y - o' P ]u-@[a]¢[b]> +>‘< 9% p ]u@?a]<ﬂ([)b]>c : (49)

The following cases could be studied
Case 1: ;= v = a; = by yielding a trivial relation

0= —2A{¢h. - [P ° P Brasas Pty ) = 3 #% - (PP sBharas Pt )
A B [0 Blaanas Pty )+ A< [ s Priasas Pt ) - (50)

Case 2: ;4 # v, and a1 = v and b; = p. These assumptions leads to

=0 0 -0 0 _
<S0/1.0.2(l3 ‘publb2>c - <901/a2a3 (pubgb3>c =0

3 This is without loss of generality since the case ag = Bo = 3 can be inferred by symmetry and will lead to the similar conclusion.
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P°
b2
v b3
L ]
[ ]
° - =
L ]
[ ]
,uao a3
&
° p° £° “°
b2b3 b2
N
C—~O0 C =3 0
) + . - . P
A I 1o\
; : . N _
[P . [P°P*PY PP

FIG. 1. Ward-Takahashi identity for the 1-action for colors 0 and 3

[021

0==2{¢h. - [P0 E). Bonsas Pt ) — G0N s Pt )

A
+>‘< [901902§03]H @ua2a3<p,ub1b2> +5‘< [ 0p?p!

Oo’p ]#@3a2a3<ﬁ2b1b2>c, (51)
where one should use the fact that any correlation including a beginning and an end-point with the same index (for
instance, <@2a2a3 wgble >c involving a open strand with amplitude §(u(J]h)p~")) does not depend on that point (say

u). Again, this WT identity is trivial.
Case 3: i # v and assume that a; = by = v, these restrictions give

=0 0 -0 0
<<pua2a3 (pybgbg > - <<pua2a3 (p,u,bzbg >

= —A< [s01<p2<p3]u4</33a2a3<p3b2b3>P - A< [@°@%0". u¢3a2a3¢3b2b3>c
+ A < ' B0 Boaas %bzb3> +A < %% @' @3a2a3¢352b3>c (52)

which is a non-trivial relation. This WT identity and the kind with more external legs have been illustrated in Figure
1 where a field is graphically represented by three parallel strands each of which are associated with a field argument.

V. CONCLUSION

Using a generic unitary field transformation, first starting from the two-point and four-point functions, WT identities
for any even-point functions of the Boulatov model have been identified. In particular, there exists a particular class
of operators (called right invariant unitary operators) under which the interaction becomes invariant. This class
of operators has allowed to refine the formalism and to identify W'T identities associated with this symmetry with
a non-trivial content. A combination of two-point functions can be expanded versus four-point functions with an
insertion. The analysis performed here could be useful for both perturbative and nonperturbative renormalization.
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APPENDIX
Appendix A: Gaussian integration for tensor models

In this appendix, a series of lemmas are introduced. These pertain to the properties of the GFT Gaussian measure
and are extensively used in the text. We will denote the fields ¢y, = @(hy, ha, hs), and covariance associated with
Feynman Gaussian measure as Clgjn) = Cg,gygs; hihons and for all field, Clgnen) = f[h] Clginin- In a colored
theory, fields are equipped with an extra index <pfh] and the covariance reads C[Z][h] = 54 Clgin)- The subsequent

analysis admits a straightforward generalization in any GFT dimension.

Definition 1. A Gaussian measure of covariance C is defined by its non zero correlations

/dﬂc Py P) Plar] - - - Plan] Plon] - - - Plon] = ZHC[al][bﬂ( SE (A1)

T i=1

where the sum is taken over all permutations © of n elements. For a colored theory, we have

/dﬂc 7", ") <P[a1} : ‘P[an]@ b1 ZH [57[(;:( Nl (A.2)

