A new β -naphthalenecarboxylic acid biglycoside from Chirita longgangensis var. hongyao

WANG Man-yuan¹, GONG Mu-xin¹, ZHANG Dong², YANG Lan^{2*}

School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China;
 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China)

Abstract: To investigate the chemical constituents in the stems of *Chirita longgangensis* var. *hongyao*, methanol extract of the stems was subjected to column chromatography with various chromatographic techniques. One new β -naphthalenecarboxylic acid biglycoside, 1, 4-dihydroxy-2-naphthalenecarboxylic acid methyl ester-4-*O*- α -*L*-rhamnopyranosyl-(1 \rightarrow 6)- β -*D*-glucopyranoside (1) was isolated, along with two known compounds: isotaxiresinol 4-*O*-methyl ether (2) and (*R*)-7-hydroxy- α -dunnione (3). Compound 2 was first obtained from *Chirita* genus and compound 3 was isolated from this plant for the first time. All structures were elucidated on the basis of spectral and chemical evidence, and the NMR spectroscopic data of compound 2 was published for the first time.

Key words: Chirita longgangensis var. hongyao; Gesneriaceae; β-naphthalenecarboxylic acid biglycosideCLC number: R284Document code: AArticle ID: 0513-4870 (2011) 02-0179-04

红药中一个新的β-萘甲酸双糖苷类化合物

王满元¹,龚慕辛¹,张东²,杨 岚^{2*}

(1. 首都医科大学中医药学院, 北京 100069; 2. 中国中医科学院中药研究所, 北京 100700)

摘要:为了研究红药 (*Chirita longgangensis* var. *hongyao*) 茎的化学成分,运用多种色谱方法进行分离纯 化,从其甲醇提取物中分离得到 3 个化合物,并根据理化性质和波谱数据鉴定其结构分别为 1, 4-dihydroxy-2naphthalenecarboxylic acid methyl ester-4-*O*-*α*-*L*-rhamnopyranosyl-(1→6)-*β*-*D*-glucopyranoside (1), isotaxiresinol 4-*O*-methyl ether (2) 和 (*R*)-7-hydroxy-*α*-dunnione (3)。其中,化合物 1 为新的 *β*-萘甲酸双糖苷化合物,化合物 2 为首次从该属植物中分离得到,且首次提供了化合物 2 的核磁波谱数据,化合物 3 为首次从该植物中分离得到。 关键词:红药:苦苣苔科:*β*-萘甲酸双糖苷

Chirita longgangensis W. T. Wang var. *hongyao* S. Z. Huang (Gesneriaceae) is distributed in Guangxi Province, China. The stems of *C. longgangensis* var. *hongyao* have long been used as a folk medicine in China for the treatment of arthritis, anemia and fracture^[1, 2]. Previous chemical investigation has resulted in five

phenylethanoid glycosides^[3], two anthraquinones and five other compounds from this plant^[4]. The current study was carried out to search for bioactive metabolites from *C. longgangensis* var. *hongyao*, leading to the isolation of a new compound, β -naphthalenecarboxylic acid biglycoside, 1,4-dihydroxy-2-naphthalenecarboxylic acid methyl ester-4-*O*- α -*L*-rhamnopyranosyl-(1 \rightarrow 6)- β -*D*-glucopyranoside (1) and two known compounds, isotaxiresinol 4-*O*-methyl ether (2) and (*R*)-7-hydroxy- α -dunnione (3). Compound 2 was first obtained from *Chirita* genus and compound 3 was isolated from this

Received 2010-09-12.

Project supported by the Beijing Municipal Project for Developing Advanced Human Resources (No.20061D0501800256). *Corresponding author Tel / Fax: 86-10-64014347,

E-mail: ylan_66@yahoo.com.cn

plant for the first time. The chemical structures of compounds 1-3 are shown in Figure 1. In this paper, we report the isolation and structure elucidation of these compounds.

