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Abstract. We study a class of S3 Gowdy vacuum models with a regular past Cauchy

horizon which we call smooth Gowdy symmetric generalized Taub-NUT solutions.

In particular, we prove existence of such solutions by formulating a singular initial

value problem with asymptotic data on the past Cauchy horizon. The result of our

investigations is that a future Cauchy horizon exists for generic asymptotic data.

Moreover, we derive an explicit expression for the metric on the future Cauchy horizon

in terms of the asymptotic data on the past horizon. This complements earlier results

about S1 × S2 Gowdy models.

PACS numbers: 98.80.Jk, 04.20.Cv, 04.20.Dw

1. Introduction

Studies of cosmological solutions of Einstein’s field equations have a long tradition and

led to astonishing results about our own universe. In particular, observations indicate

that there was a big bang in the distant past, and indeed, the simplest cosmological

models, namely the Friedmann solutions for reasonable matter fields, predict precisely

this behavior. The question arises whether such curvature singularities occur for generic

solutions of Einstein’s field equations or if the strong symmetry assumptions underlying

the Friedmann models are necessary for this. The Hawking-Penrose singularity theorems

[17] shed some light on this question. They predict incompleteness of causal geodesics

in a wide class of situations. However, the information about the reason for the

incompleteness provided by these theorems is very limited, and it is indeed not true

that it is always caused by a geometric singularity.

Let us restrict all of our investigations to vacuum with a vanishing cosmological

constant and to four spacetime dimensions. The corresponding Cauchy problem for

Einstein’s field equations is well-posed and leads to the notion of the maximal globally

hyperbolic development (MGHD) of a given Cauchy data set [1, 35]. The example of

the Taub solution [37] shows that incompleteness of causal geodesics, as predicted by

the singularity theorems, signals a different kind of phenomenon where it is possible

to extend the MGHD. The extended solutions are not globally hyperbolic. There

http://arxiv.org/abs/1106.2377v1


Smooth Gowdy symmetric generalized Taub-NUT solutions 2

exist closed causal curves and indeed, there are several non-equivalent extensions.

This unexpected property has caused an ongoing debate in the literature. Are such

pathological phenomena a typical feature of Einstein’s theory of gravity – in which case

it could not be considered as a “proper” physical theory – or do such phenomena only

occur under very strong and special assumptions, for example the high symmetry of the

Taub solutions? An interesting and intensively debated hypothesis in this context is

the strong cosmic censorship conjecture whose widely accepted formulation was given

for the first time in [11], based on ideas by Eardly and Moncrief [22] and Penrose [32].

More details and references can be found in [35, 34]. This conjecture states that the

MGHD of generic Cauchy data is inextendible2. Roughly speaking, this implies that, in

the generic situation, incompleteness of causal geodesics is indeed caused by a geometric

singularity in some sense.

In his effort to generalize the family of Taub solutions and hence to show that there

is a large (but still non-generic) class of solutions of the field equations with similar

“undesired” properties, Moncrief defines the family of generalized Taub-NUT spacetimes

in [24]. He is able to prove an existence result under an analyticity assumption. Our

motivation in this paper is two-fold. First, we want to extend the existence result to

the smooth case3 and formulate it as a singular initial value problem with “asymptotic

data” on the Cauchy horizon. However, in this paper, we restrict ourselves to the

case with Gowdy symmetry. Secondly, we want to study the global behavior of such

solutions. By means of so-called soliton methods, it turns out that in the generic case,

the existence of a past Cauchy horizon implies the existence of a future Cauchy horizon,

at least under certain topological assumptions on the horizons discussed later. The

reader should compare these results to the S1 × S2 case in [19].

The paper is organized as follows. In Section 2 we discuss some background

material, in particular the symmetry reduction introduced by Geroch which is necessary

to be able to write the metric and the field equations in a useful way. Section 3 is devoted

to the definition and discussion of our class of smooth Gowdy symmetric generalized

Taub-NUT solutions based on Moncrief’s earlier mentioned class. The existence and

uniqueness theory and the corresponding singular initial value problem is considered in

Section 3.3. The basic ingredients for these investigations are Fuchsian methods which

we describe briefly in the appendix. The next main part is Section 4 where we discuss the

global-in-time properties of smooth Gowdy symmetric generalized Taub-NUT solutions.

We finish the paper with conclusions in Section 5.

2 This conjecture, of course, only makes sense if one is able to give a precise and reasonable meaning

to the terms “generic” and “inextendible”. At this stage, however, this has not been found for general

situations. See e.g. [35].
3 We use the term “smooth” for infinitely differentiable objects, as opposed to “analytic” for which

the Taylor series converges in addition.
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2. Geometric preliminaries

2.1. Symmetry reduction by Geroch

We briefly present here the symmetry reduction introduced by Geroch in [14]. Let

M = R × H be an oriented and time-oriented globally hyperbolic 4-dimensional

spacetime endowed with a metric gµν of signature (−,+,+,+), a global time-function

t and a Cauchy surface H . We denote the volume form of gµν by ǫµνρσ and the

hypersurfaces given by t = t0 for any constant t0 by Ht0 . Each Ht0 is homeomorphic to

H .

Now, let ξ be a smooth spacelike1 Killing vector field which is tangent to the

hypersurfaces Ht and set

λ := g(ξ, ξ).

The twist 1-form of ξ is

Ωµ := ǫµνρσξ
ν∇ρξσ,

and ∇ is the covariant derivative compatible with g. The field ξ is hypersurface forming

if and only if Ωµ ≡ 0, which will, however, not be assumed in the following. We define

the “3-metric”

hµν := gµν −
1

λ
ξµξν

on M , and, by raising indices with the inverse of g, we define also hµν and hµν on M .

The first of these tensors is the projector to the space orthogonal to ξ in TpM , p ∈ M .

From the volume form ǫµνρσ of g, we furthermore introduce the tensor

ǫµνρ :=
1√
λ
ǫµνρσξ

σ.

Let αµ be any 1-form. One defines the derivative operator D as

Dµαν := hµ
′

µ h
ν′
ν∇µ′αν′ .

Note that at this stage we are only interested in local patches of M . Then, the

flow generated by ξ induces a map π from M to the space of orbits S, i.e. π maps

every p ∈M to the (locally) uniquely determined integral curve of ξ starting at p. The

requirement that π is a smooth map induces a differentiable structure on S, and hence

S can be considered as a smooth manifold. Using Lξh = 0 and h(ξ, ·) = 0, Geroch

shows that there is a unique metric on S which pulls back to hµν along π. We call this

metric on S again hµν . The same can be done for hµν and hµν , which are henceforth

considered as objects on the quotient space S. The first is just the identity operator,

while the second is the inverse of the 3-metric hµν on S. We can proceed in the same

way with the function λ, the 1-form Ωµ, the tensor ǫµνρ and the covariant derivative

operator Dµ, which can henceforth be considered as objects on S. Then ǫµνρ becomes

the volume form of hµν and Dµ the covariant derivative operator compatible with hµν .

1 Note that Geroch considers the case of a timelike Killing vector field.
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Geroch shows that Einstein’s vacuum field equations on (M, g) imply that the 1-form

Ω is closed, dΩ = 0. Our local considerations allow us to introduce the twist potential

ω so that Ω = dω. The basic quantities λ, ω and hµν on S completely characterize the

geometry of (M, g).

Now Geroch introduces a conformal rescaling

ĥµν := λhµν .

We refer to the associated covariant derivative operator as D̂, Ricci tensor as Ŝµν etc.

He shows that the vacuum field equations for (M, g) (and certain geometric identities)

are equivalent to the following set of equations

D̂2λ =
1

λ

(

D̂µλD̂µλ− D̂µωD̂µω
)

, (1)

D̂2ω =
2

λ
D̂µλD̂µω, (2)

Ŝµν =
1

2λ2

(

D̂µλD̂νλ+ D̂µωD̂νω
)

. (3)

These equations are the Euler-Lagrange equations of the Lagrangian density

L =

√

− det ĥ

[

Ŝ +
1

2λ2

(

D̂µλD̂µλ+ D̂µωD̂µω
)

]

.

Hence, the equations can be interpreted as 3-dimensional gravity on S coupled to a

wave map u : S → H where H is the 2-dimensional hyperbolic space represented by the

components (λ, ω).

We point out that the quotient manifold S can be identified with the surfaces

orthogonal to ξ if and only if ξ is hypersurface forming, i.e. Ωµ = 0. However, in general

this is not the case and the manifold S cannot be interpreted as a submanifold of M .

2.2. Spacetimes of spatial 3-sphere topology with isometry group U(1) or U(1)× U(1)

We specialize the previous general discussion to the case M = R × S3. Now, the

Cauchy surfaces are H = S3. We think of S3 as the submanifold of R4 determined by

x21 + x22 + x23 + x24 = 1. The Euler coordinates of S3 are written as

x1 = cos
θ

2
cos λ1, x2 = cos

θ

2
sinλ1,

x3 = sin
θ

2
cosλ2, x4 = sin

θ

2
sinλ2,

where θ ∈ (0, π) and λ1, λ2 ∈ (0, 2π). Clearly, these coordinates break down at the poles

θ = 0 and π. We will also use the coordinates (θ, ρ1, ρ2) determined by

λ1 =: (ρ1 + ρ2)/2, λ2 =: (ρ1 − ρ2)/2. (4)

Note that the coordinate fields ∂ρ1 and ∂ρ2 are smooth non-vanishing vector fields on

S3, while the fields ∂λ1
and ∂λ2

vanish at certain places. Note that these fields can be

characterized geometrically (without making reference to coordinates) in terms of left-

and right-invariant vector fields with respect to the standard action of SU(2) on S3, see

for example [4, 5].
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We specialize now to the case of a metric g with a spacelike Killing vector field ξ

which generates a smooth effective action of the group U(1) onM such that ξ is tangent

to the level sets of the time function t. In particular, the integral curves of ξ are closed

in Ht for each t. Moreover, we assume that H , and hence Ht for each t, is a Hopf bundle

generated by ξ. This means that the map π, defined in the previous section, is a Hopf

map from M = R× S
3 to S = R× S

2. In order to give an explicit representation of this

map, we can introduce, on Ht for every t, either Euler coordinates or the coordinates

x1, x2, x3, x4 of the embedding into R4. There is no loss of generality in assuming

ξ = ∂ρ1 because we can apply a diffeomorphism from S3 to itself to achieve this for

each t. However, from the point of view of the initial value problem, the assumption

ξ = ∂ρ1 is not compatible with all coordinate gauges; see below. In any case, this allows

to represent the map π as

π : R× S
3 → R× S

2,

(t, x1, x2, x3, x4) 7→ (t, y1, y2, y3)

= (t, 2(x1x3 + x2x4), 2(x2x3 − x1x4), x
2
1 + x22 − x23 − x24) (5)

= (t, sin θ cos ρ2, sin θ sin ρ2, cos θ).

Here we consider S2 as the submanifold of R3 determined by y21 + y22 + y23 = 1. When

we introduce standard polar coordinates on S2, namely

y1 = sinϑ cos φ, y2 = sinϑ sin φ, y3 = cosϑ, (6)

then we have that π is simply

(t, θ, ρ1, ρ2) 7→ (t, ϑ, φ) = (t, θ, ρ2).

In particular, the push-forward of ∂ρ1 to R× S
2 along π vanishes and the push-forward

of ∂ρ2 equals the coordinate vector field ∂φ on S2.