T i=1

In the following, the developments hold in general, i.e. without colors using the definition (A.1)). However being
interested in colored theory, we will give the corresponding result in that particular instance. In order to alleviate
notations, the source term will be denoted as

ne + pn = / (Mhyhahs Phihahs + Phiha,hs Thihahs) - (A.3)

i

Lemma 1. We have
/ dpc(p, @) P18 = 1N (A.4)

Proof: By direct evaluation using the Wick theorem (A.1]), we obtain

oo o0 1 ~ "
/ dpc(@,p) 7% Z E ZH / " M Claidlbno)Mbmc] = D —[nCn]” (A.5)
n=1 T o1=1 71'(1) n=1

Lemma 2. [Integration by parts| Introducing the functional derivative 6y, (-) = 6(-)/p(n) for any functional H(p, @),
we have

[ duc(e.6) (0t 0) = Clayday Hp ) =0 (A6)

Proof: This relation can be shown by first introducing source terms. We rewrite

[ dnc(e.0) (paH@.9) = Clanboy H(z. )
/duc ?,¢) [ (a1 (O, 07) 7" 7| —y=0 — Clajieidpy (H(5n75ﬁ)€@"+w|ﬁ:n:0>}
= H(y,05) {/dMC(%SO) (@[a} - C[a][bm[boe@"”ﬂ ‘_ : (A7)
n=n=0

The latter expression can be calculated using Lemma [T and the fact that number of fields ¢ and @ should be the same
in order to give a nonvanishing amplitude:

/duc(sﬁ, ®) ( Pla) — C[a][bm[b]>€“5"+w =

/duc ?,¢) a]z n+1 (@ gn)" ()" Z

"))
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1
=y Wc[a}[ 17 2! (0™ = Clajp) i) Z F@Cn)™ =0. (A.8)

Lemma [2] can be translated in terms of colored fields as
/dﬂc(@a<ﬂ) (@fa]H(@‘P) - C[a][ ]5 - H(p #P)) =0. (A9)

Indeed, following step by step the previous proof, we have

i % j n? 417 n* 4k ok
/d:U/C(@Za(pé) (@f] C[;”]n[] )e‘” 1+I ¢’ H 90 ! +] Y =
k#j
/W(ww (

i) - O

77 (p ) ) H@L’Eknk+ﬁkwk

=y

Z/dMC(QB ,¢° ) Z( 2 Cfi] j n! (nCn)" Cfi] f]Zﬁ L (nCn)" —0>H et (A.10)

k#j

1
a]Zm(<ﬂn)

Lemma 3. Modifying the covariance C for C' + A, the following relation holds for any functional H(p,v)
[dncrate.ti(e.0) = [ duce.o) g ). (A11)
Proof: First, one performs the expansion using again the source term and uses Lemma [l| in order to obtain
H(0y,65) [/duc+A(¢7 @)6@7%%] ‘ﬁ:n:O
= 11(6,.0)| [ dno(,ppermesnsoe]|

which is the desired result. O

= H(,,05) [eﬁcneﬁA" ’
n=n=0

— [ ducte.0) 525 H(8,, 8 e7r7e]| (A.12)

n=n=0 n=n=0

Appendix B: Unitary transformations
1. Left/Right invariant unitary operators

Let us recall first some basics facts of G = SU(2) representation theory. A Wigner matrix element of a SU(2)
group element g in the representation j will be denoted by Di  (g). Note the properties of these representation
matrices given by DJ, (g) = Di,.(g7") = (=)™ "D’ ,._,(9) and [dg D,jnn(g)DZT;,n,(g) = (1/d;)699" 8,y Orumr, Where
d; = 27 4+ 1. In the following, we will use the symbol fh := [dh for denoting the Haar integral with respect to
the variable h. Dumb sums like > without specifying the arguments mean that these sums are performed over all
repeated discrete variables.

