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Abstract

Spectral asymptotics of linear periodic elliptic operatwith indefinite (sign-changing)
density function is investigated in perforated domain$lie two-scale convergence
method. The limiting behavior of positive and negative aigmiples depends crucially
on whether the average of the weight over the solid part igipesnegative or equal
to zero. We prove concise homogenization results in alketoeses.
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1 Introduction

Many nonlinear problems lead, after linearization, topditi eigenvalue problems with an
indefinite density function (see e.qg., the survey paper byigeeiredd[10] and the work of
Hess and Katb[12, 13]). A vast literature in engineeringySits and applied mathematics
deals with such problems arising, for instance, in the stfdyansport theory, reaction-
diffusion equations and fluid dynamics. In 1904, Holmdré&ij[¢onsidered the Dirichlet
problemAu+ pr(x,y)u = 0, on a fixed bounded open s@tc R? whenp is continuous
and changes sign; he proved the existence of a double seqjokreal eigenvalues of finite
multiplicity (one nonnegative and converging-tao, the other one negative and tending to
—oo) which can be characterized by the minimax principle. Th&uit has been extended
to higher dimensions, noncontinuous weight and coeffisiemtmany papers including for
examplel[[8[ 4, 21]. Asymptotic analysis of the eigenvalugs leen visited by many math-
ematicians and is still a hot topic in mathematical analySenerally speaking, spectral
asymptotics is a two folded research area. On the one hargli$ evith asymptotic for-
mulas (estimates) and asymptotic distribution of the eigkeres. On the other hand it is
concerned with homaogenization of eigenvalues of osaiiipbperators on possibly varying
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domains such as perforated ones. This paper falls withiseloend framework, homoge-
nization theory.

Let Q be a bounded domain R{(the numerical space of variables- (i, ...,xy ), with
integerN > 2) with ¢* boundarydQ. We define the perforated doma@f as follows. Let
T Y =(0,1)N be a compact subset R{} with ¢* boundarydT and nonempty interior.
Fore > 0, we define

tt={keZN:ek+T)cCQ}
Te=Je(k+T)

kete
and
Q*=Q\T"

In this setup,T is the reference hole wherea&+ T) is a hole of sizee and T® is the
collection of the holes of the perforated dom&ifr The familyT¢ is made up with a finite
number of holes sinc@ is bounded. In the sequéd; stands foly \ T andn = (n;) denotes
the outer unit normal vector @I with respect tor*.

We are interested in the spectral asymptoticse(@s0) of the linear elliptic eigenvalue
problem

N 9 X, OUg X e
__Z o (a](_)a_)q> _p(g))\aua in Q

i,]=1 €
N x 0ue X . (1.1)
i.JZ:la,,(E)a—xjn.(g) =0o0ndT
us = 00onoQ,

whereg;; € L“(R{)‘) (1 <i, j £N), with the symmetry conditioa;; = &, theY-periodicity
hypothesis: for everk € ZN one hasy; (y+ k) = a;j (y) almost everywhere ig € RY, and
finally the (uniform) ellipticity condition: there exists > 0 such that

N

S a(y)€;& > afg]’ (1.2)

i,]=1

for all £ € RN and for almost aly € R, where|§|? = |&1|? + - - - + [En|?. The density func-
tionp e Lm(Ry) is Y-periodic and changes sign &, that is, both the sety € Y*,p(y) <

0} and{y € Y*,p(y) > 0} are of positive Lebesgue measure. This hypothesis makes the
problem under consideration nonstandard. As stated aliosayell known (see[[15, 21])

that under the preceding hypotheses, for eachO the spectrum of(1]1) is discrete and
consists of two infinite sequences

O< AN <AZF <. <A < dim AP = 4o
n— oo
and
OSAY " >A2 > . >A0 > dim AD = —o

N—-0o
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The asymptotic behavior of the eigencouples depends tisuoia whether the average of
p overY*, My-(p) = [ p(y)dy, is positive, negative or equal to zero. All three cases are
carefully investigated in this paper.

The homogenization of spectral problems has been widellpeegh In a fixed domain,
homogenization of spectral problems with point-wise pesitlensity function goes back
to Kesavan[[17, 18]. In perforated domains, spectral asgtiggtwas first considered by
Rauch and Taylar[27, 28] but the first homogenization reisuthat direction pertains to
Vanninathan[3D]. Since then a lot has been written on spleatymptotics in perforated
media, we mention the workis [16,126 ] 29] and the referenaawitinto cite a few. Homog-
enization of elliptic operators with sing-changing deygiinction in a fixed domain has
been investigated by Nazarov et dl._[20] 21|, 22] via a contininaof formal asymptotic
expansion and Tartar's energy method. Recently, the Twestonvergence method has
been utilized to handle the homogenization process for sigenvalue problems[{[8] 9])
with constant density function.