We point out that Eq. (5) yields a global representation of the map π. Since both S

and M are simply connected, the twist potential ω is defined globally. The vector fields

∂ρ1 and ∂ρ2 will play a major role in the following discussion. The fields ∂λ1
and ∂λ2

, on

the other hand, cannot be used for Geroch’s reduction directly because they vanish at

either θ = 0 or θ = π.

Let us now consider a global smooth effective action of the group2 U(1)×U(1) with
a second spatial Killing vector field η commuting with ξ, under the same assumptions

as before. We can3 suppose ξ = ∂ρ1 and η = ∂ρ2 , since it can be shown that all smooth

effective actions of U(1)×U(1) on S3 are equivalent in the sense that any other smooth

effective action equals the previous action after possibly applying a diffeomorphism of

S
3 into itself and an automorphism of U(1) × U(1) to itself [10]. This group action

degenerates, in the sense that the group orbits become 1-dimensional, precisely at θ = 0

and at θ = π. When θ = 0, the field ∂λ2
vanishes, while ∂λ1

vanishes at θ = π. Note

2 This is the direct product of the group U(1) with itself.
3 But this assumption leads to further restrictions on the possible choices of coordinate gauges for the

initial value problem, see below.
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that the fields ∂ρ1 and ∂ρ2 never vanish, but both become parallel at θ = 0 and θ = π.

The action of the group U(1) discussed in the previous section can be associated with

the action of the subgroup {e} × U(1) of U(1)× U(1).

We consider Geroch’s symmetry reduction only with respect to ξ and the

corresponding projection map π according to Eq. (5). Since ξ and η commute, we

are allowed, in principle, to apply the symmetry reduction successively one after the

other for both fields. However, the result is then not a smooth manifold, but rather a

manifold with boundary. In order to avoid the corresponding complications, we perform

the reduction only with respect to ξ and obtain the orbit manifold S = R × S2 with

the 3-metric h with Killing field η. Here, the push-forward of η along π to S is again

denoted by η. Recall that the push-forward of ξ is 0. Now, according to Geroch [15]

and Gowdy [16], Einstein’s vacuum field equations imply that the twist quantities of

the U(1)× U(1)-action on M ,

κ1 := ǫµνρση
µξν∇ρξσ, κ2 := ǫµνρση

µξν∇ρησ,

vanish. The geometrical interpretation is that the 2-space orthogonal to the 2-space

spanned by ξ and η in M is integrable to a 2-surface everywhere. This allows us to

make the following general ansatz for the metric g on M ,

g = gABdx
AdxB +R

[

eL(dρ1 +Qdρ2)
2 + e−Ldρ2

2
]

, (7)

where A,B = 0, 1 label coordinates on the submanifolds orthogonal to the Killing vector

fields; the metric gAB is so far unspecified. The functions R, L and Q only depend on

t and θ, i.e. are constant along the Killing vector fields. It also follows that λ and ω,

as objects on S, are constant along η. Moreover, η is a hypersurface orthogonal vector

field in S (but not necessarily in M). We can compute

λ = ReL, (8)

from Eq. (7), and

∂tω = −Re2L
√

| det(gCD)|gθA∂AQ, ∂θω = −Re2L
√

| det(gCD)|gtA∂AQ. (9)

Finally, the 3-metric is

h = gABdx
AdxB +Re−Ldρ2

2 = gABdx
AdxB +

R2

λ
dρ2

2. (10)

Chruściel [9] defines the notion of smooth generic vacuum Cauchy data on a

spacelike hypersurface of (M, g). He shows that there exist a smooth function4 M ,

a constant R0 > 0, and functions Q and L as above, on (0, π)× S
3 which are constant

along ξ and η such that the spacetime (M̃, g̃) with M̃ = (0, π)× S3 and g̃ of the form

Eq. (7) with

R = R0 sin t sin θ, (gAB) = eMdiag (−1, 1), (11)

can be isometrically embedded into the maximal globally hyperbolic development of such

data. We will assume that Chruściel’s genericity condition is satisfied and henceforth

4 The function M is not to be confused with the manifold M .
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identify (M, g) with (M̃, g̃). The question whether (M, g) is isometric to the maximal

globally hyperbolic development in general is, in some sense, the main content of this

paper. One calls such a spacetime (M, g) a Gowdy spacetime and the time coordinate

t is called areal time. We will assume that t ∈ I := (0, π).

2.3. Smoothness conditions for the metric components

Of particular importance for our further studies is the behavior of the metric coefficients

of h at the poles of the 2-sphere. We know that h is smooth on I × S2 and invariant

along η. Since η is purely spatial, it is hence a rotationally invariant metric. Moreover, η

is hypersurface orthogonal with respect to h. We thus consider the standard embedding

of S2 into R3 in a neighborhood of the north pole (y1, y2, y3) = (0, 0, 1). We introduce a

local coordinate patch (y1, y2) there which is related to spherical coordinates (ϑ, φ) by

y1 = sinϑ cos φ, y2 = sinϑ sin φ.

A general smooth metric l has the form

l = l11dy
2
1 + 2l12dy1dy2 + l22dy

2
2.

We want to study the implications of two conditions now:

(i) The metric is diagonal with respect to the (ϑ, φ)-coordinates (because η = ∂φ is

hypersurface orthogonal).

(ii) The metric is invariant under rotations around the polar axis (because η is a Killing

vector field).

This easily implies that there are smooth functions F and G which only depend on cos ϑ

such that

l11(ϑ, φ) = G(cosϑ)− F (cosϑ) sin2ϑ cos(2φ),

l22(ϑ, φ) = G(cosϑ) + F (cosϑ) sin2ϑ cos(2φ),

l12(ϑ, φ) = −F (cosϑ) sin2ϑ sin(2φ).

With respect to spherical coordinates, the metric then has the form

l = cos2ϑ
[

G(cosϑ)− F (cosϑ) sin2ϑ
]

dϑ2 + sin2ϑ
[

G(cosϑ) + F (cosϑ) sin2ϑ
]

dφ2.

This representation is clearly only valid in a neighborhood of the north pole, in particular

it breaks down at the equator due to the cos2ϑ-factor. If we choose the functions F and

G such that

l = eMdϑ2 + sin2ϑ e2Udφ2, (12)

then M and U must be two smooth functions of cosϑ alone, so that the following

condition holds

eM = e2U + M̂(cosϑ) sin2ϑ (13)

for some smooth function M̂ .
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According to Eq. (10), the general metric h on S = I × S2 is of the form

h = eM(−dt2 + dθ2) + sin2θ e2Udρ2
2, (14)

in areal gauge given by Eq. (11). Hence

U = lnR0 + ln sin t− 1

2
lnλ = (lnR0 − L− ln sin θ + ln sin t)/2. (15)

This is finite everywhere on I×S2 under the previous assumptions because the quantity

λ must be finite and bounded away from zero at the poles for all t ∈ (0, π), and hence

eL = O(R−1) = O(sin−1θ).

In particular, the smoothness condition Eq. (13) translates to

eM =
R2

λ sin2 θ
+ M̂(cosϑ) sin2ϑ. (16)

A consequence is that eM is bounded and non-vanishing at the poles for all t ∈ (0, π).

Our choice of {ξ, η} = {∂ρ1 , ∂ρ2} as the Gowdy Killing basis has further important

consequences due to the fact that ∂ρ1 = ∂ρ2 at θ = 0 and ∂ρ1 = −∂ρ2 at θ = π. At the

poles we must have g(ξ, ξ) = g(η, η) = ±g(ξ, η). Therefore there must exist a smooth

function Q̂ which only depends on t and cos θ so that the function Q in Eq. (7) satisfies

Q(t, θ) = cos θ + Q̂(t, cos θ) sin2θ. (17)

In particular it follows from Eq. (9) that for each t ∈ (0, π)

−2 = Q(t, π)−Q(t, 0) =

∫ π

0

Qθ dθ = −
∫ π

0

R−1e−2L∂tω dθ = −
∫ π

0

Rλ−2∂tω dθ.

2.4. Reparametrizations of the Gowdy orbits

All of our discussions so far are based on the choice {∂ρ1 , ∂ρ2} as the Gowdy Killing

basis on M . Now we study general reparametrizations of the Gowdy Killing orbits in

M , i.e. arbitrary bases of the Gowdy Killing algebra. For example, the standard basis

normally used in the literature is {∂λ1
, ∂λ2

}.
Let (φ1, φ2) ∈ R

2 be coordinates on the Killing orbits so that a Gowdy invariant

metric has the form analogous to Eq. (7), i.e.

g = eM (−dt2 + dθ2) +R
[

eL(dφ1 +Qdφ2)
2 + e−Ldφ2

2

]

.

We are allowed to reparametrize the orbits by means of constants a, b, c, d ∈ R, so that

ad− bc 6= 0

and

φ1 = aφ̃1 + bφ̃2, φ2 = cφ̃1 + dφ̃2.

The coordinates t and θ are not changed. In terms of the new coordinates, we want to

write the metric as

g = eM (−dt2 + dθ2) + R̃
[

eL̃(dφ̃1 + Q̃dφ̃2)
2 + e−L̃dφ̃2

2

]

.
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One finds that

R̃ = |ad− bc|R, (18)

eL̃ =
(a + cQ)2eL + c2e−L

|ad− bc| , (19)

Q̃ =
(a + cQ)(b+ dQ)eL + c d e−L

(a+ cQ)2eL + c2e−L
. (20)

A particularly useful transformation is the inversion, i.e. the interchange of the

Killing basis fields. Then we have a = d = 0, b = c = 1, and hence

R̃ = R,

eL̃ = eLQ2 + e−L,

Q̃ =
eLQ

eLQ2 + e−L
.

Let us now consider a metric in the parametrization (ρ1, ρ2) of the Killing orbits as

given by Eq. (7). We pick φ1 = ρ1 and φ2 = ρ2. Now let φ̃1 = λ1 and φ̃2 = λ2 and hence

g = eM (−dt2 + dθ2) + R̃
[

eL̃(dλ1 + Q̃dλ2)
2 + e−L̃dλ22

]

.

For this we must choose a = 1, b = 1, c = 1, d = −1 from Eq. (4). It follows that

R̃ = 2R, (21)

eL̃ =
(1 +Q)2eL + e−L

2
, (22)

Q̃ =
−(1 −Q2)eL + e−L

(1 +Q)2eL + e−L
. (23)

The inverse of this reparametrization is

R =
R̃

2
,

eL =
(1 + Q̃)2eL̃ + e−L̃

2
,

Q =
(1− Q̃2)eL̃ − e−L̃

(1 + Q̃)2eL̃ + e−L̃
.

From this and the discussion in Section 2.3, we can easily derive the behavior of

the functions R̃, L̃, Q̃ at the poles for t ∈ (0, π) in areal coordinates,

R̃ = R̂ sin θ, (24)

eL̃ = eL̂ cot
θ

2
, (25)

Q̃ = (1− cos θ)Q̂ , (26)

eM =
R̂

4

[

eL̂(1− cos θ) + e−L̂(1 + cos θ)
]

+ M̂ sin2θ. (27)

with smooth functions R̂, L̂, Q̂ and M̂ which only depend on t and on cos θ.

Note the following interesting general fact about polarized Gowdy spacetimes . A

Gowdy metric is called polarized if there exists an everywhere orthogonal basis of Gowdy
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Killing fields. With respect to this basis, the function Q must hence vanish identically.