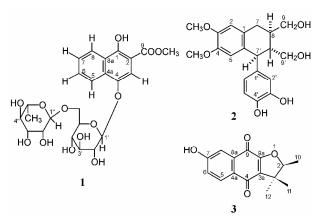


Figure 1 The chemical structures of compounds 1, 2 and 3

Results and discussion

Compound 1 was obtained as white amorphous powder that analyzed for the molecular formula $C_{24}H_{30}O_{13}$ by HR-ESI-MS at m/z 525.161 0 [M-H]⁻. The IR (KBr) spectrum of 1 showed broad absorption for multiple hydroxyl groups (3 399 cm^{-1}), an ester carbonyl (1 695 cm⁻¹), and aromatic rings (1 635 and 1 603 cm⁻¹) functionalities. The ¹H NMR spectrum of 1 (Table 1) showed an aromatic singlet at δ 7.38, a 1, 2-disubstitued aromatic ring at δ 8.36 (1H, d, J = 8.0Hz, H-5), 7.72 (1H, m, H-6), 7.64 (1H, m, H-7), 8.29 (1H, d, J = 8.0 Hz, H-8), an O-methyl group at δ 3.98 (3H, s, OCH₃-9), and a phenolic OH proton at δ 11.7 (1H, s, OH-1). Acid hydrolysis of 1 afforded glucose and rhamnose, which were identified by TLC comparison with authentic samples. One doublet and a broaden singlet due to anomeric protons at δ 4.82 (1H, d, J = 7.5 Hz, H-1') and 4.54 (1H, br s, H-1"), together with a methyl doublet at δ 1.07 (3H, d, J = 6.5 Hz, H-6"), as well as partially overlapped signals attributable to oxymethylenes and oxymethines between at δ 3.14 and 3.90, indicated that there were a β -glucopyranosyl and an α -rhamnopyranosyl groups. The configuration of the glucopyranosyl and rhamnopyranosyl was assigned as β -D- and α -L- on the basis of the coupling constant of the anomeric proton and of the abundance of the β -D-glucopyranosyl and α -L-rhamnopyranosyl units in natural products. Moreover, the ¹³C NMR data of the sugar unit are consistent with those in literature^[5]. The ${}^{13}C$ NMR spectrum of **1** (Table 1) showed carbon

signals corresponding to the above structural units and one conjugated ester carbonyl at δ 170.5. 2D NMR experiments were carried out to construct the structure Analyses of the ¹H-¹H COSY and HMQC of **1**. spectra of 1 led to unambiguous assignment of proton and corresponding carbon signals in the NMR spectra (Table 1). HMBC correlations of H-8 with C-1, C-8a, C-7, and C-6, H-5 with C-4, C-4a, C-6 and C-7, and H-3 with C-4, C-4a, C-2, and C-1, in combination with chemical shifts of these protons and carbons, provided evidence for a 1, 2, 4-trisubstituted naphthalene moiety. The downfield chemical shift of phenolic OH proton at δ 11.7 suggested **1** possessed one intramolecular hydrogen bond structure skeleton. HMBC correlations of the carbonyl (C-9) with H-3 and O-methyl protons, and the phenolic OH proton with C-1, C-2 and C-8a, clearly located a hydroxyl and a methyl ester at C-1 and C-2, respectively. The signals assigned to the aglycone moiety were in good agreement with the published data in the literature^[6]. In addition, HMBC correlation between the anomeric proton of rhamnopyranosyl (H-1") and C-6 of the glucopyranosyl indicated a rhamnopyranosyl $(1\rightarrow 6)$ glucopyranosyl linkage. Finally, the sugar chain was positioned at C-4 on the basis of HMBC correlations of the anomeric proton of glucopyranosyl (H-1') with C-4. Therefore, the structure of 1 was determined as 1, 4-dihydroxy-2-naphthalenecarboxylic acid methyl ester-4-O-a-Lrhamnopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside. The key HMBC and ¹H-¹H COSY correlations of compound 1 are shown in Figure 2.