In this paper we investigate in periodically perforated dom the spectral asymptotics
of periodic elliptic linear differential operators of ordavo in divergence form with a
sing-changing density function. We obtain accurate andtisenhomogenization results
in all three casesMy-(p) > 0 (Theoren3]1 and Theorem B.3)y-(p) = 0 (Theorem
[3.3) andMy-(p) < 0 (Theoreni3]1 and Theordm B.3), by using the two-scale cgemee
method[1] 18| 23, 31] introduced by Nguetséng[23] and &irrteveloped by Allaire]1].
Namely, ifMy-(p) > 0 then the positive eigencouples behave like in the caseiof-pise
positive density function, i.e., fdt > 1, A" converges as — 0 to thekt" eigenvalue of
the limit spectral problem o, corresponding extended eigenfunctions converge along
subsequences. As regards the "negative” eigencou}oiés,converges to-o at the rate
aiz and the corresponding eigenfunctions oscillate rapidlg.uAk a factorization technique

([22, [30]) to prove convergence ({?\'é’_ - 812)\;} - where {;,8;) is the first negative
eigencouple to a local spectral problem - to Kfeeigenvalue of a limit spectral problem
which is different from that obtained for positive eigenwes. As regards eigenfunctions,

K,—
extensions oi{%}geE - where (6, )*(x) = 6 () - converge along subsequences to the
1

KM eigenfunctions of the limit problem. In the case whdg. (p) = 0, )\E’i converges to
+oo at the rate% and the limit spectral problem generates a quadratic amepaincil. We

prove thais)\'gi converges to thék, +)" eigenvalue of the limit operator, extended eigen-
functions converge along subsequences as well. The caseM$iép) < 0 is equivalent

to that whenMy- (p) > 0, just replacep with —p. The reader may consider the reiteration
procedure in multiscale periodically perforated domamkave some fun.

Unless otherwise specified, vector spaces throughout aedayed oveR, and scalar
functions are assumed to take real values. We will make uskeofollowing notations.
Let F(RN) be a given function space. We denote By (Y) the space of functions in
Foc(RN) that areY-periodic, and byF«(Y) the space of those functiomse Fper(Y) with
Jyu(y)dy = 0. Finally, the letterE denotes throughout a family of strictly positive real
numbers(0 < £ < 1) admitting 0 as accumulation point. The numerical sgatieand its
open sets are provided with the Lebesgue measure denotgxl-bylx;...dxy. The usual
gradient operator will be denoted By The rest of the paper is organized as follows. Sec-
tion[2 deals with some preliminary results while homogetmraprocesses are considered
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in SectiorB.

2 Preliminaries

We first recall the definition and the main compactness tmesref the two-scale conver-
gence method. LeR be an open bounded setRy (integerN > 2) andY = (0,1)N, the
unit cube.

Definition 2.1. A sequencéu; ). C L?(Q) is said to two-scale convergelif(Q) to some
U € L?(QxY)ifasE>e— 0,

/Q us(x)(p(x,)g()dx—> / /Q , Uo(xy)@xy)dxdly 2.1)

for all @ € L%(Q; Cper(Y)).

Notation. We express this by writing = Up in L2(Q).

The following compactness theorems (seé [1[ 23, 25]) amecstones of the two-scale
convergence method.

Theorem 2.2. Let (Ug)ece be a bounded sequence iA(R). Then a subsequence &an
be extracted from E such that ag £¢ — 0, the sequencéu; g’ two-scale converges in
L?(Q) to some g€ L2(Q x Y).

Theorem 2.3. Let (Ug)ece be a bounded sequence int(®). Then a subsequencé &n
be extracted from E such thatas&¢ — 0

U — U inHYQ)-weak (2.2)
Uu — U  inlL%Q) (2.3)
aus 2s an aul . 2 .
s = <j< .
o = ox; + 3, inL%(Q) (1<j<N) (2.4)

where @ € H1(Q) and u € L?(Q;HZ(Y)). Moreover, as E> € — 0 we have

Ug (X)

/Q—Lp(x,)g()dx—>//QXYul(x,y)qJ(x,y)dxdy (2.5)

3
for g € D (Q) @ LL(Y).

Proof. The first part[(Z.R)E(2)4) is classical (seel[1] 23]). Theoselcpart,[(2.6), was proved
in [25] in the general framework of deterministic homogeian but as it is of great im-
portance in this paper and for the sake of completeness, aviprits proof in the periodic
setting. Letp = (¢,6) € D (Q) x L3(Y). By the mean value zero condition ovéfor 6 we
conclude that there exists a unique solutfoa H;(Y) to

9 € HE(Y).
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Putg=Dyd. We get

8y Sax = [ =g ax=
[ e 9divo)dx = — [ Dx(ue(99(9) - o(2)dx
Q €
A limite passagée — 0) using [2.4) yields
im [ =0 ax =~ [ Do)+ Dyus(y)10x)-9ly)dyc
=~ [[Pytax )6 gly)dydx
QxY
=[] mley)oqdivyaly)ayax
QxY
= // U]_(X,y)l.IJ(X,y)dde
QxY
This completes the proof. O

We now gather some preliminary results we will need in our bgemization processes.
We introduce the characteristic functigg of

G=R}\©

with
o= (k+T).
kezZN

It follows from the closeness df that® is closed in]R{’y\‘ so thatG is an open subset @’y\‘.
Next, lete € E be arbitrarily fixed and define

Ve = {uc HY(Q®) : u=00ndQ}.