Now, Eq. (17) shows that this can never happen for the Killing basis {∂ρ1 , ∂ρ2}, but it
is possible for the basis {∂λ1

, ∂λ2
} according to Eq. (26). Indeed, one can show that Q

can only vanish identically for a smooth Gowdy symmetric metric on S3 if the Killing

basis is chosen such that one of the two fields is proportional to ∂λ1
and the other to

∂λ2
.

3. The class of smooth Gowdy symmetric generalized Taub-NUT solutions

3.1. The Taub solutions

The Taub solutions were discovered by Taub [37] as a family of cosmological solutions

of the vacuum field equation with spatial S3-topology. They are a two-parameter family

of spacetimes

g = l2
(

−4(1 + τ 2)

V (τ)
dτ 2 + (1 + τ 2)(ω1 ⊗ ω1 + ω2 ⊗ ω2) +

V (τ)

1 + τ 2
ω3 ⊗ ω3

)

,

with l > 0, m ∈ R and

V (τ) := −4τ 2 − 8
m

l
τ + 4.

Here,

ω1 = sin ρ1dθ − cos ρ1 sin θdρ2,

ω2 = cos ρ1dθ + sin ρ1 sin θdρ2,

ω3 = dρ1 + cos θdρ2,

are the standard left-invariant one-forms5 on S3. The metric is smooth and globally

hyperbolic for

τ ∈ (τ−, τ+), τ± := −m/l ±
√

1 +m2/l2.

It was demonstrated for the first time in [31] that these solutions can be continued

analytically through the apparently singular times τ±. These extensions were christened

Taub-NUT solutions . The extended solutions are not globally hyperbolic; in particular

there exist closed causal curves. Moreover, there are several non-equivalent analytic

extensions.

We easily find that the Taub solutions are Gowdy symmetric (but not polarized),

and we can bring them to the form Eq. (7) with (11)

g = eM (−dt2 + dθ2) +R
[

eL(dρ1 +Qdρ2)
2 + e−Ldρ2

2
]

.

For arbitrary parameters l > 0 and m ∈ R, the Taub solutions are then given by

R = 2l
√
l2 +m2 sin t sin θ,

eM = l2 + (m+
√
l2 +m2 cos t)2,

5 The term left-invariance here is understood with respect to the standard action of SU(2) on S3. Note

that SU(2) is a subgroup of the isometry group of the Taub solutions.
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eL =
R

eM sin2θ
,

Q = cos θ.

3.2. Generalizations of the Taub-NUT solutions

Moncrief [24] introduces the family of generalized Taub-NUT spacetimes as globally

hyperbolic spacetimes (0, δ]× S
3 with a smooth time function t for a sufficiently small

δ > 0. The level sets of t are Cauchy surfaces diffeomorphic to S3. Moncrief wants to

study the situation where global hyperbolicity breaks down at t = 0, in the sense that

the spacetimes can be extended through t = 0 as non-globally hyperbolic spacetimes so

that the points corresponding to t = 0 form a smooth compact null hypersurface, i.e.

a Cauchy horizon. It was shown in [23] that if the spacetime is an analytic solution of

the vacuum field equations and if the Cauchy horizon is ruled by closed null generators

in the sense of an S1-bundle, i.e. the null generator coincides with the generators of

the bundle, then the spacetime necessarily has a 1-dimensional isometry group and the

corresponding Killing field is proportional to the null generators of the Cauchy horizon

on the horizon. The result was generalized to the smooth case in [13].

Motivated by this result, Moncrief focuses his discussion of generalized Taub-NUT

solutions on the case of spacetimes above for which the Cauchy horizon is generated in

the sense of a Hopf bundle with U(1) isometry group. The metrics of all such spacetimes

can be written as

g = e−2γ(−Ñ2dt2 + g̃abdx
adxb) + sin2t e2γ [k(dρ1 + cos θ dρ2) + βadx

a]2,

for sufficiently small t > 0, where we can assume as before that the corresponding Killing

field is ∂ρ1 . The functions γ and Ñ only depend on t, θ and ρ2. The index a takes the

values 1 (corresponding to the coordinate θ) and 3 (corresponding to the coordinate

ρ2). The field g̃ab is a symmetric 2-tensor field and the βa a 1-form. Moreover, k > 0 is

a constant. One assumes that all fields γ, Ñ , g̃ab and βa are smooth on (0, δ] × S3 for

some small δ > 0 and have a unique smooth extension through t = 0. We express this

as the requirement that these can be considered6 as smooth fields on [−δ, δ]× S
3. Here,

we assume that Ñ is strictly positive.

In the following, we restrict to the case of Gowdy symmetry. Therefore the metric

coefficients above are in addition independent of ρ2. As discussed before, the metric can

then be assumed to be of the form Eq. (7) with Eq. (11) for t ∈ (0, δ] for some δ ∈ (0, π).

Let us define7 the function N by

eL =
Re−M

sin2θ
N2. (28)

6 This is not to be confused with the requirement that the metric g is smooth on [−δ, δ]× S3. Indeed,

g, in the form above, degenerates at t = 0 and hence cannot be extended as a Lorentzian metric to all

t ∈ [−δ, δ].
7 Eqs. (16) and (8) imply that N(t, 0) = N(t, π) = 1 for all t > 0.
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Then we must set

g̃θθ = eM , g̃θρ1 = 0, g̃ρ1ρ1 =
eM sin2θ

N2
,

βθ = 0, βφ = R0(Q− cos θ),

Ñ =
R0N

k
, γ = −M

2
+ ln

R0N

k
.

The next task is to identify the conditions under which these spacetimes, in

particular the metrics g, are extendible smoothly through t = 0. We introduce new

coordinates (t′, θ′, ρ1
′, ρ2

′) by

t = arcsin
√
t′, θ = θ′, ρ1 = ρ1

′ +
κ

R0
ln t′, ρ2 = ρ2

′. (29)

Here, we assume that t > 0 is sufficiently small and hence t′ > 0 is small. The quantity

κ is a constant which has, so far, not been fixed. In these new coordinates, the metric

becomes

g = −
(

eM

4(1− t′)t′
− e−MN2κ2

t′

)

dt′
2
+ eMdθ2

+e−MN2
[

2R0κ(dρ1
′ +Qdρ2

′)dt′ +R2
0t

′ (dρ1
′ +Qdρ2

′)
2
]

+
eM sin2θ

N2
dρ2

′2.

The metric extends smoothly through t′ = 0 if the functions M , N2 (strictly positive)

and Q are smooth with respect to t′ in a neighborhood of t′ = 0 and if (4κ2N2− e2M )/t′

is smooth for some choice of the constant κ. In this case, the field ∂ρ′
1
= ∂ρ1 is a

null generator of the surface given by t′ = 0. This surface is therefore a smooth null

hypersurface with S3-topology and closed null generators and so is a smooth past Cauchy

horizon.

For the Taub solutions for example, we choose

κ = ±
(

l2 +m(m+
√
l2 +m2)

)

.

Then the metric is extendible analytically and hence the t = 0-surface is a past Cauchy

horizon8. The analogous argument applied for t = π implies the existence of a future

Cauchy horizon. It is shown in [31, 12] that several non-equivalent extensions through

both horizons exist.

We will call spacetimes with all the above properties smooth Gowdy symmetric

generalized Taub-NUT spacetimes . The name is motivated by Moncrief’s before

mentioned notion of generalized Taub-NUT spacetimes . We will restrict to Gowdy

symmetry, but in contrast to Moncrief, we will not assume analyticity. Note that

if an analytic spacetime as above solves Einstein’s field equations in vacuum with

vanishing cosmological constant for t > 0, then the analytically extended spacetimes

are necessarily also solutions of the vacuum field equations. In the non-analytic smooth

case, we do not know in general whether the extensions are vacuum solutions. We will

not address this problem in this paper. As an interesting side-remark: Chruściel et al.

8 Often in this paper, we will speak sloppily of the “t = 0-surface” when we actually mean the t′ = 0-

surface.
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note in [9] that there are no smooth extensions through a Cauchy horizon of S3-topology

– solution of the field equations or not – in the polarized Gowdy case. As we mentioned

before, however, none of the spacetimes which we consider in the following are polarized.

3.3. Existence of smooth Gowdy symmetric generalized Taub-NUT solutions

3.3.1. The main existence result. In this section we address the question as to whether

smooth Gowdy symmetric generalized Taub-NUT spacetimes, which solve Einstein’s

vacuum field equations, exist. Our techniques here are based on the particular Fuchsian

method introduced in [7, 6]; a quick summary can be found in the appendix. Similar

existence results can be obtained by the Fuchsian techniques in [21, 33, 36].

In the following we call a function rotationally symmetric on S2 if it does not

depend on the azimuthal angle φ in standard spherical coordinates Eq. (6). The Hopf

map allows to lift any such function to a smooth U(1)× U(1)-invariant function on S3

(or R× S3 if the function also depends on t).

Theorem 3.1 Let S∗∗ and Q∗ be rotationally symmetric functions in C∞(S2) so that

S∗∗(0) = S∗∗(π), (30)

and R0 a positive constant. Then there exists a unique smooth Gowdy symmetric

generalized Taub-NUT solution for all t ∈ (0, π) with

R(t, θ) = R0 sin t sin θ,

satisfying the following uniform expansions at t = 0:

R(t, θ)eL(t,θ) = t2eS∗∗(θ) +O(t4),

Q(t, θ) = cos θ +Q∗(θ) sin
2 θ +O(t2),

M(t, θ) = S∗∗(θ)− 2S∗∗(0) + 2 lnR0 +O(t2).

Corresponding expansions hold for all derivatives.

Let us make a couple of comments.

(i) This result means that we can construct a unique smooth Gowdy symmetric

generalized Taub-NUT solution from any given asymptotic data functions S∗∗ and

Q∗ subject to the conditions (30). We have thus obtained the same number of free

functions as in Moncrief’s class of generalized Taub-NUT solution (after factoring

out gauge transformations in his class).

(ii) The Taub-NUT solutions are determined by the asymptotic data

R0 = 2l
√
l2 +m2,

S∗∗ = 2 lnR0 − ln
(

l2 + (m+
√
l2 +m2)2

)

,

Q∗ = 0.
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(iii) We shall now show that none of the solutions of Theorem 3.1 are polarized.

Recall from Section 2.4 that a smooth Gowdy symmetric spacetime is polarized

if Q vanishes with respect to the (λ1, λ2)-parametrization of the symmetry orbits.

Eq. (23) yields that the spacetime is polarized if and only if 1−(1−Q2)e2L ≡ 0 with

respect to the (ρ1, ρ2)-parametrization. However, for our solutions, Q is bounded

in a neighborhood of t = 0 and e2L is O(t4) for every θ, which is therefore a

contradiction.

(iv) We compute the uniform limit of the quantity N (defined in Eq. (28)) at t = 0,

N(0, θ) = e2(S∗∗(θ)−S∗∗(0)).

From that it is easy to determine that value of the constant κ (defined in Eq. (29))

which allows the solution to be extended through t = 0:

κ = ±R
2
0

2
e−S∗∗(0).

3.3.2. Equations and unknowns. In order to attempt the proof of Theorem 3.1, let us

make the following convenient choices. Instead of the unknown L, we shall use

S := lnλ = L+ lnR.

Moreover, Q is replaced by the twist potential ω (defined in Section 2). Eqs. (1) and

(2), together with (14) and (15) imply the following equations for S and ω,

D2S − t2∆S2S = (1− t cot t)DS − e−2S[(Dω)2 − (tωθ)
2], (31)

D2ω − 4Dω − t2∆S2ω = (1− t cot t)Dω + 2(DS − 2)Dω − 2(t∂θS)(t∂θω). (32)

Note that we have added a term −4Dω to the second equation for later convenience. We

use the notation D := t∂t and D
2 = t∂t(t∂t). The operator ∆S2 is the Laplace operator

of the standard metric on the unit sphere

∆S2 = ∂2θ + cot θ∂θ +
1

sin2θ
∂2φ.

