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Abstract

The asymptotic behavior of second order self-adjoint gdifteklov eigenvalue prob-
lems with periodic rapidly oscillating coefficients and wihdefinite (sign-changing)
density function is investigated in periodically perf@@tdomains. We prove that the
spectrum of this problem is discrete and consists of two eecgs, one tending teco
and another te-o. The limiting behavior of positive and negative eigencespe-
pends crucially on whether the average of the weight ovestinface of the reference
hole is positive, negative or equal to zero. By means of tteedeale convergence
method, we investigate all three cases.
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1 Introduction

In 1902, with a motivation coming from Physics, Steklov[2f{roduced the following
problem

Au=0 inQ

ou (1.2)
— =PpA Q

an pAU  0Nn0Q,

whereA is a scalar angb is a density function. The function represents the steady state
temperature o such that the flux on the bounda?@ is proportional to the temperature.

In two dimensions, assumir= 1, problem[(1.1l) can also be interpreted as a membrane
with whole mass concentrated on the boundary. This problasbeen later referred to
as Steklov eigenvalue problem (Steklov is often transltest as "Stekloff”). Moreover,
eigenvalue problems also arise from many nonlinear problefter linearization (see e.g.,
the work of Hess and Kato[11, 12] and that of de Figueiredo[Bhis paper deals with the
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limiting behavior of a sequence of second order elliptickite eigenvalue problems with
indefinite(sign-changing) density function in perforatiEmains.

Let Q be a bounded domain R} (the numerical space of variables= (xg,...,Xx)),
with ¢! boundarydQ and with integeN > 2. We define the perforated doma@f as
follows. LetT 'Y = (0,1)N be a compact subset &J! with c¢* boundarydT (= S) and
nonempty interior. Fog > 0, we define

tt={keZN:ek+T)cCQ}
Te=Je(k+T)

kete
and
Q*=Q\T"

In this setup,T is the reference hole wherea&+ T) is a hole of sizee andT® is the
collection of the holes of the perforated dom&if The familyT¢ is made up with a finite
number of holes sinc® is bounded. In the seque¥; stands fory \ T andn = (n)N
denotes the outer unit normal vectorSwith respect tor*.

We are interested in the spectral asymptotics (as0) of the following Steklov eigen-
value problem

N 9 X, OUg
-y Za(5H)ZE) —0ing
.Zlaxi <a”(£)6xj> "

S X) O o X X £ 1.2)
i.JZ:laU (E)a_xjn'(g) = p(g)Agug onoT

us = 00onoQ,

whereg;; € L“(R{)‘) (1 <i, j <£N), with the symmetry conditioa;; = &, theY-periodicity
hypothesis: for everk € ZN one hasy;j (y+ k) = a;j (y) almost everywhere iy € R, and
finally the (uniform) ellipticity condition: there exists > 0 such that

N

S a(y)&;& > afg]’ (1.3)

i,]=1

for all & € RN and for almost ally € R, where |2 = |€1/° 4 --- 4 |En|2. The density
function p € cper(Y) changes sign o8, that is, both the sefy € S p(y) < 0} and{y €

S p(y) > 0} are of positiveN — 1 dimensional Hausdorf measure (the so-called surface
measure). This hypothesis makes the problem under coasmemnonstandard. We will
see (Corollary2.75) that under the preceding hypothesesdche > 0 the spectrum of
(@.2) is discrete and consists of two infinite sequences

O< AN <AZt <. <AM < dim AP = 4o
n— o0
and
OSAY >N > >A > dim AM = —o

N—-co
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The asymptotic behavior of the eigencouples depends tisuoia whether the average of
the densityp overS, Ms(p) = [sp(y)da(y), is positive, negative or equal to zero. All three
cases are carefully investigated in this paper.

The homogenization of spectral problems has been wideljoeegh In a fixed do-
main, homogenization of spectral problems with point-wissitive density function goes
back to Kesavan [14, 15]. Spectral asymptotics in perfdratemains was studied by
Vanninathan[2B] an later in many other papers, includind8[713,[23] 24| 26] and the
references therein. Homogenization of elliptic operawith sing-changing density func-
tion in a fixed domain with Dirichlet boundary conditions lesen investigated by Nazarov
et al. [17/18[1B] via a combination of formal asymptotic @xgion with Tartar's energy
method. In porous media, spectral asymptotics of elliptierator with sign changing den-
sity function is studied in [6] with the two scale convergemethod.

The asymptotics of Steklov eigenvalue problems in peraticperforated domains
was studied in[[29] for the laplace operator and constansitle(p = 1) using asymptotic
expansion and Tartar’s test function method. The same @moldr a second order periodic
elliptic operator has been studied in [24] (witt? coefficients) and in[8] (with.* coef-
ficient) but still with constant densityp(= 1). All the just-cited works deal only with one
sequence of positive eigenvalues.