We equipVe with theH1(Q¢)-norm which makes it a Hilbert space. We recall the following
classical extension resullt/[7].

Proposition 2.4. For eache € E there exists an operators Pf \} into H3(Q) with the
following properties:

e P; sends continuously and linearly \nto H}(Q).
o (Pv)|gs =vforallvel.
® [[D(PeV)[lL2(on < || DV||L2(qey for all v € Ve, where c is a constant independentof

Now, let Q* = Q\ (¢@). This is an open set ilRN and Q¢ \ Q¢ is the intersection
of Q with the collection of the holes crossing the bounda€y. We have the following
result which implies that the holes crossing the bound&rare of no effects as regards the
homogenization processes since they are in arbitrary wastrgpe along the boundary.
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Lemma 2.5. [24] Let K C Q be a compact set independentofThere is somey > 0 such
that Q% \ Q° C Q\ K for any0 < € < g.

Next, we introduce the space
F§=Hg(Q) x L% (Q;Hi(Y)).
Endowed with the following norm
Vllez = Do + Dyl zguy) (V= (Vo.v1) € FR),

F§ is an Hilbert space admittingy’ = 2 (Q) x [2 (Q) ® ¢ (Y)] as a dense subspace. This
being so, for(u,v) € F§ x F}, let

N aUQ au1 aVQ aV]_
u,v) = i — 4+ — dxd
oY) LJZ—l//QXY* ) <0Xj 0yj > <0><. 0Yi ) Y
This define a symmetric, continuous bilinear formigjx F3. We will need the following

results whose proof can be found fin [9].

Lemma 2.6. Fix ® = (Yo, Y1) € Fy’ and defined; : Q — R (¢ > 0) by
X
Dg(X) = Po(X) + P (X, g) (xe Q).

If (Ug)ece C H3(Q) is such that

Oug 25 Oug Oup 2 .
n L9Q) (1<i<N
B oty N LU@asisn
as E> € — 0 for someu = (Up,up) € F, then
at(Ug, Dg) — ap(u, ®)

as E> € — 0, where
x aus 0P,

a (Ug, Pe) |jzl/€ c axJ o —dx

We now construct and point out the main properties of theadled homogenized co-
efficients. Let 0< j < N and put

au av

a(u,v) / dy,
|le : ayJ ay
N ov
= z /*akJ(Y)_
k=1

and
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foru,ve H#(Y). Equipped with the seminorm
N(u) = |[Dyul| 2y (U € Hg(Y)), (2.6)

HA(Y) is a pre-Hilbert space that is nonseparate and noncomphletéi}(Y*) be its sepa-
rated completion with respect to the semindifl) andi the canonical mapping ¢i}(Y)
into HX(Y*). we recall that

(i) Hi(Y*)is a Hilbert space,
(ii) iislinear,
(i) i(H}(Y)) is dense iHZ(Y*),
(iv) [li(u)lz(v+) = N(u) for everyuin Hx(Y),

(v) If Fis aBanach space ah@ continuous linear mapping b&(Y) into F, then there
exists a unique continuous linear mapplngHz(Y*) — F such that = Loi.

Proposition 2.7. Let1 < j < N. The noncoercive local variational problems
uc Hz(Y) and &u,v) =1;(v) forall veH(Y) (2.7)

and
ue Hi(Y)and gu,v) = lo(v) forall veHZ(Y) (2.8)

admit each at least one solution. Moreovergifand®! (resp.x and®) are two solutions

to (2.1) (resp.[(218)), then
Dyx) =Dy8’ (resp Dyx =D,8) a.e., in Y. (2.9)

Proof. We prove the result fof (2.7). Proceeding as in the prodf 4f [2mma 2.5] we get a
unique symmetric, coercive, continuous bilinear foki -) onHX(Y*) x H}(Y*) such that
A(i(u),i(v)) = a(u,v) for all u,v € H}(Y). Based on (v) above, we consider the continuous
linear forml;(-) onHA(Y*) such that;(i(u)) = 1;(u) for anyu € H}(Y). Thenx) € HX(Y)
satisfies[(2]7) if and only if(x}) satisfies

i(x)) € HF(Y*) and A(i(x)),V) =1;(V) forall V € H}(Y*). (2.10)

