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Abstract

Spectral asymptotics of linear periodic elliptic operators with indefinite (sign-changing)
density function is investigated in perforated domains with the two-scale convergence
method. The limiting behavior of positive and negative eigencouples depends crucially
on whether the average of the weight over the solid part is positive, negative or equal
to zero. We prove concise homogenization results in all three cases.
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1 Introduction

Many nonlinear problems lead, after linearization, to elliptic eigenvalue problems with an
indefinite density function (see e.g., the survey paper by deFigueiredo[10] and the work of
Hess and Kato[12, 13]). A vast literature in engineering, physics and applied mathematics
deals with such problems arising, for instance, in the studyof transport theory, reaction-
diffusion equations and fluid dynamics. In 1904, Holmgren[15] considered the Dirichlet
problem∆u+ ρr(x,y)u = 0, on a fixed bounded open setΩ ⊂ R

2 whenρ is continuous
and changes sign; he proved the existence of a double sequence of real eigenvalues of finite
multiplicity (one nonnegative and converging to+∞, the other one negative and tending to
−∞) which can be characterized by the minimax principle. This result has been extended
to higher dimensions, noncontinuous weight and coefficients in many papers including for
example [3, 4, 21]. Asymptotic analysis of the eigenvalues has been visited by many math-
ematicians and is still a hot topic in mathematical analysis. Generally speaking, spectral
asymptotics is a two folded research area. On the one hand it deals with asymptotic for-
mulas (estimates) and asymptotic distribution of the eigenvalues. On the other hand it is
concerned with homogenization of eigenvalues of oscillating operators on possibly varying
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domains such as perforated ones. This paper falls within thesecond framework, homoge-
nization theory.

Let Ω be a bounded domain inRN
x (the numerical space of variablesx= (x1, ...,xN), with

integerN ≥ 2) with C 1 boundary∂Ω. We define the perforated domainΩε as follows. Let
T ⊂Y = (0,1)N be a compact subset inRN

y with C 1 boundary∂T and nonempty interior.
For ε > 0, we define

tε = {k∈ Z
N : ε(k+T)⊂ Ω}

Tε =
⋃
k∈tε

ε(k+T)

and
Ωε = Ω\Tε.

In this setup,T is the reference hole whereasε(k+T) is a hole of sizeε and Tε is the
collection of the holes of the perforated domainΩε. The familyTε is made up with a finite
number of holes sinceΩ is bounded. In the sequel,Y∗ stands forY\T andn= (ni) denotes
the outer unit normal vector to∂T with respect toY∗.

We are interested in the spectral asymptotics (asε → 0) of the linear elliptic eigenvalue
problem 




−
N

∑
i, j=1

∂
∂x j

(
ai j (

x
ε
)
∂uε

∂xi

)
= ρ(

x
ε
)λεuε in Ωε

N

∑
i, j=1

ai j (
x
ε
)
∂uε

∂x j
ni(

x
ε
) = 0 on∂Tε

uε = 0 on∂Ω,

(1.1)

whereai j ∈ L∞(RN
y ) (1≤ i, j ≤N), with the symmetry conditiona ji = ai j , theY-periodicity

hypothesis: for everyk∈ Z
N one hasai j (y+k) = ai j (y) almost everywhere iny∈ R

N
y , and

finally the (uniform) ellipticity condition: there existsα > 0 such that

N

∑
i, j=1

ai j (y)ξ jξi ≥ α|ξ|2 (1.2)

for all ξ ∈R
N and for almost ally∈R

N
y , where|ξ|2 = |ξ1|

2+ · · ·+ |ξN|
2. The density func-

tion ρ ∈ L∞(RN
y ) is Y-periodic and changes sign onY∗, that is, both the set{y∈Y∗,ρ(y)<

0} and{y ∈ Y∗,ρ(y) > 0} are of positive Lebesgue measure. This hypothesis makes the
problem under consideration nonstandard. As stated above,it is well known (see [15, 21])
that under the preceding hypotheses, for eachε > 0 the spectrum of (1.1) is discrete and
consists of two infinite sequences

0< λ1,+
ε ≤ λ2,+

ε ≤ ·· · ≤ λn,+
ε ≤ . . . , lim

n→+∞
λn,+

ε =+∞

and
0> λ1,−

ε ≥ λ2,−
ε ≥ ·· · ≥ λn,−

ε ≥ . . . , lim
n→+∞

λn,−
ε =−∞.
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The asymptotic behavior of the eigencouples depends crucially on whether the average of
ρ overY∗, MY∗(ρ) =