In this paper we take it to the general tricky step. We ingadé in periodically per-
forated domains the asymptotic behavior of Steklov eigeilevaroblems for periodic el-
liptic linear differential operators of order two in divengce form withL™ coefficients
and a sing-changing density function. We obtain accurate camcise homogenization
results in all three casedds(p) > 0 (Theoreni 311 and Theordm B.8)s(p) = O (Theo-
rem[3.5),Ms(p) < 0 (Theoreni-3]1 and Theordm B.3), by using the two-scale cgemee
method[1[ 18, 20, 30] introduced by Nguetseng[20] and @rrtdeveloped by Allaire[1]. In
short;

i) If Ms(p) > 0, then the positive eigencouples behave like in the caseiof-piise positive
density function, i.e., fok > 1, \*" is of ordere and%)\‘é+ converges as — 0 to
the k" eigenvalue of the limit Dirichlet spectral problem, copesding extended
eigenfunctions converge along subsequences.

As regards the "negative” eigencoupléé’f converges to-o at the rate% and the
corresponding eigenfunctions oscillate rapidly. We usectofization technique ([19,
[29]) to prove that
_ 1 _
AS :EA;+E'§‘ +o(1), k=12

where(A; ,0; ) is the first negative eigencouple to the following local Stelspectral

problem
—div(a(y)Dy8) =0 inY~"
a(y)Dy®-n=Ap(y)6 on S (1.4)
0 Y — periodic,

and {E'é’i};f:l are eigenvalues of a Steklov eigenvalue problem simildLi®)( We
k,— - . . ..
then prove tha{% — Ag—%} converges to thi" eigenvalue of a limit Dirichlet spectral
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problem which is different from that obtained for positivigenvalues. As regards
k‘,

eigenfunctions, extensions @%}%E - where(8; )*(x) = 67 (%) - converge along
1

subsequences to th& eigenfunctions of the limit problem.

ii) If Ms(p) =0, then the limit spectral problem generates a quadraticatpepencil and
)\E’i converges to the¢k, +)™" eigenvalue of the limit operator, extended eigenfunc-
tions converge along subsequences as well. This case esquinew convergence
result as regards the two-scale convergence theory, Lémfna 2

i) The case wheMg(p) < O is equivalent to that whekls(p) > 0, just replacep with

Unless otherwise specified, vector spaces throughout arsideyed oveiR, and scalar
functions are assumed to take real values. We will make uskeofollowing notations.
Let F(RN) be a given function space. We denote By (Y) the space of functions in
Foc(RN) that areY-periodic, and byF«(Y) the space of those functiomse Fper(Y) with
Jyu(y)dy = 0. Finally, the letterE denotes throughout a family of strictly positive real
numbers(0 < € < 1) admitting 0 as accumulation point. The numerical sp&eand
its open sets are provided with the Lebesgue measure dehgtdd = dx;...dxy. The
usual gradient operator will be denoted By For the sake of simple notations we hide
trace operators. The rest of the paper is organized as fall@ectioi 2 deals with some
preliminary results while homogenization processes amsidered in Sectiol 3.

2 Preliminaries

We first recall the definition and the main compactness tmesref the two-scale conver-
gence method. Le® be an open bounded setl&} (integerN > 2) andY = (0,1)N, the
unit cube.

Definition 2.1. A sequencéu; ). C L?(Q) is said to two-scale convergelif(Q) to some
U € L?(QxY)ifasE>e— 0,

/Q us(x)(p(x,)g()dx—> / /Q , Uo(xy)@xy)dxdly 2.1)

for all @ € L2(Q; Cper(Y)).

Notation. We express this by writinge = Up in L2(Q).

The following compactness theorers([1] [20, 22] are coroeest of the two-scale con-
vergence method.

Theorem 2.2. Let (Ug)ece be a bounded sequence iA(R). Then a subsequenceé Ean
be extracted from E such that ag £¢ — 0, the sequencéu; g’ two-scale converges in
L?(Q) to some y € L2(Q x Y).
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Theorem 2.3. Let (Ug)ece be a bounded sequence int(®). Then a subsequencé &an
be extracted from E such that as &¢ — 0

u — U inHYQ)-weak (2.2)
U — U in L2(Q) (2.3)
0ug 25 Oup Oup . 5 _
b e W <j< .
o = o + 3; inL5(Q) (1<j<N) (2.4)

where € H1(Q) and u € L?(Q;HZ(Y)). Moreover, as E> € — 0 we have

[Py Xy [ mixypixyaxdy 25)
for € D (Q) @ LL(Y).

In the sequel S stands fordT¢ and the surface measures Srand § are denoted
by do(y) (y €Y), dog(x) (x € Q,e € E), respectively. The space of squared integrable
functions, with respect to the previous measuresSand S are denoted by.?(S) and
L?(S) respectively. Since the volume 8f grows proportionally to::E ase — 0, we endow
L?(S) with the scaled scalar product]25]

(UV) o) =€ /SE UV(X)doe(x)  (uve LX(S)).
Definition[2.1 and theoreim 2.2 then generalize as

Definition 2.4. A sequenceug)ece C L2(S) is said to two-scale converge to somec
L2(Q x S)ifasE > & — 0,

e [ u(0x D)doz00 > [/ wixyjeix y)dxo(y)

for all g ¢(Q; Cper(Y)).

Theorem 2.5. Let (U )ece be a sequence in’(S) such that

s/§|us(x)|2do£(x) <C

where C is a positive constant independent.ohere exists a subsequencedE E such
that (Ug )ece two-scale converges to somgaL?(Q;L?(S)) in the sense of definitidn 2.4.