In our case all unknowns are independent of the azimuthal angle φ, i.e. are rotationally

symmetric. Therefore these two equations are geometric wave equations with respect

to the standard metric on the unit sphere as long as t ∈ (0, π). Indeed, these equations

form a second-order hyperbolic Fuchsian system, see below.

Eq. (3) gives us the remaining equations. On the one hand, we obtain a wave

equation for M ,

0 = −Mtt +∆S2M + cot t(Mt + 2St)− S2
t − e−2Sω2

x + 2 =: H. (33)

On the other hand, we get two first-order equations

0 = 4R±,θ +R(S2
± + e−2Sω2

±)− 2R±(S± +M±) =: 2R±C±, (34)

with9 ∂± := ∂θ±∂t. The quantities H , C+ and C− are introduced for the later discussion.

9 Lower indices ± of any function previously defined without an index mean the directional derivatives

along the vector fields ∂±.
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3.3.3. Steps of the proof of Theorem 3.1. The main step in the proof is the construction

of solutions of (31) and (32) in a small time neighborhood of t = 0, which are compatible

with the notion of smooth Gowdy symmetric generalized Taub-NUT solutions given in

Section 3.2. The main local existence result is as follows.

Proposition 3.2 Let ω∗ ∈ R, and ω∗∗, S∗∗ ∈ Hk+1(S2) be rotationally symmetric

functions with k ≥ 3. Choose constants α = (α1, α2) with 1 < α1 < 2 and 0 < α2 < α1.

Then there exists a unique solution (S, ω) of the Gowdy equations (31) and (32) with

S(t, θ) = 2 ln t+ S∗∗(θ) + w1(t, θ),

ω(t, θ) = ω∗ + ω∗∗(θ)t
4 + w2(t, θ),

where w := (w1, w2) ∈ X̃δ,α,k for a sufficiently small δ > 0. The functions w1, w2 are

rotationally symmetric for each t ∈ (0, δ]. If ω∗∗ and S∗∗ are in C
∞(S2), then w ∈ Xδ,α,∞.

The spaces Xδ,α,k and X̃δ,α,k are introduced in the appendix. The spaces Hk are the

standard Sobolev spaces.

Here are some comments about this result:

(i) The problem addressed in this proposition has many similarities to the standard

singular initial value problem of Fuchsian equations. Hence Theorem 3.6 of [6]

should apply directly. However, in contrast to the standard singular initial value

problem, it is crucial here to assume that w∗ = constant. Only if this is the case,

are conditions (1) and (2) of that theorem satisfied. Still, condition (3) fails. We

find that condition (3) has been derived in [6] from Proposition 3.5 for non-constant

asymptotic data. Given that w∗ = constant, however, condition (3) weakens and it

is straightforward to check that these assumptions are sufficient.

(ii) We stress that the singular initial value problem considered here is significantly

different than a standard Cauchy problem. Since the equations are singular at

t = 0, but of Fuchsian type, we obtain the fourth power of t in the leading-order

term of ω and the logarithm in the expansion of S on the one hand, and we do not

obtain the full expected number of free functions on the other hand. However, as

mentioned before, the number of free functions here is the same as in Moncrief’s

results.

(iii) We must assume k ≥ 3 (as opposed to k ≥ 2 in [6]). Because of the Sobolev

inequalities, the condition k ≥ 3 is required when we check condition (2) of

Theorem 3.6 of [6] for the 2-dimensional spatial manifold S2 here. It is crucial

that Eqs. (31) and (32) are geometric wave equations in order to derive the energy

estimates in the same way as in [7, 6].

(iv) The last statement in the theorem means that if ω∗∗ and S∗∗ are smooth rotationally

symmetric asymptotic data functions on S2, then the corresponding solution is

smooth on the time interval (0, δ]. Furthermore, w and all of its derivatives decay

with the same rate in t at each spatial point.
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(v) The constants α1 and α2 control the decay of the remainders w1 and w2 at t = 0.

Roughly speaking, the statement (w1, w2) ∈ X̃δ,α,k means that w1 = O(tα1) and

w2 = O(t4+α2) at t = 0. We will argue below that in fact α1 = α2 = 2 in the

smooth case. The fact that the statement about these constants in Proposition 3.2 is

weaker than this is related to the following property of our general Fuchsian theory.

Roughly speaking, the theory assumes that the solutions might have additional

logarithmic terms in t. Those terms would show up in particular if the exponents

of t in the leading-order terms at t = 0 are spatially dependent. This is generically

the case for many Fuchsian problems, however, not for us here.

The proof of Proposition 3.2 follows roughly the same steps as in the Gowdy case with

spatial T3-topology discussed in [8, 6].

Let us restrict to the smooth case ω∗∗, S∗∗ ∈ C∞(S2) from now on. We see easily

from Eqs. (31), (32) and the expansions in Proposition 3.2 that eS and ω can be extended

as smooth solutions through t = 0 such that both are even in t. Hence, we can assume

in all of what follows that both are solutions of the equations on, say, [−δ, δ]× S2.

We can compute Q by means of Eqs. (9)

∂θQ = −Re−2S∂tω, ∂tQ = −Re−2S∂θω. (35)

The integrability condition for these equations follows from the fact that ω is a solution

of Eq. (32). Let us suppose that a solution of Proposition 3.2 is given. Then all terms

in Eqs. (35) are smooth on [−δ, δ] × S2. Hence these equations determine Q uniquely

up to a constant and Q is a smooth function on [−δ, δ]× S
2. From

∂θQ(0, θ) = −4R0ω∗∗(θ)e
−2S∗∗(θ) sin θ,

it follows that

Q(0, θ) = Q0 − 4R0

∫ θ

0

ω∗∗(x)e
−2S∗∗(x) sin x dx,

for some constant Q0. In order to guarantee the smoothness condition Eq. (17), namely

Q(t, 0) = 1, Q(t, π) = −1 for all t > 0, we must choose Q0 = 1 and the asymptotic data

must satisfy
∫ π

0

ω∗∗(x)e
−2S∗∗(x) sin x dx =

1

2R0

. (36)

Then it follows that Q(0, 0) = 1, Q(0, π) = −1. Hence from the second of Eqs. (35) we

conclude that Q(t, 0) = 1, Q(t, π) = −1 for all t ∈ [−δ, δ]. This is summarized in the

following lemma.

Lemma 3.3 Let R0 > 0 be a constant and ω∗∗ and S∗∗ be rotationally symmetric

functions in C∞(S2) satisfying Eq. (36). Suppose that (S, ω) is the corresponding

solution of (31) and (32) according to Proposition 3.2. Then there is a unique smooth

solution Q of Eqs. (35) on [−δ, δ] × S2 which is rotationally invariant at each t and

Q(t, 0) = 1, Q(t, π) = −1.
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It follows easily that Q has the expansion

Q(t, θ) = 1− 4R0

∫ θ

0

ω∗∗(x)e
−2S∗∗(x) sin x dx+

1

2
R0 ω

′
∗∗(θ)e

−2S∗∗(θ) sin θ t2 + . . . ,

in t at t = 0 and that Q is an even function in t. We can introduce a smooth rotationally

symmetric function Q∗(θ) such that

Q(t, θ) = cos θ +Q∗(θ) sin
2 θ +O(t2).

Hence, instead of prescribing the function w∗∗ as one of the asymptotic data functions

in Proposition 3.2, we can equivalently prescribe the function Q∗ and then set

w∗∗(θ) = e2S∗∗(θ)
1− ∂xQ∗(θ) sin θ − 2Q∗(θ) cos θ

4R0

.

In the next step of the proof of Theorem 3.1 we construct the function M from the

constraint equations (34) for given solutions (S, ω) of Proposition 3.2. The result is as

follows.

Proposition 3.4 Let R0 > 0 be a constant and ω∗∗ and S∗∗ be rotationally symmetric

functions in C∞(S2) satisfying

S∗∗(0) = S∗∗(π).

Suppose that (S, ω) is the corresponding solution of (31) and (32) according to

Proposition 3.2. Then there is a unique smooth solution M of Eqs. (37) on [−δ, δ]× S2

which is rotationally invariant at each t and satisfies the smoothness condition eM(t,θ) =

(R2
0 sin

2 t)e−S(t,θ) for all (t, θ) ∈ [−δ, δ]× {0, π}. Moreover, M is an even function of t.

The expansion of M at t = 0 in t is

M(t, θ) = S∗∗(θ)− 2S∗∗(0) + 2 lnR0 +O(t2).

The proof of this is maybe the trickiest part of this section. Let us define the functions

µ± := 4R±,θ + R(S2
± + e−2Sω2

±).

Then the constraint equations can be written as

Mt = −St +
µ+

4R+
− µ−

4R−

, Mθ = −Sθ +
µ+

4R+
+

µ−

4R−

. (37)

Since R± = R0 sin(t ± θ), the terms on the right-hand sides are potentially dangerous

along the diagonals of the Gowdy square where R± = 0. Moreover, the functions µ±

are not bounded everywhere in the limit t → 0. We proceed as follows. Instead of

interpreting the functions in Eqs. (37) as rotationally symmetric functions on R × S2,

we consider them for the moment as functions on R × R where we extend θ to R, 2π-

periodically. Smooth rotationally symmetric functions on R× S2 will then be identified

with functions which are even periodic in θ. Since S is such a smooth function, it follows

that St is even and Sθ is odd in this sense. Since we want to construct a smooth solution

M of Eqs. (37), it follows that

F even :=
µ+

4R+
− µ−

4R−

− 2

t
, F odd :=

µ+

4R+
+

µ−

4R−

, (38)



Smooth Gowdy symmetric generalized Taub-NUT solutions 18

are even and odd functions of θ, respectively. Indeed this is true and it follows directly

from their definition. The term 2/t is introduced for later convenience. This renders

Eqs. (37) into

Mt = −(St − 2/t) + F even, Mθ = −Sθ + F odd. (39)

The fact that (S, ω) solves Eqs. (31) and (32) implies the following linear symmetric

hyperbolic system

∂tF
even − ∂θF

odd = Geven, ∂tF
odd − ∂θF

even = 0, (40)

with the even source function

Geven =
2

t2
+

1

2
(S+S− + e−2Sω+ω−).

Note that this function extends smoothly through t = 0 and hence the system Eq. (40)

has a well-posed Cauchy problem with data on t = 0. We call those data functions

F even
∗ (θ) and F odd

∗ (θ), and hence must suppose that these are even and odd, respectively,

periodic smooth functions. Let us write F even
f and F odd

f for the smooth solution of

Eq. (40) for any given such data F even
∗ and F odd

∗ in order to distinguish them from the

functions F even and F odd determined by Eq. (38) from the given functions S and ω. It

is straightforward to solve Eqs. (39) for M when F even is substituted by F even
f and F odd

by F odd
f . Then the integrability condition is satisfied as a consequence of Eq. (40), and

it follows

M(t, θ) =M∗ − (S(t, θ)− 2 ln t) +

∫ θ

0

F odd
∗ (x) dx+

∫ t

0

F even
f (τ, θ) dτ, (41)

for some constant M∗. Therefore, M can be considered as a smooth rotationally

symmetric function on [−δ, δ]× S2. It is an even function in t if and only if F even
∗ = 0.