Any function of one variable over G can be expanded in representations via Peter-Weyl theorem as

9 =S VG D (0) = S VG D0 fh = / £(9)Din(9) (B.1)

J,m,n

An operator over the one variable functions is defined by a kernel
Ul B) = Y V/djsdiUSE, yny i, (0) D320, (B) . Vo B G (B.2)
The normalization is justified by the fact that
@) = (VW0 = S VT s Do, (@) SN B [ Di (1) D)
= Z \V djl |:U7jr%1jv2L1 mansg m2n2:|D¥rlzln1( ) . (B'?))

For instance, the identity operator I possesses the tensor components H#ﬁ% | Mans = 691928, 110 6nim, and the kernel

/8) = Z djldj26j1j25771177126711"21)37111711( D#Zm Zd D (ﬂ) = Zdjxj(aﬂ_l) = (5(0&5_1) .
J
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Note that we introduce the symbol x’(g) := >, DI (g) denoting the character of the group element g in the
representation j.

The adjoint of an operator U is denoted by U and its kernel is defined by [U'](c, 8) = U(, «). Hence, an operator
U is unitary if the following relation holds

UU)(a, B) = [UU] (0, ) = / U, UBR) = I B) = (af™Y) . (B.4)
Furthermore, by noting that

Z \% dJIdJZU#szll m2n2D7]7}L1n1( ) dJid Urjé'J:’ ansz'; n} (5) ngz?w (h)Dﬁ’ nk <h)

. .71]2 J1J2 J1 Vi
3 (U222, manaU257% ] Do, (@)D (5) (B.5)
as expected, an operator is unitary if and only if
J1j2 «71]2 _ sj171
z : Um1n1 m2n2Um/ inf mang =0 15m1m/16n1n/1 . (BG)

J2,m2,n2

Among the unitary operators there exists a special class of unitaries, those invariant under left group action
YpafEG.  Alpapd) = A B, [ A hAER =505, (B.7)
h
Due to that invariance, we have
A(Oé, 6) / (hOé hﬁ Z V d]ld]2 U’I‘Zrif’?nz ’I’LlnzDillnl Dg‘;’nz / Dmlk‘l m2k2 (h)
= Z Ufjr;ffng ning Dzlllkl( 71)D£22n2 (ﬂ)5j1j25m1m26k1k2

=> [Z Uittty s | Ditina (@7 8) = 3 dj Al Diy(0™'B) (B.8)
where we read off A7, = [(—)P~9/d;] Zm vl _p—q- Imposing unitarity on these operators yields

Ala, dequ L (—1DJ /DJ D7, (h),
—Zd[Zqu DI, ( Zd[ZAmAMDpp< “1g). (B.9)

Therefore the invariant unitary operators are represented by unitary matrices in each dimension d; of the represen-
tation

Z ALAL =Gy (B.10)

We call such an A as a left invariant unitary. For right invariant unitary operator, a similar definition can be given
and a little computation leads to

Ao, )= /h A(ah, Bh) = Z{ZU%}M | Dty (@87 = 37, AL, DI (087 | (B.11)

with Ag,q =(1/d;) >, Ug,g nn- Further imposing unitarity yields some conditions on the coefficients Ag,q:

/dhA(a h)A(B, ) Zd djs qu p,q,/D p,q,(ﬂh 1)
_ZdAg)qA;q pT D, Zd ZA:%qA;q (B™ ) (B.12)

so that > Ag,qA; 4 = Oppr Which is a similar to left invariant unitary condition 1) However, assuming that we

impose that the following is unitary
/ dhA(h, ) A(h, B) =Y _d; ZA;,qA;q J(B7a), (B.13)

one could get another condition on the A7 o S that is

> A A =G (B.14)
p

Pq”"pq
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2. Unitary transformation of fields
1-action on fields - Consider the right invariant unitary operator as detailed in Appendix which is of the form
h)=Y_ d;jA},,Dj,.(gh™"). (B.15)
The condition Y, A7, A7 = 8, ensures that, for all j, A7 is a unitary matrix of rank 2j 41, i.e. A7 € U(2j+1).