In the case whefug )eg is the sequence of traces 8hof functions inH(Q), one can
link its usual two-scale limit with its surface two-scaleilts. The following proposition
whose proof can be found inl[2] clarifies this.

Proposition 2.6. Let (Ug)ece € H(Q) be such that

HUEHLZ(Q) —"_EHDUEHLZ(Q)N <C,
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where C is a positive constant independent @ind D denotes the usual gradient. The
sequence of traces 0fi)scg 0N S satisfies

e/ lug(x)|?dog(x) <C (e €E)
s

and up to a subsequencé &f E, it two-scale converges in the sense of Definifioh 2.4 to
some g € L2(Q;L2(S)) which is nothing but the trace on S of the usual two-scalet lieni
function in 2(Q;HX(Y)). More precisely, as £5 &€ — 0

e [ w0oee Do) — [ wbyemy)dxdoy).
/us( )cp(x )dxdy — // o(X,Y)®(X,y)dxdy

for all @€ ¢ (Q; Cper(Y)).

In our homogenization process, we will need a generalinatfo(2.5) to periodic sur-
faces. Notice thaf (215) was proved for the first time in aeieistic setting by Nguetseng
and Woukeng in[[22] but to the best of our knowledge its gdization to periodic sur-
face is not yet available in the literature. We prove it beland this is a non-negligible
contribution to the theory of two-scale convergence.

Lemma 2.7. Let (Ug)ece € HY(Q) be such thatas B e — 0

i > U inL(Q) (2.6)
0ug 25 Oup Oup . 5 _

e b e <ij< :
ox ox + 3 inL“(Q) (1<j<N) (2.7)

for some y € HY(Q) and u € L2(Q;H}(Y)). Then

lim [ ()68 dog //Q  (ey)P8(y)dxa(y) 2.8)

e—~0J/s

forall § € 2(Q) and® € cx(Y).
Proof. By the mean value zero condition ovefor 8 we conclude that there exists a solu-
tion§ € H(Y) to

Dyd(y)-n(y) =6(y) onS§
wheren = (n;) ; stands for the outward unit normal Swith respect tor*. Putg= Dy9.
We get

[ Dee00(0-D,8)dx = [ u(x6(xD,9(5) n(Z)dor(¥
~ [ w00 D )dx— 1 [ w(x16008,9 (3l
= [ w0p(08(3)dos(x) ~ | ue(x)Dxb()- @ )dx
S € Qe €
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Sendinge to 0 yields
tim [ ue000(98()doz(0 = [/ [Datiol) + Dyus(x,y) 1) - ty) cxcly
+//w X)Dxd (x) - @(y) dxdy
= /[, ., Dyun(ey)0 (9 -oly) dxdy

We finally have

//M*Dyul(x7y)¢(x)-<p(y)dxdy = //Q . wO)e(9Ay (y) dxdy
+ [ _nxy)o0oey) - n(y) dxdofy)
= /] w008 dxcoy).

The proof is completed. O

We now gather some preliminary results. We introduce theadteristic functionyxs
of
G=R)\O
with
o= (k+T).
kezZN

Itis clear thaiG is an open subset (ﬁ@'. Next, lete € E be arbitrarily fixed and define
= {uec HYQ®):u=00n0Q}.

We equipVe with theH1(Q¢)-norm which makes it a Hilbert space. We recall the following
classical extension resullt/[5].

Proposition 2.8. For eache € E there exists an operator, Bf \; into H}(Q) with the
following properties:

e P: sends continuously and linearly Wnto H}(Q).
o (PeV)|qs =viorallvel.
e [[D(PeV) |2 < €[ DV]|L2(qeyn for all v € Ve, where c is a constant independentof

Now, letQ® = Q\ (¢@). This defines an open setitl andQ®\ Q¢ is the intersection of
Q with the collection of the holes crossing the bound@®@; The following result implies
that the holes crossing the bounda@ are of no effects as regards the homogenization
process.

Lemma 2.9. [21] Let K C Q be a compact set independentofhere is somep > 0 such
that Q®\ Q° C Q\ K for any0 < € < &.
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We introduce the space
F§ =Hg(Q) x L% (Q;Hi(Y))
and endow it with the following norm
V]l = [DeVo+Dyvill oigy) (V= (Vo V1) € FY),

which makes it an Hilbert space admittifg’ = 2 (Q) x [2 (Q) ® ¢ (Y)] as a dense sub-
space. Fotu,v) € F§ x F}, let

N dup Odug\ [ovp Ovy
- q(y) (Zo B (Yo VLY Gy
(V) i,Jz_l//fle*aJ(y) <0Xj i 0yj> <0X| " 0y|> i

This define a symmetric, continuous bilinear formigjx F3. We will need the following
results whose proof can be found fin [8].

Lemma 2.10. Fix ® = (Yo, Y1) € Fy’* and definePg : Q — R (e > 0) by
X
D (X) = Wo(X) + W (X, g) (xe Q).