Buti(x!) is uniquely determined by (2.10). We deduce thail(2.7) azlatieast one solution
and ifx! and®/ are two solutions, theifx’) =i(6’), which meang’ and6’ have the same
neighborhoods it}(Y) or equivalentlyN(x! — 6') = 0. Hencel[(ZD). O

Corollary 2.8. Let1<i,j <N andx/ € H}(Y) be a solution to[{2]7). The following
homogenized coefficients

N 0 j
% = [ a dy- 3 | )5y (2.11)

are well defined in the sense that they do not depend on thtosoto (2.7).
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Lemma 2.9. The following assertions are true:jig=¢; (1 <i,j < N) and there exists a
constantog > 0 such that

N
> Gi&&i> aol€|?

i,]=1

for all & € RN,

Proof. See e.g.[]2]. O

We now say a few words on the existence result for] (1.1). Thakviermulation of
(L.1) reads: FindA¢,ug) € C x Vg, (Ue # 0) such that

a (Ug,V) = Ae(P°Ug,V)qs, VEV, (2.12)

where
(psus,v)gs:/ pEUvdX
QS

Sincep® changes sign, the classical results on the spectrum of lsenmeed self-adjoint
operators with compact resolvent do not apply. To handk the follow the ideas in [22].
The bilinear form(p®ug,V)q: defines a bounded linear operakGr: V; — Vg such that

(Pfu,v)qe = a°(KBu,v) (u,ve V).

The operatoK® is symmetric and its domairi3(K?) coincides with the whol¥, thus it is
self-adjoint. Recall that the gradient norm is equivalertheH*(Q¢)-norm onV;. Looking
atKEtu as a solution to the boundary value problem

—div(a()g()Dx(Ksu)) =pfu inQ*®
X
3

a( )Dszu-n()E():O onadT® (2.13)

Kfu(x) =0 0nadQ,

we get a constar€ > 0 such thaf|K®ullv: < C||ul|L2(qe). AsV*® is compactly embedded in
L?(Q®) (indeed,H(QF) — L?(Q¢) is compact adQ¢ is ¢1), the operatoK® is compact.
We can rewrite[(2.12) as follows

KEUe = bl be— o
Ae

Notice that (see e.g[.][5]) in the cage> 0 inY, the operatoK® is positive and its spectrum
o(K¥) lives in [0, ||K&||] andpe = O belongs to the essential spectrogiK®). The essential
spectrum of a self-adjoint operatbris by definitionoe(L) = op (L) Udc(L), wherea} (L)
is the set of eigenvalues of infinite multiplicity awd(L) is the continuous spectrum. The
spectrum ofKe is described by the following proposition whose proof is teu since
similar to that of [22, Lemma 1].
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Lemma 2.10. Let p € L. (Y) be such that the setfy € Y* : p(y) < 0} and {y € Y*:
p(y) > 0} are both of positive Lebesgue measure. Then foreany0, we haveos(K®) C
[—|IKE]|,||KE||] and pu= O is the only element of the essential spectimutK®). Moreover,
the discrete spectrum offkconsists of two infinite sequences

,+ ,+

..._>O+7

0

=R
IN IV
o Fo
IN IV
IN IV
IN IV

ulé.Jr
Hléf

Corollary 2.11. The hypotheses are those of Lenimal2.10. Prolileth (1.1) hasratai set
of eigenvalues consisting of two sequences

We are now in a position to state the main results of this paper

3 Homogenization results

In this section we state and prove homogenization resuftsdth casedviy-(p) > 0 and
My-(p) = 0. The homogenization results in the case wikign(p) < 0 can be deduced from
the caseMly- (p) > 0 by replacingp with —p. We start with the less technical case.

3.1 The caseMy«(p) >0

We start with the homogenization result for the positive: pathe spectrunfA® ™ U™ )ece.

3.1.1 Positive part of the spectrum

We assume (this is not a restriction) that the corresponeiiggnfunctions are orthonormal-
ized as follows

X
/ p(g)uls(«+uL«+dX: 6k7| k7| = 1’2’... (31)
QE
The homogenization results states as

Theorem 3.1.For each k> 1 and eacte € E, Iet()x'é’*, u'é’*) be the K positive eigencouple
to (I.1) with M« (p) > 0 and [31). Then, there exists a subsequencef E such that

AT A inR asEse—0 (3.2)
PUus™ — S in HE(Q)-weakasESe—0 (3.3)
PRust = WS in L3Q)asE>e—0 (3.4)

K+ K Ak
P, 0 ou; . .
OFee” 25 ﬂJrﬂmLz(Q)asE’aa—m(nggN) (3.5)

an an ayj
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where(A, uk) € R x H}(Q) is the K" eigencouple to the spectral problem

N d 1 Ooug
— S — [ ———qgi=2) =Aoup INQ
2 % <MY*(P)q” axj> oto 11

i)
Uu=0 o0noQ (3.6)

1
Up|%dx = ,
/Q| o My (p)

and where §§ € L2(Q;HZ(Y)). Moreover, for aimost every« Q the following hold true:
() u‘{(x) is a solution to the noncoercive variational problem

uf(x) € H(Y)

‘ o Nooads o ov
R0 == 5 52 [ gy 37)
Vv e Hi(Y)
(i) We have
N
()= 3 S it 38)

wherey! is any function in H(Y) defined by the cell probleri(2.7).