Given a D-dimensional GFT, the 1-action of A on a field means that the said field transforms with respect to its
first argument, namely

Aso(gl,gz,...7gD>=/h Algr, h)p(hy ga, . 9p) A@(gl,gz,...,gm:/dh Agr 1) (h g2 --.9p) - (B.16)

this is, using the mode expansion (and equivalent in term of matrices and tensors),

A‘ﬂ(glaQQa'-'ng Zd V ]1qu<p%{ln1 mln,/D glh Dgélnl H V ]z m n; gz
i#1
= ZAmlq(pl(]ﬁzjllm n; V dlegélnl (gl H V JrDJ?

£l
A@(glaQQa'-'ng Zd V ]1qu<p3111]11n] mln,/D glh Dgélnl H V ]z m n; gz
i#1
= Z‘Amlq(pl(]llﬁyllm n; V dlegélnl(gl) H[\/ d D# nl( )] . (B17)
i#1

Hence, the modes of the transformed field 4¢ can be related to the modes of the prime field as
(p#{lnl ming ZAmpop;Iﬁ? m;n; 7 SD#LZ}M mini ZAmlp(p;)anll min; 0 (B18)

with the notable feature that only the first set of labels coined by 1, j1,m; and n, is actually involved under this
transformation. Returning to the group formulation, this field transformation will be referred to the equivalent forms
when no possible confusion may occur

Agnion. = g Z/hA(gah)@(h»(J), Pn. Ay = "y = }A(Q7h)<ﬁ(h7(~))- (B.19)

Infinitesimal transformation - Given a right invariant unitary A, its component AJ € U(dj), and therefore there
exists (BY)" = BY an Hermitian matrix of the same dimension d;, such that

Al =68 +Bl, ., Bl =B . (B.20)
We can expand A infinitesimally at first order in B:

B is a Hermitian kernel in the sense that

Blh,g) =3 d; 3 BiunDinn(hg ™) Zd 2 Bl D907 = Blg: 1) (B.22)

Appendix C: Calculation of infinitesimal variations under unitary transformations
1. General unitary transformation
We start by considering a general unitary operator U which satisfies U[a} vl U[c] =4 (5[a 1) Where [a] := (a1, a2, a3),

and dp,)p stands for the kernel of the unit operator identifying each field arguments Appendix - provides a
particular type of this unitary operator of the form U’* = 67*A ® I ® I that we will discuss in detail in the next
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subsection. In this appendix, we assume a formal and general expression for this operator and infer the infinitesimal
variations for the action, the covariance and source term.
We assume that, under U, the colored fields ¢* transform as
1) )

Yol = Ul Pl = 2T 505, dehy

3 5 s
U e s = U=
[0][a] § Play ][]&#ﬂ

(C.1)

A sum (integration on arguments and discrete sum on colors) is understood over all repeated indices. This transfor-
mation therefore mixes both colors and group arguments of the fields.
St becomes after this field transformation

U qint Oz —i1 7rliy i2 =1 3z
\/ (5N / /[ 16](c)[d] hoghmhﬂl [a]QO a] P Uh10h13h12 [b] Uh21h20h23 [] Ple ; SD[SI] Uh3;h31h30 [d]
L_] a

—7, 7 12 3% 7
\/61\77/ /] wlielid 2] h03h02h01[a]w[b]Uhloh”hm[b] Lp[c]UhthOh%[ ] Uh3gh31h30 [d](p[;] . (CQ)
hij la c
Expanding the unitary operator around the identity, one has U[i ('lj] b = 5 Oa)p) + ZB[a” b where B is an Hermitian

kernel i.e. ought to satisfy B[igj ] = B[J;li] v]" At first order in B, the variation of the interaction part can be computed
as follows:

233

2! 2 g 0i o =1 2 -3
\/7 / / [d] [hSz]('O[hm] Plhii]Plhai) ('0[3] + ‘/[] B[hgi][a](p[g] Plh1:]Plhai] Plhai]
z] a