If (Ug)ece C H3(Q) is such that

O0ug 25 dUp = Oup
. _> - + J—
0% X 0y

as E> € — 0 for someu = (Up,up) € F}, then

n L2Q) (1<i<N)

a(Ug, Dg) — ap(u, ®)

as E> € — 0, where
x aus 0D,

a* (U, Pe) |121/€ c ax, o ——dx

We now construct and point out the main properties of theadled homogenized co-
efficients. Let 0< j < N and put

au av

U V / y,
i le : ayJ ay'
N ov
= z /*akJ(Y)
k=1

and
= /S p(y)v(y)da(y
foru,ve H#(Y). Equipped with the seminorm
N(u) = [IDyullizv-pv - (u € HE(Y)), (2.9)

H(Y) is a pre-Hilbert space that is nonseparate and noncomphletéi}(Y*) be its sepa-
rated completion with respect to the semindif) andi the canonical mapping ¢i}(Y)
into H(Y*). we recall that
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(i) Hi(Y*)is a Hilbert space,
(i) iis linear,
(i) i(HZ(Y)) is dense iH}(Y*),
(iv) [[i(W)llyzv-) = N(u) for everyuin Hi(Y),

(v) If Fis aBanach space ah@ continuous linear mapping b&(Y) into F, then there
exists a unique continuous linear mapplngH#}(Y*) — F such that = Loi.

Proposition 2.11. Let1 < j < N. The noncoercive local variational problems
uc Hi(Y) and &u,v) =1j(v) forall ve Hi(Y) (2.10)
and
uec Hi(Y) and &u,v) = lo(v) forall ve Hi(Y) (2.11)
admit each at least one solution. Moreovergifand®! (resp.x and®) are two solutions
to (2.10) (resp.[(2.11)), then
Dyx! =D,8' (resp Dyx=D,8)a.e. inY. (2.12)

Proof. We prove the result fof (2.10). Proceeding as in the prooPdf Lemma 2.5] we
prove that there exists a unique symmetric, coercive, oatis bilinear formA(-,-) on
HA(Y*) x HE(Y*) such thatA(i(u),i(v)) = a(u,v) for all u,v € H}(Y). Based on (v) above,
we consider the linear forr(-) on HZ(Y*) such that j(i(u)) = I;(u) for anyu € HZ(Y).
Theny! € H}(Y) satisfies[(2.20) if and only if(x)) satisfies

i(x)) € HE(Y*) and A(i(x)),V) =1j(V) forall V € H}(Y"). (2.13)

Buti(x! ) is uniquely determine by (Z.13). We deduce that(2.10) elatiteast one solution
and ifx/ and@’ are two solutions, theifx! )= |(61) which meang! and@! have the same
neighborhoods i} (Y) or equivalentlyN(x! — 6)) = 0. Hence[[Z.12). O

Corollary 2.12. Let1 <i,j < N andx! € H}(Y) be a solution to[{Z70). The following
homogenized coefficients

ox/

Qij = /au (y)dy— (y)0y|

(y)dy (2.14)

are well defined in the sense that they do not depend on theécsota (Z.10).

Lemma 2.13. The following assertions are truejig= gj (1 <i,j <N)and there exists a
constantog > 0 such that

z Gij&j&i > GO|E|

i,j=1
for all & € RN,

Proof. See e.g./[3]. O
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We now visit the existence result fgr (I..2). The weak forrtiataof (1.2) reads: Find
(Ag,Ug) € C x Vg, (U # 0) such that

af(Ug,V) = Ae(P®Ug,V)g, VEV, (2.15)

where
(psu&v)g :/§p£Ung0'£(X).

Sincep® changes sign, the classical results on the spectrum of lseameed self-adjoint
operators with compact resolvent do not apply. To handk theé follow the ideas i [19].
The bilinear form(pug,Vv)s defines a bounded linear operakGr: Ve — Vg such that

(P°u,v)g = a*(K®u,v) (u,vEVe).
The operatoK® is symmetric and its domairi3(K®) coincides with the whol¥, thus it is

self-adjoint. Recall the gradient norm is equivalent to#g¢Q¢)-norm onV;. Looking at
KZu as a solution to the boundary value problem

—div(a()E()Dx(Ksu)) —0 inQt
a()g()Dszu-n()g() =pfu onS (2.16)
K&u(x) =0 0nadQ,
we get a constar@ > 0 such that|K&u||y: < CHuHLZ(Qs). AsVE is compactly embedded in

L?(Q®) (indeed,H(Q?) — L?(Q¢) is compact adQ? is c1), the operatoK® is compact.
We can rewrite[(2.15) as follows

1
KPUg = Pel,  Me = 3
€

We recall that (see e.gl,l[4]) in the cage> 0 on S, the operatoiK® is positive and its
spectrumo(K?) lies in [0, ||KE||] andpe = O belongs to the essential spectrogiK®). Let

L be a self-adjoint operator and lef;(L) andoc(L) be its set of eigenvalues of infinite
multiplicity and its continuous spectrum, respectivelye Waveoe(L) = oy (L) Uac(L) by
definition. The spectrum df¢ is described by the following proposition whose proof is
similar to that of [19, Lemma 1].

Lemma 2.14. Letp € Cper(Y) be such that the sefy € S: p(y) < 0} and{y € S: p(y) > 0}
are both of positive surface measure. Then for any0, we haveo(K®) C [—||K®||, [|K®|[]
and p= 0 is the only element of the essential spectrogiK®). Moreover, the discrete
spectrum of K consists of two infinite sequences

et > > > 0
<@ << <50

Corollary 2.15. The hypotheses are those of Lenimal2.14. Prolilerh (1.2) hasratai set
of eigenvalues consisting of two sequences

0<)\g-7+§)\§7+§.“§)\|§+
0> AT > A2 > > A

§_>_|_oo,

We may now address the homogenization problenifof (1.2).
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3 Homogenization results

In this section we state and prove homogenization resultbdth casedMs(p) > 0 and
Ms(p) = 0. The homogenization results in the case whkyip) < 0 can be deduced from
the caseMs(p) > 0 by replacingp with —p. We start with the less technical case.