Now we must study the conditions for which F even ≡ F even
f and F odd ≡ F odd

f in

order to give a meaning to Eq. (41). We find that under the conditions for S and ω

of Proposition 3.2, the function F even converges pointwise to 0 at t = 0, while F odd

goes to 2S ′
∗∗, for every θ ∈ [0, π]. Indeed, F even and F odd can be extended uniquely

as continuous functions to all the points given by t = 0 and θ ∈ (0, π). Let us hence

choose F even
∗ = 0 and F odd

∗ = 2S ′
∗∗. On the interior of the domain of dependence for

Eqs. (40) of the subinterval (0, π) of the t = 0-surface, it follows that F even ≡ F even
f

and F odd ≡ F odd
f because both sets of functions are smooth and satisfy Eq. (40) with

the same data at t = 0. Let us call this domain Ω. Recall, however, that F even and

F odd are not defined in those points of ∂Ω where R± = 0. However, we can extend

the functions F even and F odd to those points using the continuous values of F even
f and

F odd
f there. From the definition of F even and F odd involving only quotients of smooth

functions, which become zero simultaneously at the same points, we obtain that these

extensions of F even and F odd are continuous on the whole domain, in particular through

∂Ω, possibly except for the points (0, 0) and (0, π). The continuity in the points (0, 0)

and (0, π) follows directly from the asymptotic behavior of S and ω there. Therefore,

F even and F odd are uniformly continuous functions on the whole domain. Now, both

sets of functions F even, F odd, and F even
f , F odd

f , are solutions of Eqs. (40) with the same
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smooth data at t = 0. It is a standard fact about symmetric hyperbolic systems that

corresponding solutions are smooth and that there can only exist one smooth solution

for given smooth data. Therefore, it follows F even ≡ F even
f and F odd ≡ F odd

f everywhere.

So, Eq. (41) represents the actual solution of Eq. (39), which takes the form

M(t, θ) =M∗+2S∗∗(θ)−2S∗∗(0)−(S(t, θ)−2 ln t)+

∫ t

0

F even(τ, θ) dτ.(42)

Now let us consider the smoothness condition eM(t,θ) = (R2
0 sin

2 t)e−S(t,θ) for all

t ∈ (0, δ] and θ = 0, π. We compute

∂t(M − 2 lnR0 + S − 2 ln sin t)|θ=0,π = F even|θ=0,π +
2

t
− 2 cot t.

Evaluating F even from the definition Eq. (38) at θ = 0, π (where in particular R = 0),

we conclude that

∂t(M − 2 lnR0 + S − 2 ln sin t)|θ=0,π = 0.

Therefore, the smoothness condition for M is satisfied for all times if and only if it is

satisfied at t = 0. From Eq. (42), we see that this is the case provided M∗ = 2 lnR0 and

S∗∗(0) = S∗∗(π). This concludes the proof of the last proposition.

Now we define C1 := (C+ + C−)/2 and C2 := (C+ − C−)/2 from Eqs. (34), and H

is defined in Eqs. (33). The system (31) and (32) implies the subsidiary system

∂tC1 − ∂xC2 = 0, ∂tC2 − ∂xC1 = H + cot t C2 + cot θ C1.

Since M is a solution of Eqs. (37), it follows that the quantities C1 and C2 vanish

identically. Then H must also be zero. We conclude that our solutions indeed solve the

full set of Einstein’s field equations.

All the so far constructed functions can now be lifted to smooth functions on S3

which are invariant along ∂ρ1 and ∂ρ2 at each t = 0. All these functions are smooth

functions on [−δ̃, δ̃] × S3 with respect to the coordinates (t′, θ′, ρ′1, ρ
′
2) for some small

δ̃ > 0. We have thus obtained smooth Gowdy symmetric generalized Taub-NUT

solutions in a (possibly small) time interval 0 < t ≤ δ. The global existence theorem

of Chruściel [10] can now be used to extend the spacetimes to the whole time t interval

(0, π) as smooth globally hyperbolic Gowdy solutions.

4. The linear problem and global-in-time properties

We have seen above that for given smooth asymptotic data at t = 0 (e.g. the values

of S∗∗ and ω∗∗) a smooth Gowdy-symmetric generalized Taub-NUT solution exists in a

vicinity of t = 0. Moreover, using Chruściel’s theorem (theorem 6.3 in [10]), we see that

this solution can even be extended smoothly to the whole time interval (0, π). However,

the surface t = π itself is expected to contain either singularities or Cauchy horizons.

On the other hand, Chruściel’s result also allows the case that the t = π-surface is

regular, but just the coordinates break down there. It is the purpose of the following

considerations to find out what happens at t = π. In particular, we construct explicitly
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the metric potentials at this boundary (as well as on the axes θ = 0, π) in terms of

the asymptotic data. For that purpose, we apply the so-called soliton methods, which

were used in [19] for the investigation of S2 × S1 Gowdy spacetimes10, to the present

S3-symmetric case.

In all of what follows we make the same hypotheses as in Theorem 3.1. These

assumptions are consistent with those listed in Section 3.2, and hence we consider

“smooth Gowdy symmetric generalized Taub-NUT solutions”.

4.1. Einstein’s field equations and the Ernst formulation

The first important step for the following considerations is the introduction of the

complex Ernst formulation of the Einstein equations which will be described in this

subsection.

Again we start from the metric

g = eM (−dt2 + dθ2) +R0 sin t sin θ
[

eL(dρ1 +Qdρ2)
2 + e−Ldρ22

]

(43)

in the Killing basis {∂ρ1 , ∂ρ2}. Here, we express L in terms of a metric potential u via

eL =
sin t

sin θ
eu. (44)

In this way, we arrive at

g = eM (−dt2 + dθ2) +R0

[

sin2t eu(dρ1 +Qdρ2)
2 + sin2θ e−udρ22

]

. (45)

Note that u is related to the quantity S (defined in Sec. 3.3.2) via

u(t, θ) = S(t, θ)− ln(R0)− 2 ln sin t,

i.e. the singularity of S at t = 0 (S behaves as 2 ln t for t→ 0, see Prop. 3.2) is removed

by subtracting the term 2 ln sin t.

Now we reformulate the Einstein equations as equations for u, Q andM . We obtain

two second-order equations for the metric potentials u and Q,

− ∂2t u− cot t ∂tu+ ∂2θu+ cot θ ∂θu+ e2u
sin2t

sin2θ

[

(∂tQ)
2 − (∂θQ)

2
]

+ 2 = 0, (46)

− ∂2tQ− 3 cot t ∂tQ + ∂2θQ− cot θ ∂θQ− 2[(∂tu)(∂tQ)− (∂θu)(∂θQ)] = 0 (47)

and two first-order equations for M ,

(cos2t− cos2θ)∂tM =
1

2
e2u

sin3t

sin θ

[

cos t sin θ[(∂tQ)
2 + (∂θQ)

2]− 2 sin t cos θ(∂tQ)(∂θQ)
]

+
1

2
sin t sin θ

[

cos t sin θ[(∂tu)
2 + (∂θu)

2]− 2 sin t cos θ(∂tu)(∂θu)
]

− (2 cos2t cos2θ − cos2t− cos2θ) ∂tu

− 2 sin t cos t sin θ cos θ(∂θu+ tan θ), (48)

10The methods described [19] have also been applied for studying the interior region of axisymmetric

and stationary black holes with surrounding matter, see [2, 3, 18].
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(cos2t− cos2θ)∂θM = − 1

2
e2u

sin3t

sin θ

[

sin t cos θ[(∂tQ)
2 + (∂θQ)

2]− 2 cos t sin θ(∂tQ)(∂θQ)
]

− 1

2
sin t sin θ

[

sin t cos θ[(∂tu)
2 + (∂θu)

2]− 2 cos t sin θ(∂tu)(∂θu)
]

− 2 sin t cos t sin θ cos θ(∂tu− tan t)

− (2 cos2t cos2θ − cos2t− cos2θ) ∂θu. (49)

Since M does not appear in (46) and (47) and since we assume the genericity condition

of Chruściel, these equations may be solved in a first step. Afterwards, (48) and (49)

can be used to calculate M via a line integral. Note that the integrability condition

∂t∂θM = ∂θ∂tM of the system (48), (49) is satisfied as a consequence of (46), (47).

Hence, M does not depend on the path of integration.

It turns out that the two Einstein equations (46), (47) are equivalent to a single

complex equation, namely to the Ernst equation

f
(

−∂2t E − cot t ∂tE + ∂2θE + cot θ ∂θE
)

= −(∂tE)2 + (∂θE)2 (50)

for the complex Ernst potential E = f +ib. Here, the real part f of E is defined in terms

of the Killing vector ∂ρ2 by

f :=
1

R0
g(∂ρ2 , ∂ρ2) = Q2eu sin2t+ e−u sin2θ (51)

and the imaginary part b is given by

∂ta =
1

f 2
sin t sin θ ∂θb, ∂θa =

1

f 2
sin t sin θ ∂tb (52)

with

a :=
g(∂ρ1 , ∂ρ2)

g(∂ρ2 , ∂ρ2)
=
Q

f
eu sin2 t. (53)

Note that for smooth functions u andQ the Ernst potential E is also smooth: For the

real part f , smoothness is clear from definition (51). In the case of the imaginary part b,

it can be shown by solving the two equations in (52) for ∂tb and ∂θb and replacing a and

f via (53) and (51). The resulting expressions for ∂tb and ∂θb in terms of Q and u (and

their first order derivatives) turn out to be smooth functions, if we use the fact that Q

behaves as given in (17). Hence, integration will lead to a smooth function b. Therefore,

we can conclude from the previous local existence results and Chruściel’s global existence

theorem that for any given set of asymptotic data (as described in Theorem 3.1) the

corresponding Ernst potential E is a smooth complex function on (−T, π)×S2 for some

T > 0. In the following we investigate under which conditions E can be extended

smoothly to the boundary t = π and beyond. Note that our assumptions imply that

f > 0 holds in the entire Gowdy square with the exception of the points A and B and

with the possible exception of the future boundary Hf (see Fig. 1) which is important

since we will divide by f in some of the following formulae.

Once we have obtained an Ernst potential E as a solution to the Ernst equation

(50), we can calculate the corresponding metric potentials from it. It turns out that

the integrability condition ∂t∂θa = ∂θ∂ta of (52) is satisfied as a consequence of the
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Figure 1. We integrate the LP along the boundaries of the Gowdy square (dashed

path) in order to investigate for which asymptotic data the solution can be regularly

extended up to the future boundary Hf (t = π).

Ernst equation. Therefore, a may be calculated via line integration from E . The metric

potentials u and Q can then be obtained from a and f . With (51) and (53) we find

eu =
fa2

sin2t
+

sin2θ

f
, Q =

f 2a

f 2a2 + sin2t sin2θ
. (54)

Finally, M may be calculated using (48) and (49), as mentioned earlier.

As an example, we give the Ernst potential for the Taub solution:

f =
2l

X
sin2t cos2θ +

X

2l
sin2θ, (55)

b =
1

X

[

cos t(cos2t− 3)
√
m2 + l2 − 2m

]

cos2θ + cos t (56)

with X := (1 + cos2t)
√
m2 + l2 + 2m cos t. (Here we have set an arbitrary additive

integration constant in b to zero.)