Proof. We present only the outlines since this proof is similar lessltechnical to that of
the caseMly- (p) = 0.

Fix k> 1. By means of the minimax principle, aslin[30], one easityvps the existence
of a constanC independent of such thal?\E’+ < C. Clearly, for fixedE > € > 0, u‘é‘+ lies

in Vg, and
x auj Nkt
.,Zl/ D e N /p Fydx (3.9)

for anyv € V. Bear in mind thathap(’g)(us’+)2dx: 1 and choose = uf in 39). The
boundedness of the seque@é*)seE and the ellipticity assumptiof (1.2) imply at once by
means of Propositidn 2.4 that the seque@a'@*)g@; is bounded itH3 (Q). Theoreni 23
applies and gives us® = (uf,u¥) € F} such that for soma¥ € R and some subsequence
E’ C E we have[(3.R)E(3]5), wheré(3.4) is a direct consequencB.8) by the Rellich-
Kondrachov theorem. For fixede E’, let @, be as in Lemm&216. Multiplying both
sides of the first equality in(1.1) b®, and integrating ovef) leads us to the variational
g-problem

xaP8 K+ oo, K o X
,,Z/ e 0x; ax|d =Ae /QE(PsUs )P(Z)Pedx (3.10)

Sendinge € E’ to 0, keeping[(312)(3]15) and Lemmal?.6 in mind, we obtain

: Oug  Our) (0o  Oys K K
20 (34 50) (G o) oarab [, sbwtsptnn
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Therefore,(Ak, u¥) € R x IE% solves the followingglobal homogenized spectral problem

Find (\,u) € C x F§ such that

Jdug 0U1> <al|J0 0[]J1> /
~— + > | | 55—+ =— | dxdy= AMy- UoWodx (3.11
= 1//Q><Y* <0Xj ayj 0% ay; y= Y ( ) o oWo ( )

for all ® € 3,

which leads to the macroscopic and microscopic problén®-(3.4) without any major
difficulty.

As regards the normalization condition [n_(3.6), we use theothpositionQ = QU
(QF\ QF) and the equalityd®* = QN eG. On the one hand, whe > € — 0,

/ p(2)(Pouf L )dx — MY*(p)/ ukuhdx, k1 =1,2,--
0

since

PP Pk ) dx= | Xal()p(0) (P ™) Pk

and (Peuf X508 — My- (p)uk in L2(Q)-weak andP.up™ — Uy in L(Q)-strong asE’ 5
€ — 0. On the other hand, the same line of reasoning as in the pfd®f Proposition 3.6]
leads to

lim o) (PUET) (P T dx =0 (3.12)
E’>e—0J08\Q# €

The normalization condition if_(3.6) follows thereby. Ircfawe have just proved that
{ué‘*}ﬁzl is an orthogonal basis ir?(Q). O

Remark3.2 e The eigenfunctiongu§}y ; are orthonormalized by

o)
k| k|
ugUpdx = kl=123,---
/Q 070 My+(p)

o If )\5 is simple (this is the case faré), then by Theore.]z\'é’+ is also simple, for
smalle, and we can choose the eigenfunctimf@ such that the convergence results
(3:3)-(33) hold for the whole sequenke

e Replacingp with —p in (I.1), Theoreni_3]1 also applies to the negative part of the
spectrum in the caddy-(p) < 0.

3.1.2 Negative part of the spectrum

We now investigate the negative part of the spect(mEﬁ, ug’*)seE. Before we can do this
we need a few preliminaries and stronger regularity hysskenr, p and the coefficients
(aj)Ni_;. We assume in this subsection tdatis C>° andp and the coefficientéaij )I;_;
ared-Holder continuous (& & < 1).
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Let Héer(Y*) denotes the space of functionsktt(Y*) assuming same values on the
opposite faces of. The following spectral problem is well posed

Find (A,0) € C x Hog(Y")

N 9 ( 00 .
aj (y)—> =Ap(y)@ in Y*
. le ay; \ " oy, (3.13)
N 00
gj(y)z—ni=00naT
i,j=1 ()ayl I

and possesses a spectrum with similar properties to thAL DY, two infinite (positive and
negative) sequences. We recall that (B.13) admits a unigutivial eigenvalue having an
eigenfunction with definite sign, the first negative oneceiwe haveMy-(p) > 0 (see e.g.,
[6l[14]). In the sequel we will only make use @f; ,0; ), the first negative eigencouple to
(3.13). After proper sign choice we assume that