3.1 The caseMg(p) >0

)\|£(,+ K.+

We start with the homogenization result for the positive pathe spectruniAg™ , Ug'™ )ecE.

3.1.1 Positive part of the spectrum

We assume (this is not a restriction) that the corresponeiiggnfunctions are orthonormal-
ized as follows

e [P U don0 =8 ki =12 (3.1)
N3
and the homogenization results states as

Theorem 3.1. For each k> 1and eacre € E, let(AS™, uf ") be the K positive eigencouple
to (I.2) with Ms(p) > O and [31). Then, there exists a subsequencef E such that

1 .

EA'Q* — A inR asE>e—0 (3.2)

PRust WS in HY(Q)-weakasE>e—0 (3.3)

Pus™ - W in L3Q)asEse—0 (3.4)
—_— — 4+ —2LinL{(QasE>e—-0(1<j<N 3.5

ox  ox oy, (Q) —0(l<j<N) (3.5)

where(A§, uS) € R x H}(Q) is the K" eigencouple to the spectral problem

RN i(;q_%
i.,;am- Ms(p) ™ 0x;
=0 o0noQ (3.6)

1
Ug|?dx= ———,
JyuofPex=

and where §§ € L2(Q;HZ(Y)). Moreover, for aimost every« Q the following hold true:
() u‘{(x) is a solution to the noncoercive variational problem

) =AoUp InQ

ui(x) € Hi(Y)

N ou ov
k _ 0 -
a(u1(x),v) = ”2:1 3%, / 8 ()5, dy (3.7)
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(i) We have
iu)=-y a—XJ_(x)i(xi) (38)

wherey! is any function in H(Y) defined by the cell problefi{2]10).

Proof. We present only the outlines since this proof is similar lessltechnical to that of
the caseMs(p) = 0.

Fix k> 1. By means of the minimax principle, asin[29], one easiyvps the existence
of a constan€ independent of such tha%)\g’+ < C. Clearly, for fixedE > € > 0, uE’* lies

in Vg, and
x aug+ ov Kt
—dx A d 3.9
,le/ge ¢ 0xj 0% < /p Tvdo: () (3:9)

for anyv € V. Bear in mind that [g p(%‘)(u'é’*)zdx: 1 and choose = uf in 3.9). The
boundedness of the sequenﬁ%é?*)geE and the ellipticity assumptioh (1.3) imply at once
by means of Propositidn 2.8 that the seque(rfége'é*)geE is bounded irH}(Q). Theorem
[2.3 and Proposition 2.6 apply simultaneously and gives‘us (u§, k) € F§ such that for
someAf € R and some subsequenie C E we have [ZR)K3I5), wheré(3.4) is a direct
consequence of (3.3) by the Rellich-Kondrachov theorem fiked € € E’, let @, be as in
LemmdZ.1D. Multiplying both sides of the first equality ing)Lby ®, and integrating over
Q leads us to the variationatproblem

(X aPs L P O Kty X
Ijzl/Qg ¢ ox; a—)qu_(gxg )E/SE(F’sUs )P(2)®e e (X). (3.10)

Sendinge € E’ to 0, keeping[(312)E(3]5) and Lemma2.10 in mind, we obtain

: . au('g au'{ oYo 0Yy
3 S0 (5 55 ) (5 5y was=ab ] dbsetpanaoty

Therefore,()\g, uk) € R x IF§ solves the followingglobal homogenized spectral problem

Find (A,u) € C x F§ such that

N i o  dur\ /oW Ay
i.Jz_l//va*a”(y) <0_><J+a_y,> (a—>q+ 3y, >dxdy )\Ms(p)/guolpodx (3.11)

for all ® € F}.

which leads to the macroscopic and microscopic problén®-(3.7) without any major
difficulty. As regards the normalization condition [0 (3.6)e fixk,| > 1 and put

@ 0) ¢ [ (PUEOP()doe(9 (e E)
[S3 €

for ¢ € D(Q). We haveP.u;™ — U™ in H-%(Q)-strong asE’ 5 £ — 0 by (3.3) and the
Rellich-Kondrachov theorem. We also have

¥t~ Mgp)u§  in H™L(Q)-weak
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askE’ 5 € — 0, since the following hold for ang € » (Q) (Propositiof 2.6)

lim e / (PU )0 (X)p dog // o(y) dxda(y).
E'se—0 Js QxS
Hence,
lim ¢ / (Pt (Pol) dog // o(y) dxda(y),
E'se—0 Js QxS
This concludes the proof. O

Remark3.2 e The eigenfunctiongu§}y_, are in fact orthonormalized as follows

e
k| k|
UpUgdX = kl1=123,--
/Q 0~0 Ms(p)

o If )\5 is simple (this is the case faré), then by Theore.]z\g’+ is also simple, for
smalle, and we can choose the eigenfunctimﬁ% such that the convergence results
(3:3)-(3.5) hold for the whole sequenkEe

e Replacingp with —p in (I.2), Theoreni_3]1 also applies to the negative part of the
spectrum in the cadds(p) < 0.