_ — 21 0 -1 i2 =3
[ ][hu](‘p [hoi] (P[ ]gp[hzi] (p[hsi] + /CB[h;][c] (p[hm'] @[hu]@[i] <‘O[h3i]:|

int

[

ﬁ /h /d] P12y P /[ Bleon Parelnn Fhe olaoy

3 i22 =0 1 —i2 3
+/[b] [hli][b]w[hm‘]@[b]‘p[h%]gp[h&i] _/HB[j][h%]w[hﬂi]@[h“]w[z]@[h“]} ) (C.3)

that can be denoted compactly by
spS™ = z/\[[Bw]%lwzwg ©°[pB]'0*@° + @' [By]* 3° w[)wlsoz[wB]S] + @},
Moy = —18B)°0'3%¢° + ¢ [B¢]1s02<p3 @ o' [pB]*¢® + "' °[By]® . (C.4)

Meanwhile, the source terms have the infinitesimal variations

08 (¢ + P1) = Z/ Ul + 7l U ela) — 0+ o)
=2 /[ J (0101 = By eyt + 7 (0701 + 2Bifa) ey ) = 2 /[g] (Mlg)lg) + Ployls))
- ZZ/H[ : (*Szfa}Bfiug]"fg] +ﬁngBf;][a]¢fa]) =11(—pBn +10By) . (C.5)

Under (C.1), the partition function transforms according to

Z(n,m) = /duUCU—l(@@)e’Sm (U, pUT )+ U 0+ (C.6)

We have used the fact that the covariance varies as

v

Kk’ _ Ui Ui ki i gk i
Cinjiw) = / dpc( ¢ 7¢') /[a][b] Yl Pl Vinill 1o
-/ —k//

k/l,/c /U /—/d,LL 7;, / a/U / U//@j 80‘7/
Ulby Clnin Vit c @) S Utho O O el

d[l,c( UQZZ, UQOi) Qﬁ[a/]@[b/] = [UCUil]fla//][b/] = [UCMg/][b/] . (C7)
ab
Seeking the infinitesimal variation of the covariance, one finds
ij li li ij
Lofelom ] a][b C[i][b] = (6"0p¢jja) + ZB[C][a])C (][] (5 5[b][f’] - zB[b][c/]) - C[i][b]

_ il’ 14 li lj i
= 1[=Claje1 Blyie + Blayw Cim] = BC — CBIlyy, - (C.8)
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2. Right invariant unitary transformation

Working with a right invariant unitary in the sense of the 1-action of Appendix Eq. (B.19), we get a change of
variables such that

_ 1) 1) 6 6
U 0 0 U -0 0 (77—1 0 -1
= Va ’ = U a — Va 5 =5 U a 77 =0 Ua ~-0
Pa. bPb. Pa. Qob( )b bPb. 6(]5902' 5§2( )b 5U§02. bé?g
U 1 1 U -1 1 7r—1 = 1 -1
= Ua 5 = U a — Uqa ; —=—U a s 7_:[]@?.0.9
¥Ya bP b P.a (p‘b( )b bP.b 6(]()0.1& 5$01b( )b 5U90,1a b(SSD_lb ( )

meanwhile colors 2 and 3 transform like 0 and 1, respectively. The subscripts a, b should be considered here as a

unique group element (and not a triplet) and the dot notifies the position of the remaining arguments of the field.

Hence fields 0 and 2 are transformed with respect to their first argument whereas fields 1 and 3 to their last argument.
Under U the term S™* transforms as

U gint _ 0 1 7 2 =3 7
ST = ~ / / Uhosa®ahozhor PhiohisbUhizb Unare Pehaghas PhazhardUnsod
~ VoN(e) Jhi; Jabed
A 5o 5
t V= UnosaPapozpor PiopiapUnizy Unz o @ipaopes PpazpargUnsod (C.10)
\/ 1) (6 ij Jabecd

using the orthogonality relation the unitary operators, namely Up,Up. = 6y, we have after a proper renaming of
variables

Ugint = gint (C.11)

Remark that this symmetry can be even decomposed in two minimal and independent symmetries: one performed
on the couple (0,3) and another one performed on (1,2). Each of these latter symmetries does not modify S™ and
can be used to determine all the subsequent developments without loss of generality. These simpler symmetries can
be useful to reduce the generic WT identities and to obtain particular graphical equations.