B, (y) >0 inyeY". (3.14)

We also recall tha®; is 6-Holder continuous(see e.d., [11]), hence can be extetmled
Y -periodic function living ian(R)')‘) still denoted byd; . Notice that we have

/ p(y)(87 (y))?dy < 0, (3.15)

as is easily seen from the variational equality ( keep thetigiity hypothesis[(T.2) in mind)

21 [ a0 Gy iy =2 [ otyes )y
i.j

Bear in mind that problent_(3.13) induces by a scaling argurtrenfollowing equalities:

N 13
-y 2 (ajé)@) = ey ine

L 0X g’ 0X; g2
R (3.16)

where 8(x) = 6(%). However,8° is not zero ondQ. We now introduce the following
spectral problem (with an indefinite density function)

Find (§,Ve) € C x Vg
N o9 /L X 0v .

-3 o (M5 =& ne o
S ﬁi-()—()avs(x)n-()—()—OonaT8 |
e el o e

Ve(X) = 0 0noQ,
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with new spectral eigencouplé, Ve) € C x Vg, wheredj (y) = (87)?(y)aj (y) andp(y) =
(67)%(y)p(y). Notice thatdj € L5 (Y) andp € Lie(Y). As0<c_ <8y (y) <c < +oo
(c_,c™ € R), the operator on the left hand side [of (3.17) is uniformlipét and Theorem
3.1 applies to the negative part of the spectruni_of {3.1® (8€%) and Remafk3.2). The
effective spectral problem for (3.17) reads

c 0 (. 0V ~ .
0 (q” &) =&oMy:-(P)Vo INQ
Vo=0 o0ndQ (3.18)
-1
Vo|?dx = -
‘ ool

The effective coefficient$qj; }1<i j<n being defined as expected, i.e.,

Gj = / &j(y)dy— |21/Y*a 6y| (y)dy, (3.19)
with X'l € H}(Y*) (I = 1,...,N) being a solution to the following local problem

X1 € Hi(Y")

N

i.,z_l/* 0 g);jl g)\’: Zi/ a (y ay, (3-20)

for all ve Hi(Y*).
Notice that the spectrum df (3118) is as follows

0>&>8B>8>. >8>... » wasj >

Making use of [[3.16), the same line of reasoning as in [30, hen.1] shows that the
negative spectral parameters of problems| (1.1) andl(3&rifyv

ue = s\f (ecE, k=12---)
and
AT = )\ +E 40(1), (e€E, k=12.--).

The presence of the tem@l) is due to integrals ove®® \ QF, like the one in[(3.12), which
converge to zero with, remember thai(3.16) holds @f but notQ¢. As will be seen below,
the sequenc(aEE’_)geE is bounded irR. In another wordsA¥~ is of order 1/€? and tends
to —oo ase goes to zero. It is now clear why the limiting behavior of negeeigencouples
is not straightforward as that of positive ones.

The suitable orthonormalization condition for (3.17) ie tine the reader is expecting:

[ BCMTdx= 80 kI=12- (3.21)
QE

We now state the homogenization theorem for the negatiteopéire spectrum of (1]1).
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Theorem 3.3.Foreach k> 1and eacle € E, Iet()\g’*,u'é'*) be the K negative eigencouple
to (I.1) with M- (p) > 0 and [3.21). Then, there exists a subsequeriaef E such that

_A] .
A& _a_% — & inR asE>e—0 (3.22)
PVET = W in HE(Q)-weakasESe—0 (3.23)
PV = W in L2Q)asE3e—0 (3.24)

PNV o avk+avk

20 <j< :
> o Tay inL?(Q)asE>e—0(1<j<N) (3.25)

where(&5,VK) € R x H}(Q) is the K" eigencouple to the spectral problem

N 6( 1 oVo

- — =&Vp INQ
i,,;an MY*<p>q”axJ> oo

Vo=0 o0noQ (3.26)

-1
V( 2dX: T =
Jolvoldx= 3

and where Y € L2(Q;H2(Y)). Moreover, for almost everyx Q the following hold true:
() v‘{(x) is a solution to the noncoercive variational problem

vi(x) € H(Y)

< N oV

0w ==- 5 52 [ Al (327)

Yu e Hi(Y)

(i) We have
N .
(V(x) g—fu)m (3.28)

j=1%%

wherex! is any function in H(Y) defined by the cell problerfi{3]20).

Remark3.4. e The eigenfunction$v‘<}§‘;1 are orthonormalized by

/vkv'd e Kl k1=123,
My (p)

e Replacingp with —p in (T.1), Theorenh 3]3 adapts to the positive part of the spect
in the caseMy- (p) < 0.