4.2. The linear problem

Interestingly, the Ernst equation (50) belongs to a remarkable class of nonlinear partial

differential equations for which an associated linear problem (LP) exists which is

equivalent to the nonlinear equation via its integrability condition. For applications

of this LP in the context of axisymmetric and stationary spacetimes we refer the reader

to, e.g., [28, 30]. In the Gowdy setting, we use the LP in the form [25, 26], which reads
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in our coordinates11 as

∂xΦ =

[(

Bx 0

0 Ax

)

+ λ

(

0 Bx

Ax 0

)]

Φ,

∂yΦ =

[(

By 0

0 Ay

)

+
1

λ

(

0 By

Ay 0

)]

Φ,

(57)

where the pseudopotential Φ = Φ(x, y,K) is a 2×2 matrix depending on the coordinates

x = cos(t− θ), y = cos(t + θ) (58)

as well as on the spectral parameter K ∈ C. The remaining ingredients of the LP are

the function λ,

λ(x, y,K) :=

√

K − y

K − x
, (59)

and the matrix elements Ax, Ay, Bx and By, defined in terms of the Ernst potential as

Ai =
∂iE
2f

, Bi =
∂iĒ
2f

, i = x, y. (60)

Due to the two possible signs of the square root in (59), λ : C → C, K 7→ λ

describes, for fixed values x, y, a mapping from a two-sheeted Riemann surface (K-

plane) onto the complex λ-plane. The two K-sheets are connected at the branch points

K1 = x (λ = ∞), K2 = y (λ = 0). (61)

In general, the pseudopotential Φ will take on different values on the two K-sheets.

Only at the branch points it has to be unique, since both Riemannian sheets coincide

there. We will see below that this observation plays an important role for the calculation

of the Ernst potential from the solution of the LP.

As already mentioned, the integrability condition ∂x∂yΦ = ∂y∂xΦ of (57) is

equivalent to the Ernst equation (50). Hence, the Ernst equation is a consequence

of the LP and, on the other hand, for a given potential E as a solution to the Ernst

equation, the matrix Φ does not depend on the path of integration.

Finally, we note that for any solution Φ to the LP (57), the product ΦC(K), where

C(K) is an arbitrary 2× 2 matrix, is also a solution (corresponding to the same Ernst

potential). As shown by Neugebauer [28], it is always possible to choose C(K) in such

11The formal relation between our coordinates (describing Gowdy spacetimes with two spacelike Killing

vectors) and the Weyl-Lewis-Papapetrou coordinates (ρ, ζ, ϕ, t̃ ) as used by Neugebauer (describing

axisymmetric and stationary spacetimes with one spacelike and one timelike Killing field) is given by

ρ = iR0 sin t sin θ, ζ = R0 cos t cos θ, ϕ = ρ1, t̃ = ρ2.



Smooth Gowdy symmetric generalized Taub-NUT solutions 24

a way that the transformed pseudopotential takes the form

Φ>(x, y,K) =

(

ψ>
1 (x, y,K) ψ<

1 (x, y,K)

ψ>
2 (x, y,K) −ψ<

2 (x, y,K)

)

,

Φ<(x, y,K) =

(

ψ<
1 (x, y,K) ψ>

1 (x, y,K)

ψ<
2 (x, y,K) −ψ>

2 (x, y,K)

)

=

(

1 0

0 −1

)

Φ>(x, y,K)

(

0 1

1 0

)

,

(62)

where the superscripts “>” or “<” indicate whether the functions are evaluated on the

“upper” (λ = 1 for K = ∞) or “lower” (λ = −1 for K = ∞) K-sheet. Hence, Φ is

completely determined by the values of two functions ψ1 and ψ2 on both K-sheets. In

all of what follows we assume that we have already achieved this form of Φ.

4.3. Solution of the linear problem

4.3.1. Coordinate transformation. In the following we intend to integrate the LP along

the boundaries of the Gowdy square. For that purpose, it turns out to be useful to study

the situation not only in the coordinate system Σ, corresponding to the Killing basis

{∂ρ1 , ∂ρ2}, but also in a coordinate frame Σ̃,

Σ̃ : t̃ = t, θ̃ = θ, ρ̃1 = ρ1 + qρ2, ρ̃2 = ρ2 (63)

with q = constant. According to (18)-(20) and (44), the transformed metric potentials

are

R̃0 = R0, ũ = u, Q̃ = Q− q, (64)

i.e. only Q is changed by subtracting a constant. In particular, we will choose the two

systems Σ̃ with q = 1 or q = −1, in which Q̃|A1
= 0 or Q̃|A2

= 0 holds, respectively.

Since the coordinate transformation (63) is merely a change of the Killing basis,

the Ernst equation (50) retains its form in Σ̃. This implies the existence of a LP (57)

for a pseudopotential Φ̃ in this frame. As shown by Neugebauer [27, 28], the matrices

Φ̃ and Φ are connected by the transformation

Φ̃ =

[(

c− 0

0 c+

)

+ i
q

f
(K − x)

(

1 λ

−λ −1

)]

Φ (65)

with

c± := 1− q

(

a± i

f
sin t sin θ

)

, (66)

where all quantities on the right hand side of Eq. (65) belong to the original frame Σ.

As we will see, this transformation becomes particularly simple at the boundaries of the

Gowdy square for our choices q = ±1.
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4.3.2. The LP on Hp, A1 and A2. From our previous discussions, namely from the

local investigation of the singular initial value problem for the Einstein equations with

Fuchsian methods (see Sec. 3.3) and from Chruściel’s global existence theorem, we

know that for any smooth set of asymptotic data on Hp a corresponding smooth Gowdy

symmetric generalized Taub-NUT solutions exists. Moreover, this solution is smooth

both on the axes of symmetry A1, A2 and in the interior of the Gowdy square. The goal

of this subsection is to find explicit expressions for the values of the solution on A1 and

A2, which are determined by the data on Hp. Afterwards we may study the behavior

as t→ π and investigate whether a continuation of the solution to Hf is possible.

Along the entire integration path, we have x = y and therefore λ = ±1, cf. (59).

However, it suffices to study the case λ = 1 alone, since the solution on the Riemannian

sheet with λ = −1 can easily be obtained from the solution with λ = 1 using (62).

For x = y and λ = 1, the LP (57) reduces to the ODE

∂xΦ =
1

2f

(

∂xĒ ∂xĒ
∂xE ∂xE

)

Φ (67)

with the general solution12

Φ = EC(K), E :=

(

Ē 1

E −1

)

(68)

in terms of the Ernst potential on the boundary, where the 2 × 2 matrix C is a K-

dependent “integration constant”. The solutions on all parts of the integration path

have the form (68), but with different integration constants:

t = 0 : Φ = EC, C =

(

C1 C3

C2 C4

)

, (69)

θ = 0 : Φ = ED, D =

(

D1 D3

D2 D4

)

, (70)

θ = π : Φ = ED̃, D̃ =

(

D̃1 D̃3

D̃2 D̃4

)

. (71)

A further simplification can be achieved by normalizing Φ at t = 0 via

t = 0 : ψ<
1 = ψ<

2 = ψ(K), (72)

where ψ(K) is an arbitrary gauge function (which will later be specified in such a way

that the LP has a regular solution, see Eq. (83) below). This is possible since the form

(62) of Φ is invariant under the transformation [30]

Φ → Φ ·
(

α(K) β(K)

β(K) α(K)

)

. (73)

12By plugging the solution (68) into (67), we see that the matrix on the right hand side of (67) is

proportional to f , i.e. the factor 1/f is cancelled and the solution extends smoothly over points with

f = 0. However, it follows from (51) that f does not vanish on Hp, A1, A2 with the exception of the

corners A, B of the Gowdy square (as well as C and D, provided Q2eu is bounded for t → π).
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The two degrees of freedom α, β can be used to achieve the two conditions in (72). As

a consequence, we obtain

C3 = 0, C4 = ψ (74)

in this gauge.

From (69)-(71) we can now calculate the solution of the LP in the frame Σ̃ (cf.

(63)) using the transformation formula (65). It follows from (53) that a takes on the

boundary values13

Hp : a = 0, A1 : a =
1

Q
= 1, A2 : a =

1

Q
= −1. (75)

Plugging this into (65), we obtain for λ = 1

t = 0 : Φ̃ =

(

Ē ± 2i(K − x) 1

E ∓ 2i(K − x) −1

)

C in Σ̃ with q = ±1, (76)

θ = 0 : Φ̃ = +2i(K − x)

(

D1 D3

−D1 −D3

)

in Σ̃ with q = 1, (77)

θ = π : Φ̃ = −2i(K − x)

(

D̃1 D̃3

−D̃1 −D̃3

)

in Σ̃ with q = −1. (78)

As we will see below, C1(K) and C2(K) are determined completely by the data at

t = 0. Now we intend to express the components of the matricesD and D̃ in terms of C1,

C2. For that purpose, we use that Φ has to be continuous at the corners A and B of the

Gowdy square (see Fig. 1). This condition leads to an algebraic system of 4 equations

which, however, is not sufficient to calculate the 8 unknowns D1, . . . , D4, D̃1, . . . , D̃4.

This is the reason for introducing the coordinate frame Σ̃. From the requirement that

also Φ̃ (in Σ̃ with q = 1) is continuous at A and Φ̃ (in Σ̃ with q = −1) is continuous at

B we find another 4 algebraic equations14. In this way we obtain an algebraic system of

8 equations for the 8 unknowns with the following solution for the matrices D(K) and

D̃(K) in terms of C(K):

D1 = C1 −
bAC1 + iC2

2(K − 1)
, D2 = C2 −

ibA(bAC1 + iC2)

2(K − 1)
,

D3 = − iψ

2(K − 1)
, D4 = ψ

(

1 +
bA

2(K − 1)

)

,

D̃1 = C1 +
bBC1 + iC2

2(K + 1)
, D̃2 = C2 +

ibB(bBC1 + iC2)

2(K + 1)
,

13Note that a is automatically discontinuous at the points A, B, C, D as a consequence of the definition

(53). In contrast, a is a smooth function in the remaining part of the Gowdy square.
14The reason why just the usage of a different coordinate system can lead to independent algebraic

equations is the following. The boundary values of the quantity a enter the transformation law (65).

Therefore, the additional algebraic equations found in Σ̃ ensure that a indeed takes on the boundary

values (75) (and, as a consequence, also Q takes on the correct boundary values Q = 1 on A1 and

Q = −1 on A2). From (52) alone it would only follow that a is constant on the boundaries without

specification of these constants.
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D̃3 =
iψ

2(K + 1)
, D̃4 = ψ

(

1− bB
2(K + 1)

)

,

In the following subsection we utilize these results in order to determine the Ernst

potential and the metric potentials on A1 and A2 in terms of the data on Hp.

4.3.3. Ernst potential on A1 and A2. From the solution of the LP obtained in the

previous subsection we may, as a first step, calculate the Ernst potential on A1 and A2

in terms of the initial potential on Hp. To this end, we start by expressing C1 and C2

in terms of E on Hp.