3.1.2 Negative part of the spectrum

We now investigate the negative part of the spect(ﬂtn‘, u‘é’_)seE. Before we can do this
we need a few preliminaries and stronger regularity hysshenT, p and the coefficients
(aj)_;- We assume in this subsection tdatis C>° andp and the coefficientéa;j )I;_;
ared-Holder continuous (6 & < 1).

Let Hye(Y*) denotes the space of functionsHtt(Y*) assuming same values on the
opposite faces of. The following spectral problem is well posed

Find ()\ e) € C x Hyg,(Y*)

— Z < 09> =0in Y*
I= 10Y; 0y (3.12)

N
i (y) v

LJZ_ oy V) =Ap(y)8(y) onS

and possesses a spectrum with similar properties to thdt2y, fwo infinite (one positive
and another negative) sequences. We recall that since veevhdp) > 0, problem [(3.1P)
admits a unique nontrivial eigenvalue having an eigenfancivith definite sign, the first
negative one (see e.g., [28]). In the sequel we will only mage of (A;,6;), the first

negative eigencouple tb (3]12). After proper sign choiceassime that

6 (y)>0 inyeY™ (3.13)
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We also recall tha®; is 6-Holder continuous(see e.d., [10]), hence can be extetmled
function living in cper(Y) still denoted byd; . Notice that we have

/S p(y) (67 (y))*da(y) <O, (3.14)

as is easily seen from the variational equality (keep thptiglity hypothesis[(1.13) in mind)

N 69 06,
i,,z_l/*aj( By ay. /D do(y).

Bear in mind that probleni_(3.12) induces by a scaling argurtrenfollowing equalities:

AR X, 06° o
|leaxl (aij(g)a—xi> =0 inQ o1
N X 0Ot X 1 X X . ( . )
> aij(g)a—xivj(g) = Ap(2)8(2)  onadQ,

i,)=1

where6®(x) = 6(%). However,6° is not zero ondQ. We now introduce the following
Steklov spectral problem (with an indefinite density fuoiji

Find (Es,vg) e CxV
—z <~ Xav£>_o in QF
0] €’ 0%

)=
0Ve (x)
0X;

(3.16)

()7 X)) = &B(5)ve(x) onaT®

Ve(X) = 0 onoQ.

with new spectral paramete(&, ve) € C x Vg, whereg; (y) = (87)(y)ajj (y) andp(y) =
(61)2(y)p(y). Notice thatdj(y) € L5 (Y) andp(y) € Cper(Y). As 0<c_ < 6;(y) <
¢t <+ (c_,ct € R), the operator on the left hand side [of (3.16) is uniformlipgt and
Theoreni 3.1l applies to the negative part of the spectrum.©8)3seel(3.14) and Remark
[3.2). The effective spectral problem for (3.16) reads

i,j=1
Vo=0 0onoQ (3.17)

-1
Vol?dx= ——.
/Q’ o Ms(p)

The effective coefficient$d; }1<i j<n being defined as expected, i.e.,

J
6 = [, & ()dy- z )5 )y (3.18)
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with X}, € HE(Y*) (I = 1,...,N) being a solution to the following local problem
X1 € Hi(Y")
N ox! av N ov
~ 1 ~
gj(y) 5 z—-dy= / i (y)5—d 3.19
i.JZ_l/* i) ay; ay % i; [ 315 dy (3.19)
for all v e Hi(Y*).
Notice that the spectrum df (3117) is as follows

0>8>8>8> .. >f > 5 —wasj s w.

Making use of[(3.15) when following the same line of reasgran in [29, Lemma 6.1], we
obtain that the negative spectral parameters of probled@$ dhd [(3.16) verify:

US™ = (6])%VF (e€E, k=12--") (3.20)

and
1

pY EA;+EE’*+0(1) (E€E, k=1,2--). (3.21)

The presence of the terafl) is due to integrals ove®?® \ Qf, which converge to zero witt)

remember thai(3.15) holds @F but notQ®. As will be seen below, the sequer((ié’_)seE

is bounded irfR. In another words\&~ is of order ¥e and tends to-« ase goes to zero.

It is now clear why the limiting behavior of negative eigenptes is not straightforward as

that of positive ones and requires further investigatiovigch have just been made.
Indeed, as the reader might be guessing now, the suitallenantmalization condition

for (3.18) is
e [ BV doei) =3 kiI=12.-- (3.22)
g &

which by means of3.20) is equivalent to
3 / p()g()UE"U's" doe(x) = ~8 kI =1,2,--- (3.23)
s

We may now state the homogenization theorem for the negptivieof the spectrum of

@.2).