Table 1 ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data for compound **1** (DMSO- d_6 , *J* in Hz). ^aSignal patterns were unclear due to overlapping

No.	$\delta_{ m H}$	$\delta_{\rm C}$	No.	$\delta_{ m H}$	δ_{C}
1		155.2	Glc-1'	4.82 (d, 7.5)	102.3
2		104.5	2'	3.40 ^a	73.4
3	7.38 (s)	107.7	3'	3.31 ^a	76.2
4		145.3	4'	3.14 ^a	70.0
4a		129.9	5'	3.48 ^a	75.7
5	8.36 (d, 8.0)	122.4	6'	3.42, 3.88 (d, 7.5)	66.6
6	7.72 (m)	129.4	Rha-1"	4.54 (br s)	100.6
7	7.64 (m)	126.7	2"	3.60 (m)	70.3
8	8.29 (d, 8.0)	123.1	3"	3.43 ^a	70.7
8a		124.6	4''	3.16 ^a	72.0
9		170.5	5"	3.40 ^a	68.2
9-OCH ₃	3.98 (s)	52.8	6''	1.07 (d, 6.5)	17.8
1-OH	11.7 (s)				

Figure 2 The key HMBC and ¹H-¹H COSY correlations of compound 1

Compound **2** was firstly reported as a new lignan by Erdtman H. and Tsuno K. in $1969^{[7]}$. No NMR spectroscopic data for this compound had been reported, although some data of its structure-similar compounds have been described in the later literature^[8-10]. Therefore, the NMR data of **2** assigned by interpretation of its 2D NMR spectra are included in this report.

Experimental

1 Generals

Optical rotations were measured on a JASCO P-1020 polarimeter. UV and IR spectra were recorded on Shimadzu UV-2500PC and Shimadzu IR Prestige-21 spectrophotometers, respectively. ¹H and ¹³C NMR spectra were obtained on a Bruker AM-500 spectrometer. Proton detected heteronuclear correlations were measured using HMQC and HMBC. HR-ESI-MS analysis was carried out on a Bruker microTOF-Q instrument. Column chromatography was performed using silica gel (60–120 and 300–400 mesh); TLC: precoated silica gel plates 60 GF₂₅₄ or RP-C₁₈ F₂₅₄ plates with 0.5 or 1 mm film thickness (Merck). Spots were visualized under UV light or by spraying with H₂SO₄-EtOH or anisalde-hyde-H₂SO₄ followed by heating.

2 Plant material

The stems of *C. longganesis* var. *hongyao* were collected in Tiandeng County, Guangxi Province, China, in 2005, and identified by Prof. Bin Dai, Guangxi Institute of National Medical Research, China, where a voucher specimen was deposited.

3 Extraction and isolation

The air-dried stems of *C. longganesis* var. *hongyao* (10 kg) were powdered and consecutively extracted with MeOH at room temperature. The combined extracts were concentrated in vacuum to yield a dark red residue that was suspended in water and then partitioned successively with EtOAc and n-BuOH. The n-BuOH

extract (200 g) was applied to a Diaion D101 macroporous adsorbent resin column. Successive elution of the column with 20% EtOH, 50% EtOH and 95% EtOH yielded three corresponding fractions after removing solvents. The fraction eluted with 50% EtOH (42.7 g) was chromatographed over silica gel, eluting with a gradient of increasing MeOH (0-100%) in EtOAc, to give six fractions (1-6). Fraction 2 (6.3 g) was firstly separated after Sephadex LH-20 CC eluting with a step gradient from 10% to 50% MeOH in H₂O and then purified by ODS CC eluting with gradient mixtures of MeOH-H₂O [from MeOH-H₂O (1:1, v/v) to MeOH- H_2O (85:15, v/v)] to yield compound 1 (13.5 mg). The EtOAc extract (80.3 g) was subjected to CC on silica gel, and eluted with a gradient of increasing MeOH (0-50%) in CHCl₃, to afford eight fractions (I-VIII) based on TLC analysis. Fraction VII (11 g) was further purified by silica gel CC (300 g), eluting with a gradient of increasing MeOH (20%-40%) in CHCl₃, to give compound 2 (16.4 mg). Compound 3(23.2 mg) was isolated from fraction VI (19.7 g) by repeated CC over silica gel using a gradient of increasing EtOAc (5%-50%) in petroleum ether as eluting solvent.