3.2 The casevly:(p) =0

We prove a homogenization result for both the positive pad the negative part of the
spectrum simultaneously. As will be clear in the proof of dten[3.5 below, we assume
in this case that the eigenfunctions are orthonormalizddlksvs

/ p()g()uléiuls’idX: +ed k=12 (3.29)
QE
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Let x° be a solution tdZ.8) and put

0)(0 ax°
V2= / dy. (3.30)
|le ) ayJ ayl

Indeed, the right hand side &f(3]30) is positive and doeslepénd on a particular solution
to (2.8). We now recall that the following spectral problem for a quadid operator pencil
with respect toy,

N d < _ Oug

— — | gj=— )\vuoan
i,JZ:1 oxj \ 0>q>

Up = 0 0noQ,

(3.31)

has a spectrum consisting of two infinite sequences

1+ 2+ K, + - k+
O<Ag <Ay <Ay <., dim Ay" =+

n— oo
and
O>AF >A7 > >N > lim A\§ = —w.
0 0 = =70 = e
with As™ = =A%~ k=1,2,--- and with the corresponding eigenfunctionfs™ = uf ™.
We note by passing th:m%’+ and )\(l)’* are simple. We are now in a position to state the
homogenization result in the present case.

Theorem 3.5. For each k> 1 and eacte € E, let ()\'Qi,ufé’i) be the(k, +)™" eigencouple
to (I.1) with My- (p) = 0 and [3.29). Then, there exists a subsequeriaaf E such that

At = At inRasEse—0 (3.32)
PU* - ugi in H3(Q)-weak as E> € — 0 (3.33)
PU™ — U5 in LAQ)asEse—0 (3.34)

oP.ukE 2 aust  au*
0X; 0X; ay;

inL?(Q)asE>e—0(1<j<N) (3.35)

where()\gi, Uy ) eRx H&(Q) is the(k, +)t" eigencouple to the following spectral problem
for a quadratic operator pencil with respect

N
— z i(qij%> A3v2up in Q
i10% \ 70X (3.36)
Up=00n0oQ

and where l;:i € L2(Q;HZ(Y)). We have the following normalization condition

+1
2 _
/|u |“dx= kivz k=12, (3.37)
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Moreover, for almost every « Q the following hold true:
() u'fi(x) is a solution to the noncoercive variational problem

Us* (%) € HA(Y)

N aust ov
K+ ki, a9V
=000 =MW [, POy 3 TE09 [ aigdy (339

Vv e Hi(Y);

(i) We have

(U () = Mg u( z 5 (3.39)

wherey! (1< j < N) andx? are functions in H(Y) defined by the cell problems(2.7) and
(2.8), respectively.

Proof. Fix k > 1, using the minimax principle, as in [30], we get a cons@iridependent

of € such thajeAs™| < C. We haveut™ €V, and
x au8 K+ 1/ X\ ket
—d = (eNgT )= —ug~vd 3.40
Ijzl/ 8 axj aX| ( € )8 er(s)uﬁ Vax ( )

for anyv € V. Bear in mind that/q. p(g)(u'éi)zdx: +¢ and chooser = uf in (3.40).
The boundedness of the sequemek'é’i)seE and the ellipticity assumptiori_(1.2) imply
at once by means of Propositibn 2.4 that the sequéméf’i)geE is bounded irtH3(Q).
TheorenZB applies and givesufs™ = (u0 ,ul e F3 such that for somégi €Rand
some subsequend& C E we have[(3.3R)E(3.35), where (3]34) is a direct consequehce
(3.33) by the Rellich-Kondrachov theorem. For fixed E’, let ®. be as in Lemma_216.
Multiplying both sides of the first equality if.(1.1) ts§; and integrating ovef leads us to
the variationak-problem

X aPs anE o k4 l k,+ X
3 l/Qg D o 3 O @ [ (RUE)p()cax

Sendinge € E’ to 0, keeping[(3.32)-(3.35) and Lemimal2.6 in mind, we obtain

2a(,@) =25 [ (U 0eytotopty) + U a(xy)p(y) ) dxdy  (3.41)

The right-hand side follows as explained below. Using thepdgpositionQf = QF U (Qf \
Q) and the equalityp®* = QN eG we arrive at

}/E(psu‘gvi)p( )Pedx = }/(Psus JWo(X)p(

€Ja
+ /Psus )p(
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On the one hand we have

im [ P wsx DpCxe()dx= [ d wa(xy)p(y)xe(y) drdy

E’se—0./Q

On the other hand, owing tb (2.5) of Theorem| 2.3, the follapholds:

jim /Q (P o (00p (= )Xol 5) X = // £(x,y)Wo(0P(y)Xa(y) dxdy

E'se—0 €&

Indeedpyc € L%(Y) as we clearly have, p(y)xc(y)dy = f.p(y)dy = 0. We have just
proved thatAS™ uk*) € R x F} solves the followingglobal homogenized spectral prob-

lem
Find (\,u) € C x F§ such that

(U,®) = A // (UL (X Y)Wo(X)p(y) + o (x,Y)p(y)) dxdy  (3.42)
for all ® € 3.