∫
Y∗ ρ(y)dy, is positive, negative or equal to zero. All three cases are

carefully investigated in this paper.
The homogenization of spectral problems has been widely explored. In a fixed domain,

homogenization of spectral problems with point-wise positive density function goes back
to Kesavan [17, 18]. In perforated domains, spectral asymptotics was first considered by
Rauch and Taylor[27, 28] but the first homogenization resultin that direction pertains to
Vanninathan[30]. Since then a lot has been written on spectral asymptotics in perforated
media, we mention the works [16, 26, 29] and the references therein to cite a few. Homog-
enization of elliptic operators with sing-changing density function in a fixed domain has
been investigated by Nazarov et al. [20, 21, 22] via a combination of formal asymptotic
expansion and Tartar’s energy method. Recently, the Two-scale convergence method has
been utilized to handle the homogenization process for someeigenvalue problems ([8, 9])
with constant density function.

In this paper we investigate in periodically perforated domains the spectral asymptotics
of periodic elliptic linear differential operators of order two in divergence form with a
sing-changing density function. We obtain accurate and concise homogenization results
in all three cases:MY∗(ρ) > 0 (Theorem 3.1 and Theorem 3.3),MY∗(ρ) = 0 (Theorem
3.5) andMY∗(ρ)< 0 (Theorem 3.1 and Theorem 3.3), by using the two-scale convergence
method[1, 19, 23, 31] introduced by Nguetseng[23] and further developed by Allaire[1].
Namely, ifMY∗(ρ)> 0 then the positive eigencouples behave like in the case of point-wise
positive density function, i.e., fork ≥ 1, λk,+

ε converges asε → 0 to thekth eigenvalue of
the limit spectral problem onΩ, corresponding extended eigenfunctions converge along
subsequences. As regards the ”negative” eigencouples,λk,−

ε converges to−∞ at the rate
1
ε2 and the corresponding eigenfunctions oscillate rapidly. We use a factorization technique

([22, 30]) to prove convergence of{λk,−
ε − 1

ε2 λ−
1 } - where (λ−

1 ,θ
−
1 ) is the first negative

eigencouple to a local spectral problem - to thekth eigenvalue of a limit spectral problem
which is different from that obtained for positive eigenvalues. As regards eigenfunctions,

extensions of{ uk,−
ε

(θ−1 )ε}ε∈E - where(θ−1 )
ε(x) = θ−1 (

x
ε ) - converge along subsequences to the

kth eigenfunctions of the limit problem. In the case whenMY∗(ρ) = 0, λk,±
ε converges to

±∞ at the rate1
ε and the limit spectral problem generates a quadratic operator pencil. We

prove thatελk,±
ε converges to the(k,±)th eigenvalue of the limit operator, extended eigen-

functions converge along subsequences as well. The case when MY∗(ρ) < 0 is equivalent
to that whenMY∗(ρ) > 0, just replaceρ with −ρ. The reader may consider the reiteration
procedure in multiscale periodically perforated domains to have some fun.

Unless otherwise specified, vector spaces throughout are considered overR, and scalar
functions are assumed to take real values. We will make use ofthe following notations.
Let F(RN) be a given function space. We denote byFper(Y) the space of functions in
Floc(R

N) that areY-periodic, and byF#(Y) the space of those functionsu ∈ Fper(Y) with∫
Y u(y)dy= 0. Finally, the letterE denotes throughout a family of strictly positive real

numbers(0 < ε < 1) admitting 0 as accumulation point. The numerical spaceR
N and its

open sets are provided with the Lebesgue measure denoted bydx= dx1...dxN. The usual
gradient operator will be denoted byD. The rest of the paper is organized as follows. Sec-
tion 2 deals with some preliminary results while homogenization processes are considered
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in Section 3.

2 Preliminaries

We first recall the definition and the main compactness theorems of the two-scale conver-
gence method. LetΩ be an open bounded set inRN

x (integerN ≥ 2) andY = (0,1)N, the
unit cube.

Definition 2.1. A sequence(uε)ε∈E ⊂ L2(Ω) is said to two-scale converge inL2(Ω) to some
u0 ∈ L2(Ω×Y) if asE ∋ ε → 0,

∫
Ω

uε(x)φ(x,
x
ε
)dx→

∫∫
Ω×Y

u0(x,y)φ(x,y)dxdy (2.1)

for all φ ∈ L2(Ω;C per(Y)).