4 Structure identification

Compound 1 white amorphous powder (CH₃OH), mp 143–145 °C and $[\alpha]_D^{21}$ –130 (*c* 0.1, CH₃OH). UV λ_{max} (CH₃OH) nm: 215 (sh), 255, 351.5. IR bands (KBr) cm⁻¹: 3 399 (br), 2 945, 1 695, 1 635, 1 603, 1 098, 1 067, 1 053, 976. Negative HR-ESI-MS *m/z*: 525.161 0 [M–H]⁻ (calcd. for C₂₄H₂₉O₁₃ 525.160 3). ¹H NMR (DMSO-*d*₆, 500 MHz) and ¹³C NMR (DMSO*d*₆, 125 MHz) data were shown in Table 1.

Compound 2 white amorphous powder (CH₃OH), mp 172–173 °C. UV λ_{max} (MeOH) nm: 282.5. IR bands (KBr) cm⁻¹: 3 406 (br), 2 361, 1 609, 1 514, 1 445, 1 275, 1 121, 1 028. EI-MS (70 eV): *m/z* (rel. int. %) 360 $[M]^+$ (83), 311 $[M-H_2O-OCH_3]^+$ (100); negative HR-ESI-MS m/z: 359.146 2 [M-H] (calcd. for C₂₀H₂₃O₆ 359.148 9). ¹H NMR (500 MHz, CD₃OD) δ : 6.73 (1H, d, J = 8.0 Hz, H-5'), 6.67 (1H, d, J = 2.0 Hz, H-2'), 6.65 (1H, s, H-2), 6.61 (1H, dd, J = 8.0, 2.0 Hz, H-6'), 6.18(1H, s, H-5), 3.79 (3H, s, OCH₃-4), 3.78 (1H, m, H-7'), 3.76 (3H, s, OCH₃-3), 3.68 (1H, m, H-9), 3.66 (1H, m, H-9'), 3.64 (1H, m, H-9), 3.39 (1H, dd, *J* = 11.0, 4.0 Hz, H-9'), 2.76 (2H, d, J = 7.5 Hz, H-7), 1.99 (1H, m, H-8), 1.76 (1H, m, H-8'). ¹³C NMR (125 MHz, CD₃OD) δ : 129.1 (C-1), 112.5 (C-2), 147.2 (C-3), 145.3 (C-4), 117.4 (C-5), 134.2 (C-6), 33.6 (C-7), 40.1 (C-8), 66.0 (C-9), 138.6 (C-1'), 113.9 (C-2'), 149.0 (C-3'), 146.0 (C-4'), 116.0 (C-5'), 123.2 (C-6'), 48.1 (C-7'), 48.7 (C-8'), 62.3 (C-9'), 56.4 (O<u>C</u>H₃-3), 56.5 (O<u>C</u>H₃-4). The ¹H and ¹³C NMR data assigned by interpretation of its 2D NMR spectra are in good accordance with its structure-similar compounds in the literature^[8-10], so compound **2** was identified as isotaxiresinol 4-*O*-methyl ether.