Under , the partition function undergoes the following modification

Z(ij,n) = / dpycy-1 (@, @)™ eV el ntale (C.12)
We have used the fact that the covariance transforms as follows

$i=0,2 _ U-i U = _i=0,2 i=0,2
Chohlhz,h’h’lhg = /dNC( @', oY) / Uhoa Pahiha Uhgb Sobhflhé

i=0,2 . -1
Uh’ <’ Choh1h2, h{ R, Rl Uhgc = / UhocUhoaUh’ c’ Uh b (pahth Qobh/ hY [UOU ]ch1 ha; ¢’hih
abhoh,

11=1,3 _ U-i U, i —i=1,3
Chohlhg;hahllhé = /d,UC( @' T ') /b ‘Phohlatha <ph/h/ Uh,
a
i=1,3 = = i=1,3 | —1
Uh/ C/Chofnhz, R b R thc = /bh y Uhchh2aUh’20’Uh’b@hohla@h’ hib [UCU ]hoh1c; h{hic - (013)
abhg

For a small B, we decompose Uy, = dqp + 2Bap, hence at first order in B, we can explicitly check that the variation
of the interaction part vanishes. After a straightforward computation, one has

. ) _
int __ o 0 -1 2 -3
opS™ = SN (e) /h { /chBOdQOhOShozhm Phiohishiz Phathaohas Phashard
2V i

0 -1 2 -3
+ BhOSa@ahoz ho1 Phiohishiz Phathaohas Phazhsihso

a

», 0 =1 2 =3
7/bBh12b90h03h02h01(phlohmbwhzlhzohzs Phaohsihao

0 -1 2 -3
+/Bh2lc Phoshozhor Phiohishiz Pehaohas Phazhsihso
C

()
0 =1 2 =3
+T/ {/ BhSOdSDhmhozhm@hlohlahlzwhzlhzohm Pp32p314
VoN(e) Jnis Ua

>, =1 2 =
Bhosagoghozhm PR10p13p12P 212023 <P%32h31h30
a
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-1 2 _
+/Bh12btp203h02h01<,0h10h13b30h21h20h23 (Piszhmhso
b
*/B}ﬂlc (,O%oshmhm@}Llohlahlz@zhmhzs @ie,zhmhso}} 5 (014)
c

then using the Herimiticity of the kernel B, = By, this term cancels. Thus, 65S™ = 0.
The infinitesimal variations of the covariance are given by

[UCU_I]”:O’2 =02 _ (6eay + ZBCGO)Cn‘:OQ (Surpy — ZBc’bO) _ (=02

e~ Gl  WBeas)Ceara; i, 0o vl
11=0, 11=0, _. 1=v,
= 1=Cla); ¢/byy Bboe' T BeaoCegyay: 1) = 11BC = OBl
[UCU?l]fZﬁ;]’s - C[a] ) = (5ca2 + ZBcag)Cagalc; boblc’((sc/bg - ZBc’bz) - C[a] [6]
ii=0,2 i0=0,2 1 . ii=1,3
= [~ClT2 | Buye + Beay C1502 ] =0 BC — OBl | (C.15)

whereas the source terms can be varied as follows
Sp(e +@n) = /[ | (U@fg]nfg] + Uwfg]) — (7 + @n)
i g
= Z/ { Z (*ﬁi.Bagon;O. + ﬁ;o.Bgoa@fz.) + Z (*Q?aBagzn.igz + ﬁ.ngB!haSO?a) }

i=0,2 i=1,3
=:1(—@pBn +Byp) . (C.16)