As mentioned in Sec. 4.2, the mapping K 7→ λ in (59) defines a two-sheeted

Riemannian K-surface. At the branch points K1 and K2, where both sheets are

connected, any function of K has to be unique, i.e. the values on the upper and lower

sheet have to be the same. For t-θ-values on the boundaries of the Gowdy square, we

have confluent branch points, i.e. K1 = K2 = x. The uniqueness of Φ at K = K1 = K2

leads to the conditions (see (62))

Hp,A1,A2 : ψ>
1 = ψ<

1 and ψ>
2 = ψ<

2 for K = x. (79)

In particular, on Hp we obtain the two equations

ĒpC1 + C2 = ψ, EpC1 − C2 = ψ (80)

with the solution

C1(x) =
2ψ(x)

Ep(x) + Ēp(x)
≡ ψ(x)

fp(x)
, C2(x) =

Ep(x)− Ēp(x)
Ep(x) + Ēp(x)

ψ ≡ ibp(x)

fp(x)
ψ(x), (81)

where

Ep(x) = fp(x) + ibp(x) = E(t = 0, θ = arccos x). (82)

Now we can suggest a possible choice for the gauge function ψ, which was introduced

in (72). If we set

ψ(K) = (K2 − 1)2, (83)

then the solution Φ (as well as Φ̃) is regular, because ψ compensates for the poles that

the matrices D and D̃ would otherwise have at K = ±1. Note that C1 and C2 are also

regular because fp(x) = e−u(1 − x2), cf. (51). But of course, as we will see below, the

Ernst potential on A1, A2 and Hf is independent of this gauge choice.

With these expressions for C1 and C2 together with the solution of the LP from

the previous section, we can also evaluate the condition (79) on A1 and A2 to obtain

explicit formulae for the Ernst potential there. The result that we find independently

of the particular choice for the gauge function ψ is

A1 : E1(x) := E(t = arccos x, θ = 0) =
i[bA − 2(1− x)]Ep(x) + b2A
Ep(x)− i[bA + 2(1− x)]

, (84)

A2 : E2(x) := E(t = arccos(−x), θ = π) =
i[bB − 2(1 + x)]Ep(x) + b2B
Ep(x)− i[bB + 2(1 + x)]

. (85)
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From the latter equations we can conclude that E1 and E2 are smooth functions of

x. To see this, recall that we assume smooth data at t = 0. For smooth initial functions

u(0, θ) and Q(0, θ), the initial Ernst potential Ep will also be smooth, cf. Eqs. (86), (87)

below. As a consequence, the numerators and denominators of the fractions in (84),

(85) are also smooth and an irregularity in the Ernst potentials could only occur if the

denominators became zero for some x ∈ [−1, 1]. However, it follows from (86), (87)

below together with Eq. (17) that the only zeros are at x = 1 or at x = −1. Moreover,

these equations show that the numerators have zeros of at least the same multiplicity at

these x-values. Hence, the zeros in the numerators and denominators cancel each other

out and the fractions are smooth functions of x for all x ∈ [−1, 1]. The only exceptional

cases occur for asymptotic data with bB = bA + 4 or bB = bA − 4. In the first case, E1
diverges at point C and in the second case E2 diverges at D, cf. Fig. 1.

4.3.4. Metric potentials on A1 and A2. In the previous subsection we have provided

explicit formulae for the Ernst potential on the axes A1 and A2 in terms of the initial

potential on Hp. Now we will see how the metric potentials u, Q andM can be obtained

from the Ernst potential on these boundaries.

We assume that asymptotic data u(0, θ) and Q(0, θ) (or, equivalently, S∗∗(θ) and

ω∗∗(θ)) and a constant R0 > 0 are given. From these data, we may calculate the initial

Ernst potential Ep = fp + ibp. The real part can be obtained from (51),

fp(θ) = e−u(0,θ) sin2θ, (86)

and the imaginary part can be calculated by integrating the first equation in (52) with

respect to θ, using (53). We obtain

bp(θ) = bA + 2

∫ θ

0

Q(0, θ′) sin θ′ dθ′, (87)

where bA = b(0, 0) is an arbitrary integration constant.

From Ep we may calculate E1 and E2 via (84), (85). Afterwards, we can use these

results to determine the potentials u, Q and M on A1 and A2. Using again (51)-(53)

together with (13), (17) and (44), we find

A1 : eu(t,0) =
f1(t)

sin2t
, eM(t,0) =

R0 sin
2t

f1(t)
, Q(t, 0) = 1, (88)

A2 : eu(t,π) =
f2(t)

sin2t
, eM(t,0) =

R0 sin
2t

f2(t)
, Q(t, π) = −1. (89)

4.4. Situation on Hf

So far we have seen that we can prescribe arbitrary smooth data at t = 0 and will

always find smooth potentials for t < π as solution to the field equations. In particular,

we have derived explicit formulae for the Ernst potential and the metric potentials on

the axes A1 and A2. It remains to study under which conditions the solution can even

be extended smoothly to the future boundary Hf . In order to answer this question, we
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tentatively solve the LP on Hf and investigate whether this solution can be attached

continuously to the solutions on A1 and A2.

The LP on Hf reduces to the same ODE as on the other boundaries of the Gowdy

square, namely to Eq. (67). We write the solution in Σ as

t = π : Φ = EC̃, C̃ =

(

C̃1 C̃3

C̃2 C̃4

)

. (90)

In order to obtain the solution in the coordinate frame Σ̃ too, we need to calculate the

quantity a on Hf so we can apply the transformation formula (65). It follows from (53)

that, if the metric potentials u and Q remain bounded for t → π, a = 0 then holds on

Hf (provided f does not vanish on Hf with exception of the boundary points C, D).

However, it is not yet clear how u and Q behave for t → π. Therefore, so far we can

only say that a is constant on Hf , cf. (52),

t = π : a = a0 = constant. (91)

Using (65), we find therefore in Σ̃

t = π : Φ̃ =

(

(1∓ a0)Ē ± 2i(K − x) 1∓ a0
(1∓ a0)E ∓ 2i(K − x) −(1 ∓ a0)

)

C̃ in Σ̃ with q = ±1, (92)

Now we can investigate whether Φ in (90) and Φ̃ in (92) can be attached

continuously to the corresponding solutions on A1 and A2. This question is equivalent

to the solvability of an algebraic system of 8 equations. It turns out that this system

can be solved if and only if the initial parameters bA and bB satisfy

bB 6= bA + 4, and bB 6= bA − 4. (93)

(It was already discussed at the end of Sec. 4.3.3 that the Ernst potential diverges at C

or D if one of these conditions is violated.) The algebraic equations then fix the values

of bC , bD and a0 in terms of the initial quantities bA and bB ,

bC =
4bB + bA(bA − bB)

bA − bB + 4
(94)

bD =
−4bA + bB(bA − bB)

bA − bB − 4
(95)

a0 =
8(bB − bA)

16 + (bB − bA)2
. (96)

With these results we can calculate the Ernst potential on Hf . With the same

considerations as in Sec. 4.3.3 we obtain

Ef := E(t = π, θ = arccos(−x)) = a1(x)Ep(x) + a2(x)

b1(x)Ep(x) + b2(x)
, (97)

where

a1 = − i
[(

(bA − bB)
2 + 16

)

x2 − 2(bA − bB)(bA + bB − 4)x

+ (bA − bB)
2 + 8(bA + bB − 2)

]

(98)

a2 = 4(bA − bB)(bAbB − 2bA − 2bB)x− 8(b2A + b2B) (99)
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b1 = 4 [(bA − bB)x− 4] (100)

b2 = − i
[(

(bA − bB)
2 + 16

)

x2 + 2(bA − bB)(bA + bB − 4)x

+ (bA − bB)
2 − 8(bA + bB + 2)

]

. (101)

Similarly to the discussion in Sec. 4.3.3 we find that Ef is a smooth function on the

entire boundary Hf (with our assumption (93)).

As already mentioned, the auxiliary quantity a would satisfy the boundary

condition a = 0 on Hf if the metric potentials u and Q were bounded for t → π.

From (96) we can read off that this is only the case if the initial parameters bA and bB
satisfy the condition

bA = bB , (102)

which can also be expressed in terms of the metric potential Q,
∫ π

0

Q(0, θ) sin θ dθ = 0, (103)

cf. (87). In the following subsections, we study separately the cases bA = bB and

bA 6= bB.

4.4.1. Initial data with bA = bB. Such data lead to a solution of the field equations

with a = 0 on Hf . As a consequence, the metric potentials u and Q are regular at Hf .

The formula (97) for Ef simplifies in this case to

Hf : Ef(x) =
i(bA − 1 + x2)Ep(x) + b2A
Ep(x)− i(bA + 1− x2)

(104)

and in terms of this Ernst potential, the metric potentials are given by

Hf : eu(π,θ) =
sin2θ

ff(θ)
, eM(π,θ) = R0e

2uA
sin2θ

ff(θ)
, Q(π, θ) = −∂θbf(θ)

2 sin θ
, (105)

where ff = ℜEf , bf = ℑEf . Here we have used that M − u is constant on Hf as a

discussion of Eq. (49) in the limit t→ π reveals.

It follows from these results that Hf is a regular Cauchy horizon, generated by the

Killing vector ∂ρ1 (just like the past horizon Hp). To see this, we can use a modification

of the transformation (29) to regular coordinates in a vicinity of this boundary,

π − t = arcsin
√
t′, θ = θ′, ρ1 = ρ1

′ +
κ

R0

ln t′, ρ2 = ρ2
′. (106)

As a consequence of (105), the constant κ can always be chosen such that the metric

is regular in terms of t′, θ′, ρ′1, ρ
′
2. Moreover, (∂ρ1 , ∂ρ1) = R0e

u sin2t tends to zero for

t→ π, i.e. Hf is indeed a regular null hypersurface and therefore a Cauchy horizon.

4.4.2. Initial data with bA 6= bB. Now we study the case bA 6= bB and assume that in

addition bB 6= bA ± 4 holds. In this case, the auxiliary quantity a tends to a0 6= 0 as

given in (96) for t→ π. As a consequence of (53), we see that at least one of the metric

potentials Q and u cannot be bounded in this limit. Indeed, we can read off from (54)

that eu diverges as 1/ sin2t for t→ π for all θ ∈ (0, π).
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However, it turns out that this divergence is only a peculiarity of our special choice

of metric potentials. A better quantity for discussing regularity is the Ernst potential

E which is defined invariantly in terms of the Killing vectors. And indeed, the Ernst

potential also remains regular in the entire Gowdy square for bA 6= bB. Moreover, from

E one can calculate the Kretschmann scalar RijklR
ijkl on Hf and find that it remains

bounded — with the exception of the earlier discussed special cases bB = bA ± 4 which

we have excluded here. (For bB = bA + 4, the Kretschmann scalar on A1 behaves as

1/(π − t)12 for t → π, and it has the same behavior on A2 for bB = bA − 4, i.e. there

occur scalar curvature singularities at the points C or D.)

In order to obtain the metric potentials on Hf in terms of the Ernst potential and

the constant a0, we replace the potential u by a potential v in a neighborhood of Hf via

eu(t,θ) =
ev(t,θ)

sin2t
. (107)

Then we find

Hf : Q =
1

a0
, ev(π,θ) = a20ff(θ), eM(π,θ) = c

sin2θ

ff
, (108)

where the integration constant c in the expression for M can be determined from

continuous transition to the axes.

In the present case bA 6= bB , it turns out that Hf is a regular Cauchy horizon,

generated by the linear combination ∂ρ1 − a0∂ρ2 of the two Killing vectors. Regular

coordinates can be introduced via

π − t = arcsin
√
t′, ρ1 = ρ′1 +

κ1
R0

ln t′ ρ2 = ρ′2 +
κ2
R0

ln t′, (109)

where κ1 and κ2 are two constants that can always be chosen such that the resulting

metric potentials are regular.