Notation. We express this by writinguε
2s
−→ u0 in L2(Ω).

The following compactness theorems (see [1, 23, 25]) are cornerstones of the two-scale
convergence method.

Theorem 2.2. Let (uε)ε∈E be a bounded sequence in L2(Ω). Then a subsequence E′ can
be extracted from E such that as E′ ∋ ε → 0, the sequence(uε)ε∈E′ two-scale converges in
L2(Ω) to some u0 ∈ L2(Ω×Y).

Theorem 2.3. Let (uε)ε∈E be a bounded sequence in H1(Ω). Then a subsequence E′ can
be extracted from E such that as E′ ∋ ε → 0

uε → u0 in H1(Ω)-weak (2.2)

uε → u0 in L2(Ω) (2.3)
∂uε

∂x j

2s
−→

∂u0

∂x j
+

∂u1

∂y j
in L2(Ω) (1≤ j ≤ N) (2.4)

where u0 ∈ H1(Ω) and u1 ∈ L2(Ω;H1
#(Y)). Moreover, as E′ ∋ ε → 0 we have

∫
Ω

uε(x)
ε

ψ(x,
x
ε
)dx→

∫∫
Ω×Y

u1(x,y)ψ(x,y)dxdy (2.5)

for ψ ∈ D (Ω)⊗L2
#(Y).

Proof. The first part (2.2)-(2.4) is classical (see [1, 23]). The second part, (2.5), was proved
in [25] in the general framework of deterministic homogenization but as it is of great im-
portance in this paper and for the sake of completeness, we provide its proof in the periodic
setting. Letψ = (ϕ,θ) ∈ D (Ω)×L2

#(Y). By the mean value zero condition overY for θ we
conclude that there exists a unique solutionϑ ∈ H1

#(Y) to

{
∆yϑ = θ in Y

ϑ ∈ H1
#(Y).
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Putφ = Dyϑ. We get

∫
Ω

uε(x)
ε

ψ(x,
x
ε
)dx =

∫
Ω

uε(x)
ε

ϕ(x)θ(
x
ε
)dx=

∫
Ω

uε(x)ϕ(x)divxφ(
x
ε
)dx = −

∫
Ω

Dx(uε(x)ϕ(x)) ·φ(
x
ε
)dx

A limite passage(ε → 0) using (2.4) yields

lim
ε→0

∫
Ω

uε(x)
ε

ψ(x,
x
ε
)dx = −

∫∫
Ω×Y

[Dxu0(x)+Dyu1(x,y)]ϕ(x) ·φ(y)dydx

= −
∫∫

Ω×Y
Dyu1(x,y)ϕ(x) ·φ(y)dydx

=
∫∫

Ω×Y
u1(x,y)ϕ(x)divyφ(y)dydx

=
∫∫

Ω×Y
u1(x,y)ψ(x,y)dydx.

This completes the proof.

We now gather some preliminary results we will need in our homogenization processes.
We introduce the characteristic functionχG of

G= R
N
y \Θ

with
Θ =

⋃
k∈ZN

(k+T).

It follows from the closeness ofT thatΘ is closed inRN
y so thatG is an open subset ofRN

y .
Next, letε ∈ E be arbitrarily fixed and define

Vε = {u∈ H1(Ωε) : u= 0 on∂Ω}.

We equipVε with theH1(Ωε)-norm which makes it a Hilbert space. We recall the following
classical extension result [7].

Proposition 2.4. For eachε ∈ E there exists an operator Pε of Vε into H1
0(Ω) with the

following properties:

• Pε sends continuously and linearly Vε into H1
0(Ω).

• (Pεv)|Ωε = v for all v∈Vε.

• ‖D(Pεv)‖L2(Ω)N ≤ c‖Dv‖L2(Ωε)N for all v ∈Vε, where c is a constant independent ofε.

Now, let Qε = Ω \ (εΘ). This is an open set inRN and Ωε \Qε is the intersection
of Ω with the collection of the holes crossing the boundary∂Ω. We have the following
result which implies that the holes crossing the boundary∂Ω are of no effects as regards the
homogenization processes since they are in arbitrary narrow stripe along the boundary.
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Lemma 2.5. [24] Let K ⊂ Ω be a compact set independent ofε. There is someε0 > 0 such
that Ωε \Qε ⊂ Ω\K for any0< ε ≤ ε0.