Appendix D: Free energy evaluations
1. General unitary transformation

We start by giving the variation of free energy under the infinitesimal transformation generated by a general
unitary operatorﬂ

dInZ(n,n)
16 BY
1l

0o 1 . il 1y .
~" Zow [ dnete Mo, Cliati, 00, Clidey, ~ Ay =ty O

V]
_)\[51‘0@{”] [¢19@2¢’3][u] _ 53‘1@@] [<p0<p2<ﬁ3][,,] I 61‘2%’] [@0@1953][“] _ 53‘3@@] [¢0¢1@2][V]}
_ 5\{@}} ¢S (0. @)+ entiie)

where the remaining arguments of fields which do not appear are integrated (see ) Using the Hermiticity of the

covariance ng] @] = C[JZ] 0 (as this is the two-point correlation function and the latter is a necessarily Hermitian),
(D.1)) is again

dImZmn,n) 1 _ i 17 i i

6B 0= Zm) / dpc(p, @){5«:{”] [Coeli) — O, 0o Oy = Pl My + M1 (D-2)

-\ [5i°s0f;] (2" 0*@°1 1) — 8 @l [P0 P* @) + 8201, (00 R Pl — 8% @1, 002 1w

_ ;{¢}}e—5"‘t (@ @) +on+ie)

where M\{@} can be obtained from the term in A by multiplying it by (—1), the symmetry (j,v) <> (i, ) and complex
conjugation.

Let us multiply 1) and sum over repeated indices by C_'[ja/]j[ll] and C[il;]i[”], we get, after renaming ', 7' by 1, j:
1

- W/ dpic(@, @) { ~[C@ly CTHy + [Cillly [T,

4 At each step of calculation and for simplicity purpose, we will not display the term M@}. However we will provide an explicit symmetry
of its analogous, i.e. the term with coefficient A, from which AM{@} can be determined without ambiguity.
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MOl [eCT @ 0% @ — Ol [C ALy [0 0° 2w

+C [P CTY [0 @) m—% [C@]fb][so%lso?][y]] - Mo}

+Cii10,CTY, [Cg)1 [CO]18,CTY } —S™ (pp)Hentig) (D.3)

2
here A{@} can be obtained from the term in A by multiplication by (—1), complex conjugation of fields and symmetry
(i, v, [¢C]) & (3, b, 1, [CF]) - (D.4)

Using Lemma [2], we have:

]. _ il . il _ qint - — _
Z(0,7) /dﬂc(%@{c[b][ﬂ] [%CT]fa] [C’édw Ca][y] [Cog ][b][5 CT] } 57 (o) +ontae)
1 . il % — S (0, @)+ @n-+7)
_ i ; . D.
Zorm) | o@D CllaelalCoal — ClelaldCll, e (D.5)

Another integration by parts and Lemma [2] yield

1 _ 1Y o il " s i1
Z(n7) / duc(@,9){ 051, Cliia Pl Cllin — 861, [l Pyl
~d' i G —S™ (0,@)+@n+ilp)
St Ol Ol + 34, Ot il : (D-6)

Using again the fact that C is Hermitian and performing some differentiations leads to

_ i'l 21 S NN, 213 —S" (@) + o+
7007 /dﬂc(¢v<ﬁ){5 o C0P Cldin = O = O, i@l Ol + 1Oy pe ™™ 2+ +19(D.7)

and since [C’Q]EZ I = [C’Q]{Z] (a]> these two terms cancel and the last expression 1) assumes now the form

! = i’ I _ qint N =y =
m /dNC(SDv%O){C[b}[;L] [0595][,480{&] C[a 1] [0, ot }[ ]¢ } S (p,0)+@ntne) (D.8)
Making use, a third time, of Lemma [2| gives
1 - il i g P N~
Z(n, 1) /dﬂc((p’w){c[b][u]w[u]@fa] - C[J;][y]sﬁfu}%b]}@ ST (e.@)rentae) (D.9)
Plugging this into the variation of the free energy and one obtains
dInZ(n,n) 1 / - . , iy ,
Tl 0= [ duc(p.0){~1Coliy CTY, + Cilly O,
W B Z(n,7) ) 1% Jia) [ fa)

—A [C[il% (1] [@CT]{G] (6" %% — Cfal] w[CPl i [°9° 1)
+ Ol CTL '8 1 — Cl [CRlyle° @ ¢%]] — M}
Ol el — Ol elely fe==" (P romene) (D-10)

which is the bottom line for deriving the WT identities using a general unitary transformation.