Finally, we may look again at the singular cases bB = bA±4. As mentioned earlier,

the corresponding Ernst potential and the Kretschmann scalar on A1 (for bB = bA + 4)

or A2 (for bB = bA − 4) diverge in the limit t → π. Since we therefore cannot find a

solution of the LP on Hf that is continuously connected to the axes, it is not possible

to construct the Ernst potential on Hf in these two singular cases directly. However,

in order to study the situation on Hf in these cases too, we can consider a sequence

of solutions with bB 6= bA ± 4. Then, for each element of the sequence, the LP can be

solved along all four boundaries of the Gowdy square and the corresponding expression

for the Ernst potential Ef on Hf , constructed from this solution, is valid. It turns out

that the limit t→ π of Ef remains regular for 0 < θ < π, whereas Ef diverges as expected
at C or D. Hence we can conclude that only the boundary points C or D of Hf become

singular and the interior of Hf is still a regular null hypersurface.

5. Discussion

In this paper we have studied the class of smooth Gowdy symmetric generalized Taub-

NUT solutions as interesting examples of Gowdy spacetimes with spatial S3 topology.



Smooth Gowdy symmetric generalized Taub-NUT solutions 32

This class is characterized by a special behavior of the metric potentials in a vicinity

of the initial surface Hp (t = 0) which, in particular, implies that Hp is a smooth

(past) Cauchy horizon. Utilizing Fuchsian methods, we were able to show that for

smooth asymptotic data, describing the spacetime at Hp, there always exists a unique

smooth Gowdy symmetric generalized Taub-NUT spacetime as solution to the Einstein

equations for t ∈ (0, π). In a second step, we have investigated the behavior of these

solutions on the symmetry axes A1 (θ = 0) and A2 (θ = π). Using the complex Ernst

formulation of the field equations and its reformulation in terms of an equivalent linear

problem, we have constructed explicit formulae for the metric potentials on A1 and

A2 in terms of the data on Hp. Afterwards, it was possible to extend the solution to

the future boundary Hf (t = π) of the Gowdy square and to find explicit expressions

for the metric potentials there, too. It followed from these expressions, that we have to

distinguish between four types of asymptotic data, which are characterized by the values

bA and bB of the imaginary part b of the Ernst potential at the points A (t = θ = 0)

and B (t = 0, θ = π) and which lead to solutions with a completely different behavior

on Hf :

(i) bB = bA + 4:

In this case a scalar curvature singularity occurs at point C (t = π, θ = 0).

(ii) bB = bA − 4:

Here, a scalar curvature singularity occurs at point D (t = θ = π).

(iii) bB = bA:

The spacetime is regular in the entire Gowdy square. In particular, the Ernst

potential E and the metric potentials u, Q and M are smooth. Moreover, Hf is a

smooth Cauchy horizon, generated by the Killing vector ∂ρ1 .

(iv) bB 6= bA and bB 6= bB ± 4:

The spacetime is regular in the entire Gowdy square and the Ernst potential E is

smooth, however the metric potential u is not well adapted to describe this case

and blows up at Hf . However, there is no physical singularity at Hf . Instead, Hf

is a smooth Cauchy horizon, generated by the null vector ∂ρ1 − a0∂ρ2 .

This shows that — with exception of the two singular cases (i) and (ii) — smooth

Gowdy symmetric generalized Taub-NUT solutions (with a past Cauchy horizon at

t = 0) always develop a second Cauchy horizon at t = π. This future Cauchy horizon,

in the same way as the one in the past, is homeomorphic to S3 and its null generator has

closed integral curves. Hence our results can in particular be understood as a partial

resolution of a problem which remained open in [10]. Namely, at least in our class of

spacetimes, the union of the Gowdy square and its interior is isomorphic to the closure

of the MGHD of corresponding Cauchy data.

It is interesting to compare these results with the situation of spatial S2×S
1 topology

as investigated in [19]. For this case, it was shown that Gowdy spacetimes with a regular

past Cauchy horizon Hp develop a regular future horizon Hf if and only if a particular
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quantity J , which can be read-off from the asymptotic data15, does not vanish. In the

limit J → 0, Hp transforms into a scalar curvature singularity. Hence, the behavior is

similar to the S3 case: with exception of singular cases, spacetimes with a past Cauchy

horizon generically develop a future Cauchy horizon. However, the nature of the singular

cases is slightly different: In the S2 × S1 case, the curvature blows up along the entire

future boundary Hf , whereas we find only singularities at the isolated points C or D on

Hf for S
3 symmetry.

Do our assumptions rule out important cases? This is not clear and probably

difficult to answer. For example our assumptions do not allow solutions with past

Cauchy horizons ruled by non-closed generators. There is no reason why such solutions

should not exist. Another possibility excluded by our assumptions are solutions with a

non-compact or incomplete Cauchy horizon. Indeed such solutions can be constructed,

in the polarized case, by the techniques of Moncrief and Isenberg in [20].

Can our results be generalized to situations with less symmetry and eventually

maybe even to generic solutions with Cauchy horizons? We have employed two, in

principle, independent techniques for the two main steps of our discussion: the Fuchsian

method for the basic existence proof and the soliton method for the study of the global

properties of the solutions. As far as the Fuchsian method and the underlying singular

initial value problem and hence the existence and uniqueness of solutions with prescribed

“data” on a Cauchy horizon is concerned, we can say the following. In general, it

cannot be expected that such an “initial value problem” for equations of hyperbolic

type is well-posed. It seems at least necessary that the generator of the horizon, being

a null hypersurface, is a Killing field. This is the case here and also in the more

general U(1)-symmetric case discussed by Moncrief [24]. Therefore under Moncrief’s

assumptions, our Fuchsian technique should apply in the smooth U(1)-symmetric case.

The results in [23, 13] suggest that there must be a U(1)-symmetry in a neighborhood

of a Cauchy horizon in general vacuum spacetimes, at least if the horizon is compact

and the generator has closed integral curves. So, there is hope that a similar singular

initial value problem can be formulated under quite general assumptions and that the

existence and uniqueness proof based on Fuchsian methods goes through. We also want

to mention that most of the results here can easily be generalized to solutions with only

finitely many derivatives, cf. Proposition 3.2.

As far as the Ernst formulation and the associated linear problem are concerned

there is probably little hope of a generalization to situations with fewer symmetries.

The introduction of the complex Ernst potential relies essentially on the existence of

two Killing vectors, cf. (51), (53), and the linear problem makes use of the special

structure of the Ernst equation. However, it should be quite straightforward to apply

the methods to Gowdy symmetric spacetimes with additional electromagnetic fields.

In that case one has to study the coupled system of the Einstein-Maxwell equations,

15 In terms of the Ernst potential at Hp, J is defined as J = − 1
8Q2

p

(bA − bB − 4Qp), where Qp denotes

the constant value of the metric potential Q on Hp in the S
2 × S

1 case.
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for which, remarkably, a complex Ernst formulation and an associated linear problem

exist as well. The corresponding calculations would follow closely the investigation

of axisymmetric and stationary black hole spacetimes with electromagnetic fields as

presented in [18].
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Appendix A. Theory of second-order hyperbolic Fuchsian equations

Here is a quick summary of the theory of second-order hyperbolic Fuchsian equations

outlined in [6]; a more detailed presentation can be found in [7].

A second-order hyperbolic Fuchsian system is a set of partial differential equations

of the form

D2v + 2ADv +B v − t2K2∆v = f [v],

in which the function v : (0, δ]× U → Rn is the main unknown (defined for some δ > 0

and some spatial domain U), while the coefficients A = A(x), B = B(x), K = K(t, x)

are diagonal n× n matrix-valued maps and are smooth in x ∈ U and t in the half-open

interval (0, δ], and f = f [v](t, x) is an n-vector-valued map of the following form

f [v](t, x) := f
(

t, x, v(t, x), Dv(t, x), tK(t, x)∂xv(t, x)
)

.

Here, we can assume that K is the identity matrix and that U is S2; the condition

that U is a one-dimensional periodicity domain in the references above can easily be

generalized. Of particular convenience for this is that the equations are geometric wave

equations with spatial domain S2. We assume that the time variable t satisfies t > 0

and use the operator D := t∂t to write the equations. We denote the eigenvalues of

A and B by a(1), . . . , a(n) and b(1), . . . , b(n), respectively. When it is not necessary to

specify the superscripts, we just write a, b to denote any eigenvalues of A,B. With this

convention, we introduce:

λ1 := a +
√
a2 − b, λ2 := a−

√
a2 − b.

It turns out that these coefficients, which might be complex in general, are important

to describe the expected behavior at t = 0 of general solutions.

Consider a second-order hyperbolic Fuchsian system with coefficients a, b, λ1, λ2. To

simplify the presentation, we restrict attention to scalar equations (n = 1) and shortly

comment on the general case in the course of the discussion. Fix some integers l, m ≥ 0
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and constants α, δ > 0; indeed α can also be a smooth positive function on U . For

w ∈ C l((0, δ], Hm(U)), we define the norm

‖w‖δ,α,l,m := sup
0<t≤δ

(

l
∑

p=0

m
∑

q=0

∫

U

t2(ℜλ2(x)−α) |∂qxDpw(t, x)|2 dx
)1/2

,

and denote by Xδ,α,l,m the space of all such functions with finite norm ‖w‖δ,α,l,m < ∞.

Throughout, Hm(U) denotes the standard Sobolev space. To cover a system of n ≥ 1

second-order Fuchsian equations, the norm above is defined by summing over all vector

components with different exponents used for different components. Recall that each

equation in the system will have, in general, a different root function λ2. We allow that

α = (α(1), . . . , α(n)) is a vector of different positive constants for each equation. The

constant δ, however, is assumed to be common for all equations in the system. The

motivation for including the quantity λ2 into the definition of the norms is the standard

singular initial value problem in [6]. Throughout it is assumed that ℜλ2 is continuous

and it is then easy to check that (Xδ,α,l,m, ‖ · ‖δ,α,l,m) is a Banach space. For each non-

negative integer l and real numbers δ, α > 0, we define Xδ,α,l :=
⋂l

p=0Xδ,α,p,l−p, and

introduce the norm

‖f‖δ,α,l :=
( l
∑

p=0

‖f‖2δ,α,p,l−p

)1/2

, f ∈ Xδ,α,l.

It turns out that we must also use spaces (X̃δ,α,l, ‖ · ‖∼δ,α,l). These are defined as before,

but in the norm ‖f‖∼δ,α,l of some function f , the highest spatial derivative term ∂lxf

is weighted with the additional factor t (in our case here). It is easy to see under

the earlier conditions that also (X̃δ,α,l, ‖ · ‖∼δ,α,l) are Banach spaces. Let us also define

Xδ,α,∞ :=
⋂∞

l=0Xδ,α,l.

Let us choose a function u on (0, δ] × U (whose regularity is fixed in the main

existence theorem). The singular initial value problem associated with u is then defined

as follows. We ask whether there exists a solution v of the given second-order hyperbolic

Fuchsian system so that the remainder

w(t, x) := v(t, x)− u(t, x),

can be interpreted as “higher order” in t at t = 0, where u is interpreted as the leading-

order term. By this we mean that w is an element in Xδ,α,l for some (sufficiently

large) α > 0. Often u will be parametrized by certain free functions which we call

asymptotic data. An example of a singular initial value problem with a leading-order

term parametrized by asymptotic data is Proposition 3.2. In that case λ1 is zero for

both equations and λ2 is zero for the first equation and −4 for the second one.

The existence and uniqueness result of the singular initial value problem is

Proposition 3.5 of [6]. The existence proof is based on a new approximation scheme

which can also be implemented numerically. See in particular [8] for more details.
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