To prove (i), chooseb = (Yo, P;) in (3.41) such thathy = 0 andy; = ¢ ® v;, where
b € »(Q) andvy € H}(Y) to get

F) k,+ 9 k,+ 9
/¢ IJ B (Y)< :;2,- L% )ﬂdy] dx= /q> [ AREUEE (x )/Y*Vl(y)p(y)dy] dx

ay; | 0y
Hence by the arbitrariness ¢f we have a.e. if

aug au‘fi vy
—Ldy=AgFulE (x / Vv d
.,Zl / . (ax, dy; oy Yo W “() | wa(y)p(y)dy

for anyvy in HL(Y), which is nothing but{3.38).

Fix x € Q, multiply both sides of[(2]7) by- 52 6“0 (x) and sum over X j < N. Adding
side by side to the resulting equality that obtamed afteltiplying both sides of[(Z.8) by
k4
A§TUS T (x), we realize thai(x) = — 3 10“0 00X (y) + A=~ (0x0(y) solves [33B).

Hencei(z(x)) = |(u'§i( X)) by uniqueness of the solution to the coercive variationabjem
in H#(Y*) corresponding to the non-coercive variational proble@gB(see the proof of
Propositio 2.17). Thu$ (3.89) sincés linear.

This being so, we recall thdt (3139) precisely means thavsimverywhere ix € Q,

N k+

Dyus* (%) = As = Ul (x)Dyx° — z a; x)Dyx! a.e.inY*, (3.43)
X]
so that there is somee L?(Q) with
K+ k£, Kt o0 A au('ﬁ’i i .
U~ (%Y) =Ag~ U™ (OX°(Y) — > ()x'(y) +c(x) ae.iny”. (3.44)

=1 an
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Considering nowb = (Yo, Y1) in (3.41) such thatyy € 2 (Q) andy; = 0 we get

N ) aus* au1 Yo Kt
i7jz—1//§2xv*a”(y)< 0X; ay] ) o Y=o // P(Y)Wo(x)dxdy
which by means 0f(3.43) and (3]44) leads to
dug allJo et o allJo
|le/ . ox; 0 dx+)\ i,Jz_lfQ </ iy )
d .
= “Z / ;‘zj )dX< /Y * p(y)x’(y)dy> (3.45)
HEP? /Quo’i(x)lbo(x)dx< [ p<y>x°<y>dy> |

The term withc(x) vanishes because ®y-(p) = 0. Choosingx' (1 <1 < N) as test
function in [2.8) and® as test function i {2]7) we observe that

/a, ay=[ X dy=alx'.x) (1=1--N).

Thus, in [3.4b), the second term in the left hand side is etyutie first one in the right
hand side. This leaves us with

ou;~ 0
[ 531 a",f’dx (o™ )? /Qué*(x)wo(x)dx(/Y *p<y>x°<y>dy). (3.46)

Choosingy? as test function if(218) reveals that

/Y PX°(dy = a(x’.x°) = v2.

Hence

S aulgi 0o k412, ,2 K+
Z/ oo X O [ ot
and

]

Ijl

Thus the convergencEB]SZ) holds for the whole sequBndes regards[(3.37), we notice
that for fixedk > 1 and anyp € © (Q) one has (keef (2.5) in mind)

. 1 X X
im = [ (R )a00p(xe()dx= [[ i (eyjetop(y) dxay
560 € € € QxY*
Hence,aE' 2 —0

(Pgug 1PEXE 4/ Ly)p(y)dy inL%(Q)—weak
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Using once again the decompositi®f = Qf U (Qf \ Qf) and the equality)* = QN eG, we
getasE’'5e—0

2L Pt Pad e dxs [ U ()l (e dxdy

€Jos
for fixed| > 1. This together with (3.29) and (3]44) yields
K+

N .
A2 / U U dx— Za(xl,xo) Qa:;)‘z U dx=+8, kl=12-- (3.47)
J:

i

If k=1, then by Green’s formula the sum on the left hand side vasiahe [(3.4]7) reduces
to the desired result. This concludes the proof. O

Remark3.6. e The eigenfunctions{u'c‘,’i};f:1 are orthonormalized by

// U™ (y)ug ™~ (x)p(y) dxdy= // (% Y)ug " (X)p(y) dxdy= 23
QxY* QxY*
KI=12

o If AS* is simple (this is the case fag™), then by Theorei35\¢ ™ is also simple,
for small e, and we can choose the ta'igenfunctimﬁét such that the convergence

results[(3.B)E(3)5) hold for the whole sequelkce
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