Next, we introduce the space

F
1
0 = H1

0(Ω)×L2(Ω;H1
#(Y)

)
.

Endowed with the following norm

‖v‖
F1

0
= ‖Dxv0+Dyv1‖L2(Ω×Y) (v = (v0,v1) ∈ F

1
0),

F
1
0 is an Hilbert space admittingF∞

0 = D (Ω)× [D (Ω)⊗ C ∞
# (Y)] as a dense subspace. This

being so, for(u,v) ∈ F
1
0×F

1
0, let

aΩ(u,v) =
N

∑
i, j=1

∫∫
Ω×Y∗

ai j (y)

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂v0

∂xi
+

∂v1

∂yi

)
dxdy.

This define a symmetric, continuous bilinear form onF
1
0×F

1
0. We will need the following

results whose proof can be found in [9].

Lemma 2.6. Fix Φ = (ψ0,ψ1) ∈ F∞
0 and defineΦε : Ω → R (ε > 0) by

Φε(x) = ψ0(x)+ εψ1(x,
x
ε
) (x∈ Ω).

If (uε)ε∈E ⊂ H1
0(Ω) is such that

∂uε

∂xi

2s
−→

∂u0

∂xi
+

∂u1

∂yi
in L2(Ω) (1≤ i ≤ N)

as E∋ ε → 0 for someu = (u0,u1) ∈ F
1
0, then

aε(uε,Φε)→ aΩ(u,Φ)

as E∋ ε → 0, where

aε(uε,Φε) =
N

∑
i, j=1

∫
Ωε

ai j (
x
ε
)
∂uε

∂x j

∂Φε

∂xi
dx.

We now construct and point out the main properties of the so-called homogenized co-
efficients. Let 0≤ j ≤ N and put

a(u,v) =
N

∑
i, j=1

∫
Y∗

ai j (y)
∂u
∂y j

∂v
∂yi

dy,

l j(v) =
N

∑
k=1

∫
Y∗

ak j(y)
∂v
∂yk

dy

and
l0(v) =

∫
Y∗

ρ(y)v(y)dy
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for u,v∈ H1
#(Y). Equipped with the seminorm

N(u) = ‖Dyu‖L2(Y∗)N (u∈ H1
#(Y)), (2.6)

H1
#(Y) is a pre-Hilbert space that is nonseparate and noncomplete.Let H1

#(Y
∗) be its sepa-

rated completion with respect to the seminormN(·) andi the canonical mapping ofH1
#(Y)

into H1
#(Y

∗). we recall that

(i) H1
#(Y

∗) is a Hilbert space,

(ii) i is linear,

(iii) i(H1
#(Y)) is dense inH1

#(Y
∗),

(iv) ‖i(u)‖H1
# (Y

∗) = N(u) for everyu in H1
#(Y),

(v) If F is a Banach space andl a continuous linear mapping ofH1
#(Y) into F, then there

exists a unique continuous linear mappingL : H1
#(Y

∗)→ F such thatl = L◦ i.

Proposition 2.7. Let1≤ j ≤ N. The noncoercive local variational problems

u∈ H1
#(Y) and a(u,v) = l j(v) for all v ∈ H1

#(Y) (2.7)

and
u∈ H1

#(Y) and a(u,v) = l0(v) for all v ∈ H1
#(Y) (2.8)

admit each at least one solution. Moreover, ifχ j andθ j (resp. χ andθ) are two solutions
to (2.7) (resp. (2.8)), then

Dyχ j = Dyθ j (resp. Dyχ = Dyθ) a.e., in Y∗. (2.9)

Proof. We prove the result for (2.7). Proceeding as in the proof of [24, Lemma 2.5] we get a
unique symmetric, coercive, continuous bilinear formA(·, ·) onH1

#(Y
∗)×H1

#(Y
∗) such that

A(i(u), i(v)) = a(u,v) for all u,v∈ H1
#(Y). Based on (v) above, we consider the continuous

linear forml j(·) on H1
#(Y

∗) such thatl j(i(u)) = l j(u) for anyu∈ H1
#(Y). Thenχ j ∈ H1

#(Y)
satisfies (2.7) if and only ifi(χ j) satisfies

i(χ j) ∈ H1
#(Y

∗) and A(i(χ j),V) = l j(V) for all V ∈ H1
#(Y

∗). (2.10)

But i(χ j) is uniquely determined by (2.10). We deduce that (2.7) admits at least one solution
and ifχ j andθ j are two solutions, theni(χ j) = i(θ j), which meansχ j andθ j have the same
neighborhoods inH1

#(Y) or equivalentlyN(χ j −θ j) = 0. Hence (2.9).