Theorem 3.3.Foreachk>l1and eacke € E, Iet()\?* , u‘é‘*) be the K" negative eigencouple
to (1.2) with M5(p) > 0 and [3.28). Then, there exists a subsequeriaaf E such that

AT OA] .
- _s_% & inR asE>e—0 (3.24)
PVET = W in HE(Q)-weakasESe—0 (3.25)
PV o W in L3(Q)asE>e—0 (3.26)

— < < .
Xj = Xj—|— yJ mL(Q)asE’BE ( _J_N) ( )
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where(&5,VK) € R x H}(Q) is the K" eigencouple to the spectral problem

3 2 (e
i,,;am- Ms(p) ™ 9x
Vo=0 o0noQ (3.28)

-1
V( 2dX: T =
Jyholax= 5

and where § € L2(Q;HZ(Y)). Moreover, for almost every« Q the following hold true:
() v‘{(x) is a solution to the noncoercive variational problem

Vi(X) € HA(Y)

> :EoVo in Q

- Yo, 0u
Yue HE(Y);
(i) We have
N avk
Z ax, (3.30)

wherex! is any function in H(Y) defined by the cell problerd (3]19).

Remark3.4 e The eigenfunctiongv§}y_, are orthonormalized by

/vkv'd 6'1') K1=123.
e Replacingp with —p in (I.2), Theorenh 3]3 adapts to the positive part of the spect
in the caseMis(p) < 0.

3.2 The caseMs(p) =0

We prove an homogenization result for both the positive aad the negative part of the
spectrum simultaneously. We assume in this case that tkefeigctions are orthonormal-
ized as follows

/SED(Z)UEi bEdoe(X) = 48 k1 =1,2,--- (3.31)
Let x° be a solution tqZ.11) and put
N 0 OaXO
V2= ai (y) XX 3.32
”221 vy (3.32)

Indeed, the right hand side &f(3]32) is positive and doeslepénd on a particular solution
to (2.13). We recall that the following spectral problem for a quaidraperator pencil with
respect toy,

N a(_an

— — = )\ v2Ug in Q
i,Jzzlan i 0>ﬁ> ° (3.33)

Up = 0 0noQ,
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has a spectrum consisting of two infinite sequences

O< At < A2 <A < dim AT = oo
n—4-00
and
L— 32— k- Lk
0>Ag~ >Ay >->N5 >..., nl_lmw)\o = —oco,

with AST = —A&™ k=1,2,--- and with the corresponding eigenfunctions™ = uf~.
We note by passing thaiy " and\y~ are simple. We are now in a position to state the
homogenization result in the present case.

Theorem 3.5. For each k> 1 and eacte € E, let ()\"i E’i) be the(k, +)™" eigencouple
to (I.2) with Ms(p) = 0 and [3:31). Then, there exists a subsequeriagf E such that

AT S AT inRasEse—0 (3.34)
PUs™ — U* in HE(Q)-weakasEse—0 (3.35)
PU* — W in LA(Q)asEs>e—0 (3.36)

=X TP T T
— PR _I_
0Xj 0Xj ay;

inL?(Q)asE>e—0(1<j<N) (3.37)

where()\g’i, u'((;i) € R x H}(Q) is the(k, +)!" eigencouple to the following spectral problem

for a quadratic operator pencil with respect W

N 0 < aUO

-y = q--—> =Agv?Up in Q
LJz:l x\Max )0 (3.38)
Up =00n0Q,
and where I;li € L?(Q;H(Y)). We have the following normalization condition
+1
2
/\u 2dx— o k=12, (3.39)
Moreover, for almost every & Q the following hold true:
() u‘fi(x) is a solution to the noncoercive variational problem
Ui (%) € HA(Y)
N k+
k,+ AKE k / ouy / 0V
a(u, ™ (x), u —d 3.40
(U™ (x),v) = Ay Up(x) [ p(y |lea " J(Y)yiy ( )
Vv e Hi(Y);
(i) We have
ok K, k 0 N 0u('§’i i
(U () = A6 i) — Y 52— (X)) (3.4)
=1 9%

wherex) (1< j <N) andx° are functions in H(Y) defined by the cell problems{(2]10)
and [2.11), respectively.
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Proof. Fix k > 1, using the minimax principle, as in [29], we get a cons@iridependent
of £ such thafA*| < C. We haveu™ € \; and

X aUs k:t/ X, kE
—d =A —)ugvd 3.42
”zl o2 5 [ P vdon(x (3.42)

for anyv € V. Bear in mind that/g p(’g)(u?i)zdcg(x) = 41 and choose = Uf in (3.42).
The boundedness of the sequelﬁlséi)geE and the ellipticity assumptioh (1.3) imply at
once by means of Propositibn P.8 that the sequémé )ece IS bounded irHl(Q) The-
orem[2.3 and Propositidn 2.6 apply simultaneously and gigas¢* = u0 ,ul ) cF}
such that for somé\gi € R and some subsequenEé C E we have[(3.34)E(3.37), where
(3.38) is a direct consequence bf (3.35) by the Rellich-Kaaddov theorem. For fixed
€ € E/, letd; be as in LemmA2.10. Multiplying both sides of the first eqyah (1.2) by
@, and integrating oveR leads us to the variationalproblem

X aPs a(Dg k,+ Kty X
Ijzl/gg g 0x; aX, oo AX=A¢ SE(Psus )p(s)q)ng'g(X).

Sendinge € E' to 0, keeping[(3.34)-(3.37) and Lemima 2.10 in mind, we obtain

a0 (U, ®) = N5 [[ (U 0cy)bpy) + U ws(xy)ply)) dxdoly)  (3.49)

The right-hand side follows as explained below. we have

[Pk )p(D)@edon(x) = [ (P o0l
3 € 53

e [ (Pl )l
On the one hand we have

lim s/s’v/(Psu8 YW1 (X, dx // u0 P1(x,y)p(y) dxdo(y).