2. 1l-action

We denote in the following way (recalling that [o] is a triple index, while p, v are single indices, and a dot
notifies the position of remaning indices which, below, are integrated)

1

0= Zom /duc(@,w)( eulm +ipten? — oLty + e’
0,2 1,3 — 510 (0, B)+Bn-+i]
3,020 0 = 0,030 F, 0500 + 8,15 00 = 8,0CP s e (oo romene. (D.11)
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Using C’ ] = 6%[@], the above computes to
1
0— diue (3 -0,2,02 , 02,02  -1,3 13 , 1,3, 1,3
Z(n,ﬁ)/ uc(wp)( o i S e Il o) I i |
"‘5@2120/0 5 02 -4 020_ 5 02 —|—5 130 h]5ga —5 130 h](ia[h])e*s’"t (¢, @) +@n+ie
1
0— duc (@, ( ~0,2,02 , 02,02  -1,3 13 , 1,3, 1,3
Z(n,ﬁ)/ uc(so O =@ ny” + 0 0" — 00" 0,000
+0,02[C0]%% = 8,02 [5,CTI02 + 6,15 [COGL2 — 8,(0, CT]13) —S™ (pp)+entie (D.12)

Let us evaluate by Lemma [2| the functional derivative terms and that we can write
1

Z(n, 77)

= /duc @, ) (gau 8,02 — % (5 0.2 + ) 3(5 13 @};35¢;&3)e_5i"° (¢,@)+@n+ie

= m/duc(@ w){/hijhij

-2 —A
0 =1 2 =3 =0 2 0 =1 -3 ~2
SO;L. [ (SN(G) (p.h13h1290h21.h23§0h32h31u + 77,,} + 80#_ {7%(51\7 e Qﬁh03_h01<ﬂh10hl3ugﬁ_h31h3o + T]l,']

/ a3, 0) ([CO120 52 = 10,CTI020 400 + [C0,]L70 0 — [5,CT]576 s e (o) tontng

— -
‘HPlM {790,503;102 <Pl,h2oh23(,0h32 h30 + T] l,} + (PS { Vh02h01 (Phu) h12§0h21h20 + 77 V}
: 5N( ) K /5N
—0 —A 1 =2 3 0 )\
—p,. [T(e)(p'hmhm@hm'h%(phmhm“ + 77%} — [\/W 1,03 01 (thhlsu@ h31R30 T 1. }
=1 75\ 0 2 =3 1 3 X
-, 751\,( )@hoghoz.‘ﬁuhmmg‘ﬂhsg.hso TN — P FN @uhozhm@hw h12<,0h21h20 + T]
}675““ (¢,@)+@n+ie (D.13)

that will be shortly denoted by

1 _ _
= / duc(cp,so)(w22n32 A %% [@'0* 03 + B2 — X LR - (0070

Z(n,1n
N L I Y-l Ll M E Sl (D.14)
Inserting this last relation into (D.12)), we get
1 _
0= Zorm / dpc (@, w)[ i + el — olin? + el + entnn?t — ety + ol’nlt — ol
=202 (2008 — X L2 - [B°P2 0 ] + A @07 - [0 7 00% . + A @12 - [P0, } S (eR)tentie
(D.15)

where repeated colors are summed as well as arguments in dot. Eq.(D.15)) is the starting equation for deriving the
WT identities in the case of unitary 1-action.
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