Corollary 2.8. Let 1 ≤ i, j ≤ N and χ j ∈ H1
#(Y) be a solution to (2.7). The following

homogenized coefficients

qi j =
∫

Y∗
ai j (y)dy−

N

∑
l=1

∫
Y∗

ail (y)
∂χ j

∂yl
(y)dy (2.11)

are well defined in the sense that they do not depend on the solution to (2.7).
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Lemma 2.9. The following assertions are true: qji = qi j (1≤ i, j ≤ N) and there exists a
constantα0 > 0 such that

N

∑
i, j=1

qi j ξ jξi ≥ α0|ξ|2

for all ξ ∈R
N.

Proof. See e.g., [2].

We now say a few words on the existence result for (1.1). The weak formulation of
(1.1) reads: Find(λε,uε) ∈C×Vε, (uε 6= 0) such that

aε(uε,v) = λε(ρεuε,v)Ωε , v∈Vε, (2.12)

where

(ρεuε,v)Ωε =
∫

Ωε
ρεuεvdx.

Sinceρε changes sign, the classical results on the spectrum of semi-bounded self-adjoint
operators with compact resolvent do not apply. To handle this, we follow the ideas in [22].
The bilinear form(ρεuε,v)Ωε defines a bounded linear operatorKε : Vε →Vε such that

(ρεu,v)Ωε = aε(Kεu,v) (u,v∈Vε).

The operatorKε is symmetric and its domainsD(Kε) coincides with the wholeVε, thus it is
self-adjoint. Recall that the gradient norm is equivalent to theH1(Ωε)-norm onVε. Looking
atKεu as a solution to the boundary value problem





−div(a(
x
ε
)Dx(K

εu)) = ρεu in Ωε

a(
x
ε
)DxK

εu·n(
x
ε
) = 0 on∂Tε

Kεu(x) = 0 on∂Ω,

(2.13)

we get a constantC> 0 such that‖Kεu‖Vε ≤C‖u‖L2(Ωε). AsVε is compactly embedded in
L2(Ωε) (indeed,H1(Ωε) →֒ L2(Ωε) is compact as∂Ωε is C 1), the operatorKε is compact.
We can rewrite (2.12) as follows

Kεuε = µεuε, µε =
1
λε

.

Notice that (see e.g., [5]) in the caseρ ≥ 0 inY, the operatorKε is positive and its spectrum
σ(Kε) lives in [0,‖Kε‖] andµε = 0 belongs to the essential spectrumσe(Kε). The essential
spectrum of a self-adjoint operatorL is by definitionσe(L) = σ∞

p(L)∪σc(L), whereσ∞
p(L)

is the set of eigenvalues of infinite multiplicity andσc(L) is the continuous spectrum. The
spectrum ofKε is described by the following proposition whose proof is omitted since
similar to that of [22, Lemma 1].
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Lemma 2.10. Let ρ ∈ L∞
per(Y) be such that the sets{y ∈ Y∗ : ρ(y) < 0} and {y ∈ Y∗ :

ρ(y) > 0} are both of positive Lebesgue measure. Then for anyε > 0, we haveσ(Kε) ⊂
[−‖Kε‖,‖Kε‖] and µ= 0 is the only element of the essential spectrumσe(Kε). Moreover,
the discrete spectrum of Kε consists of two infinite sequences

µ1,+
ε ≥ µ2,+

ε ≥ ·· · ≥ µk,+
ε ≥ ·· · → 0+,

µ1,−
ε ≤ µ2,−

ε ≤ ·· · ≤ µk,−
ε ≤ ·· · → 0−.

Corollary 2.11. The hypotheses are those of Lemma 2.10. Problem (1.1) has a discrete set
of eigenvalues consisting of two sequences

0< λ1,+
ε ≤ λ2,+

ε ≤ ·· · ≤ λk,+
ε ≤ ·· · →+∞,

0> λ1,+
ε ≥ λ2,−

ε ≥ ·· · ≥ λk,−
ε ≥ ·· · → −∞.

We are now in a position to state the main results of this paper.