E'se—0

On the other hand, owing to LemmaR.7, the following holds:

im [ (P wo(x)p(5) do(x // “(%,y)Wo(x)p(y) dxda(y).

E'>e—=0J/s

We have just proved thdhs™ uk+) e R x F} solves the followingglobal homogenized
spectral problem

Find (\,u) € C x IF§ such that

20(u.®) = [ ()bt +w(uatxy) py)dxdaly)  (344)
for all ® € F3.
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To prove (i), chooseb = (W, W1) in (3:43) such thatyp = 0 and Yy = ¢ ® v1, where
¢ € 2(Q) andv; € Hi(Y) to get

F) Kk, 4 9 k,+
0% 22 <y>< 32,- o )avl ]d AL [Siuéi 09 [ va(y)p(y)doty)

dx
aYj Vi
Hence by the arbitrariness ¢f we have a.e. if

aug au'fi ovy
.,Zl / . (ax, Y —rdy=Ag UG (%) /S vi(y)p(y)do(y)

for anyvy in H}(Y), which is nothing but{3.40).
Fix x € Q, multiply both sides of{2.70) by- =2 6“0 (x) and sum over X j < N. Adding
side by side to the resulting equality that obtalned afteltipiving both sides of[(2.111) by
+
A§TUS (%), we realize thai(x) = — 3 16u0 00X (y) + A= (0X0(y) solves [32D).

Hencei(z(x)) = i(u‘fi(x)) by uniqueness of the solution to the coercive variationablam
in H(Y*) corresponding to the non-coercive variational problEQB(see the proof of
Propositiod 2.111). Thu$ (3.41) sinces linear.

This being so, we recall thdi (3141) precisely means thabsimverywhere ix € Q,

N
DU (x) = ASE Ul (X)Dyx° — z

(x)Dyx! a.e.inyeY". (3.45)

Hence there is somec L?(Q) so that almost everywhere {&®,y) € Q x Y* we have

+

N
u'fi(x, y) = )\'(‘;iu Z

k,
a; y)+c(x). (3.46)

But (3:48) still holds almost everywhere {r,y) € Q x SasSis of classc?!. Considering
now @ = (Yo, Y;) in B.43) such thaty € 2 (Q) andy; = 0 we get

c dug™  auy Y dui Kt K
ij —— dxdy= Ay // Uy~ (X, X) dxdo(y),
iﬁjzl//gkY*al(y)( o oy ) ax DW=ho ff M (x,Y)P(y)Wo(x) dxdo(y)

which by means of(3.45) and (3]46) leads to

A au0 0o et o Yo ax
3 [ G o Hz_lfguo 052 ([ a2 wiay) ax

N an
=N Z v / p(y dx (3.47)

HOS? [ ( Jowx )dx
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The term withc(x) vanishes because Bfs(p) = 0. Choosing(' (1 <1 < N) as test function
in (Z.11) andx® as test function i (2.10) we observe that

Z i) /P =a(x',x9) (I=1---N).

Thus, in [3.47), the second term in the left hand side is etju#ie first one in the right
hand side. This leaves us with

k,+
o005 e 07 [ b 0wntoax( [pinCdot) . (@49

Choosingy? as test function if(2.11) reveals that

/S p(y)X°(y) do(y) = a(x°,x°) =

N 0 0
S [a ;’2} = (A [ U (0w0(dx
i,]=1

Hence

and

aUo K202, Kt o s
.,ZlfM <qll ox; X))—O\ )V~ (%) in Q.

Thus, the convergende (3]34) holds for the whole sequenée regardd(3.39), we proceed
as above. Fik,| > 1 and put

(@*.0) = | (RUH)0(0p()doe(x)  (e€E),
52 €

for ¢ € 0 (Q). We haveP,uy™ — ug™ in H1(Q)-strong asE’ 5 £ — 0 by (3.35) and the
Rellich-Kondrachov theorem. We also have

3 — [ (.y)py)do(y) in H *(0)-weak

askE’ >e— 0, since (Lemm?) for any € » (Q), it holds that

im [ (Pt )00p)doe) = [ WE*(xy)e(x)p(y)dxdoty).
E'se—0J)s QxS
Hence,
im [ (PUES)(PUH)p dcrs // (%, y)ug T p(y) dxda(y).
E'>e—0.J)s QxS

This together with[{3.31) anﬂ:(3]46) ylelds

)\givz/ U Ut dx— ZaxJ / o
X;

If k=1, then by Green’s formula the sum on the left hand side vasiahd [(3.40) reduces
to the desired result. This concludes the proof. O

Tdx= 48, kl=12--- (3.49)
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Remark3.6. e The eigt=:n1‘unction$u(‘§i};°:1 are in fact orthonormalized as follows

//st Ui (% y)ug ™ (X)p(y) dxda(y //QX (X, y)Us™ (X)p(y) dxda(y) = £
kI=12/

o If AS* is simple (this is the case fag™), then by Theorei 35\¢™ is also simple,
for small e, and we can choose the eigenfuncticuﬁiét such that the convergence
results [[3.B){(315) hold for the whole sequeiice
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