Compound 3 red needle crystals (CHCl₃), mp 133–134 °C. EI-MS (70 eV): m/z (rel. int. %) 258 [M]⁺ (50), 243 [M–CH₃]⁺ (100); HR-EI-MS m/z: 258.088 8 [M]⁺ (calcd. for C₁₅H₁₄O₄ 258.089 2). ¹H NMR (300 MHz, CDCl₃) δ : 7.94 (1H, d, J = 8.5 Hz, H-5), 7.48 (1H, d, J = 2.5 Hz, H-8), 7.12 (1H, dd, J = 8.5, 2.5 Hz, H-6), 4.55 (1H, q, J = 6.5 Hz, H-2), 1.46 (3H, s, H-11), 1.41 (3H, d, J = 6.5 Hz, H-10), 1.26 (3H, s, H-12). ¹³C NMR (75 MHz, CDCl₃) δ : 91.6 (C-2), 45.2 (C-3), 131.0 (C-3a), 182.1 (C-4), 126.8 (C-4a), 128.6 (C-5), 120.6 (C-6), 160.1 (C-7), 112.7 (C-8), 133.5 (C-8a), 178.6 (C-9), 158.5 (C-9a), 14.2 (C-10), 25.8 (C-11), 20.6 (C-12). The ¹H and ¹³C NMR data are consistent with those in literature^[111], and then compound **3** was deduced as (*R*)-7-hydroxy-α-dunnione.

5 Acid hydrolysis of compound 1: determination of the sugar

A solution of compound **1** (2 mg) was heated with 2 mol·L⁻¹ HCl (2 mL) in a sealed tube at 100 °C for 4 h. The reaction mixture was extracted with ethyl acetate. After evaporating off the organic layer, the aqueous phase was neutralized with NaHCO₃ and lyophilized. The lyophilized residue was dissolved in pyridine (0.2 mL), and co-eluted (TLC) with the authentic samples developed with EtOAc-*n*-BuOH-H₂O (20 : 70 : 10, v/v). The plates were sprayed with naphthoresorcinol reagent by heating at 100 °C. Glucose and rhamnose were identified.

References

- China National Group Corporation of Traditional & Herbal Medicine. Compendium of Chinese Medical Material Resources (中国中药资源志要) [M]. Beijing: Science Press, 1994: 1181.
- [2] Huang XC. Compendium of Guangxi National Medicine (广 西民族药简编) [M]. Beijing: Science Press, 1980: 117.
- [3] Wang MY, Yang L, Tu YY. Phenylethanoid glycosides from stem of *Chirita longgangensis* var. *hongyao* [J]. China J Chin Mater Med (中国中药杂志), 2005, 30: 1921–1923.
- [4] Wang MY, Yang L, Tu YY. Studies on the chemical constituents from stem of *Chirita longgangensis* var. *hongyao* [J]. China J Chin Mater Med (中国中药杂志), 2006, 31: 307–308.
- Beck MA, Häberlein H. Flavonol glycosides from *Eschscholtzia* californica [J]. Phytochemistry, 1999, 50: 329–332.
- [6] Jiang ZH, Tanaka T, Inutsuka C, et al. Alkaloids, diarylheptanoid and naphthalene carboxylic acid ester from *Rhoiptelea chiliantha* [J]. Chem Pharm Bull, 2001, 49: 737–740.
- [7] Erdtman H, Tsuno K. The chemistry of the order cupressales.
 56. Heartwood constituents of *Fitzroya cupressoides* (Molina) Johnston [J]. Acta Chem Scand, 1969, 23: 2021–2024.
- [8] Chen RT, Fang SD. Chemical constituents of *Torreya jackii*.
 III. Structure of torreyinol [J]. Chin Tradit Herb Drugs (中草药), 1986, 17: 566.
- [9] Erdemoglu N, Sener B, Ozcan Y, et al. Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from *Taxus baccata* L. [J]. J Mol Struct, 2003, 655: 459–466.
- [10] Kanchanapoom T, Chumsri P, Kasai R, et al. Lignan and megastigmane glycosides from *Sauropus androgynus* [J]. Phytochemistry, 2003, 63: 985–988.
- [11] Cai XH, Luo XD, Zhou J, et al. Quinones from *Chirita eburnean* [J]. J Nat Prod, 2005, 68: 797–799.