3 Homogenization results

In this section we state and prove homogenization results for both casesMY∗(ρ) > 0 and
MY∗(ρ) = 0. The homogenization results in the case whenMY∗(ρ)< 0 can be deduced from
the caseMY∗(ρ)> 0 by replacingρ with −ρ. We start with the less technical case.

3.1 The caseMY∗(ρ)> 0

We start with the homogenization result for the positive part of the spectrum(λk,+
ε ,uk,+

ε )ε∈E.

3.1.1 Positive part of the spectrum

We assume (this is not a restriction) that the correspondingeigenfunctions are orthonormal-
ized as follows ∫

Ωε
ρ(

x
ε
)uk,+

ε ul ,+
ε dx= δk,l k, l = 1,2, · · · (3.1)

The homogenization results states as

Theorem 3.1.For each k≥ 1 and eachε∈E, let(λk,+
ε ,uk,+

ε ) be the kth positive eigencouple
to (1.1) with MY∗(ρ)> 0 and (3.1). Then, there exists a subsequence E′ of E such that

λk,+
ε → λk

0 in R as E∋ ε → 0 (3.2)

Pεu
k,+
ε → uk

0 in H1
0(Ω)-weak as E′ ∋ ε → 0 (3.3)

Pεu
k,+
ε → uk

0 in L2(Ω) as E′ ∋ ε → 0 (3.4)

∂Pεu
k,+
ε

∂x j

2s
−→

∂uk
0

∂x j
+

∂uk
1

∂y j
in L2(Ω) as E′ ∋ ε → 0 (1≤ j ≤ N) (3.5)
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where(λk
0,u

k
0) ∈R×H1

0(Ω) is the kth eigencouple to the spectral problem




−
N

∑
i, j=1

∂
∂xi

(
1

MY∗(ρ)
qi j

∂u0

∂x j

)
= λ0u0 in Ω

u0 = 0 on ∂Ω∫
Ω
|u0|

2dx=
1

MY∗(ρ)
,

(3.6)

and where uk1 ∈ L2(Ω;H1
#(Y)). Moreover, for almost every x∈ Ω the following hold true:

(i) uk
1(x) is a solution to the noncoercive variational problem





uk
1(x) ∈ H1

#(Y)

a(uk
1(x),v) =−

N

∑
i, j=1

∂uk
0

∂x j

∫
Y∗

ai j (y)
∂v
∂yi

dy

∀v∈ H1
#(Y);

(3.7)

(ii) We have

i(uk
1(x)) =−

N

∑
j=1

∂uk
0

∂x j
(x)i(χ j) (3.8)

whereχ j is any function in H1
#(Y) defined by the cell problem (2.7).

Proof. We present only the outlines since this proof is similar but less technical to that of
the caseMY∗(ρ) = 0.

Fix k≥ 1. By means of the minimax principle, as in [30], one easily proves the existence
of a constantC independent ofε such thatλk,+

ε <C. Clearly, for fixedE ∋ ε > 0, uk,+
ε lies

in Vε, and
N

∑
i, j=1

∫
Ωε

ai j (
x
ε
)
∂uk,+

ε
∂x j

∂v
∂xi

dx= λk,+
ε

∫
Ωε

ρ(
x
ε
)uk,+

ε vdx (3.9)

for any v ∈ Vε. Bear in mind that
∫

Ωε ρ(x
ε )(u

k,+
ε )2dx= 1 and choosev = uk

ε in (3.9). The

boundedness of the sequence(λk,+
ε )ε∈E and the ellipticity assumption (1.2) imply at once by

means of Proposition 2.4 that the sequence(Pεu
k,+
ε )ε∈E is bounded inH1

0(Ω). Theorem 2.3
applies and gives usuk = (uk

0,u
k
1) ∈ F

1
0 such that for someλk

0 ∈ R and some subsequence
E′ ⊂ E we have (3.2)-(3.5), where (3.4) is a direct consequence of (3.3) by the Rellich-
Kondrachov theorem. For fixedε ∈ E′, let Φε be as in Lemma 2.6. Multiplying both
sides of the first equality in (1.1) byΦε and integrating overΩ leads us to the variational
ε-problem

N

∑
i, j=1

∫
Ωε

ai j (
x
ε
)
∂Pεu

k,+
ε

∂x j

∂Φε

∂xi
dx= λk,+

ε

∫
Ωε
(Pεu

k,+
ε )ρ(

x
ε
)Φε dx. (3.10)

Sendingε ∈ E′ to 0, keeping (3.2)-(3.5) and Lemma 2.6 in mind, we obtain

N

∑
i, j=1

∫∫
Ω×Y∗

ai j (y)

(
∂uk

0

∂x j
+

∂uk
1

∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
dxdy= λk

0

∫∫
Ω×Y∗

uk
0ψ0(x)ρ(y)dxdy.
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Therefore,(λk
0,u

k) ∈ R×F
1
0 solves the followingglobal homogenized spectral problem:





Find (λ,u) ∈ C×F
1
0 such that

N

∑
i, j=1

∫∫
Ω×Y∗

ai j (y)

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
dxdy= λMY∗(ρ)

∫
Ω

u0ψ0 dx

for all Φ ∈ F
1
0,

(3.11)

which leads to the macroscopic and microscopic problems (3.6)-(3.7) without any major
difficulty.

As regards the normalization condition in (3.6), we use the decompositionΩε = Qε ∪
(Ωε \Qε) and the equalityQε = Ω∩ εG. On the one hand, whenE′ ∋ ε → 0,

∫
Qε

ρ(
x
ε
)(Pεu

k,+
ε )(Pεu

l ,+
ε )dx→ MY∗(ρ)

∫
Ω

uk
0ul

0dx, k, l = 1,2, · · ·

since ∫
Qε

ρ(
x
ε
)(Pεu

k,+
ε )(Pεu

l ,+
ε )dx=

∫
Ω

χG(
x
ε
)ρ(

x
ε
)(Pεu

k,+
ε )(Pεu

l ,+
ε )dx

and (Pεu
k,+
ε )χε

Gρε ⇀ MY∗(ρ)uk
0 in L2(Ω)-weak andPεu

l ,+
ε → ul

0 in L2(Ω)-strong asE′ ∋
ε → 0. On the other hand, the same line of reasoning as in the proofof [9, Proposition 3.6]
leads to

lim
E′∋ε→0

∫
Ωε\Qε

ρ(
x
ε
)(Pεu

k,+
ε )(Pεu

l ,+
ε )dx= 0 (3.12)

The normalization condition in (3.6) follows thereby. In fact, we have just proved that
{uk,+

0 }∞
k=1 is an orthogonal basis inL2(Ω).

Remark3.2. • The eigenfunctions{uk
0}

∞
k=1 are orthonormalized by

∫
Ω

uk
0ul

0dx=
δk,l

MY∗(ρ)
k, l = 1,2,3, · · ·

• If λk
0 is simple (this is the case forλ1

0), then by Theorem 3.1,λk,+
ε is also simple, for

smallε, and we can choose the eigenfunctionsuk,+
ε such that the convergence results

(3.3)-(3.5) hold for the whole sequenceE.

• Replacingρ with −ρ in (1.1), Theorem 3.1 also applies to the negative part of the
spectrum in the caseMY∗(ρ)< 0.

3.1.2 Negative part of the spectrum

We now investigate the negative part of the spectrum(λk,−
ε ,uk,−

ε )ε∈E. Before we can do this
we need a few preliminaries and stronger regularity hypotheses onT, ρ and the coefficients
(ai j )

N
i, j=1. We assume in this subsection that∂T is C2,δ andρ and the coefficients(ai j )

N
i, j=1

areδ-Hölder continuous (0< δ < 1).
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Let H1
per(Y

∗) denotes the space of functions inH1(Y∗) assuming same values on the
opposite faces ofY. The following spectral problem is well posed





Find (λ,θ) ∈ C×H1
per(Y

∗)

−
N

∑
i, j=1

∂
∂y j

(
ai j (y)

∂θ
∂yi

)
= λρ(y)θ in Y∗

N

∑
i, j=1

ai j (y)
∂θ
∂y j

ni = 0 on ∂T

(3.13)

and possesses a spectrum with similar properties to that of (1.1), two infinite (positive and
negative) sequences. We recall that (3.13) admits a unique nontrivial eigenvalue having an
eigenfunction with definite sign, the first negative one, since we haveMY∗(ρ)> 0 (see e.g.,
[6, 14]). In the sequel we will only make use of(λ−

1 ,θ
−
1 ), the first negative eigencouple to

(3.13). After proper sign choice we assume that

θ−1 (y)> 0 in y∈Y∗. (3.14)

We also recall thatθ−1 is δ-Hölder continuous(see e.g., [11]), hence can be extendedto a
Y-periodic function living inL∞(RN

y ) still denoted byθ−1 . Notice that we have

∫
Y∗

ρ(y)(θ−1 (y))
2dy< 0, (3.15)

as is easily seen from the variational equality ( keep the ellipticity hypothesis (1.2) in mind)

N

∑
i, j=1

∫
Y∗

ai j
∂θ−1
∂y j

∂θ−1
∂yi

dy= λ−
1

∫
Y∗

ρ(y)(θ−1 (y))
2dy.

Bear in mind that problem (3.13) induces by a scaling argument the following equalities:





−
N

∑
i, j=1

∂
∂x j

(
ai j (

x
ε
)
∂θε

∂xi

)
=

1
ε2λρ(

x
ε
)θ(

x
ε
) in Qε

N

∑
i, j=1

ai j (
x
ε
)
∂θε

∂x j
ni(

x
ε
) = 0 on∂Qε,

(3.16)

whereθε(x) = θ(x
ε ). However,θε is not zero on∂Ω. We now introduce the following

spectral problem (with an indefinite density function)





Find (ξε,vε) ∈ C×Vε

−
N

∑
i, j=1

∂
∂x j

(
ãi j (

x
ε
)
∂vε

∂xi

)
= ξερ̃(

x
ε
)vε(x) in Ωε

N

∑
i, j=1

ãi j (
x
ε
)
∂vε(x)

∂x j
ni(

x
ε
) = 0 on∂Tε

vε(x) = 0 on∂Ω,

(3.17)
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with new spectral eigencouple(ξε,vε) ∈ C×Vε, whereãi j (y) = (θ−1 )
2(y)ai j (y) andρ̃(y) =

(θ−1 )
2(y)ρ(y). Notice thatãi j ∈ L∞

per(Y) andρ̃ ∈ L∞
per(Y). As 0< c− ≤ θ−1 (y) ≤ c+ < +∞

(c−,c+ ∈ R), the operator on the left hand side of (3.17) is uniformly elliptic and Theorem
3.1 applies to the negative part of the spectrum of (3.17) (see (3.15) and Remark 3.2). The
effective spectral problem for (3.17) reads





−
N

∑
i, j=1

∂
∂x j

(
q̃i j

∂v0

∂xi

)
= ξ0MY∗(ρ̃)v0 in Ω

v0 = 0 on∂Ω∫
Ω
|v0|

2dx=
−1

MY∗(ρ̃)
.

(3.18)

The effective coefficients{q̃i j }1≤i, j≤N being defined as expected, i.e.,

q̃i j =

∫
Y∗

ãi j (y)dy−
N

∑
l=1

∫
Y∗

ãil (y)
∂χ̃ j

1

∂yl
(y)dy, (3.19)

with χ̃l
1 ∈ H1

#(Y
∗) (l = 1, ...,N) being a solution to the following local problem





χ̃l
1 ∈ H1

#(Y
∗)

N

∑
i, j=1

∫
Y∗

ãi j (y)
∂χ̃l

1

∂y j

∂v
∂yi

dy=
N

∑
i=1

∫
Y∗

ãil (y)
∂v
∂yi

dy

for all v∈ H1
#(Y

∗).

(3.20)

Notice that the spectrum of (3.18) is as follows

0> ξ1
0 > ξ2

0 ≥ ξ3
0 ≥ ·· · ≥ ξ j

0 ≥ ·· · → −∞ as j → ∞.

Making use of (3.16), the same line of reasoning as in [30, Lemma 6.1] shows that the
negative spectral parameters of problems (1.1) and (3.17) verify:

uk,−
ε = (θ−1 )

εvk,−
ε (ε ∈ E, k= 1,2· · · )

and

λk,−
ε =

1
ε2λ−

1 +ξk,−
ε +o(1), (ε ∈ E, k= 1,2· · · ).

The presence of the termo(1) is due to integrals overΩε \Qε, like the one in (3.12), which
converge to zero withε, remember that (3.16) holds inQε but notΩε. As will be seen below,
the sequence(ξk,−

ε )ε∈E is bounded inR. In another words,λk,−
ε is of order 1/ε2 and tends

to−∞ asε goes to zero. It is now clear why the limiting behavior of negative eigencouples
is not straightforward as that of positive ones.

The suitable orthonormalization condition for (3.17) is the one the reader is expecting:
∫

Ωε
ρ̃(

x
ε
)vk,−

ε vl ,−
ε dx=−δk,l k, l = 1,2, · · · (3.21)

We now state the homogenization theorem for the negative part of the spectrum of (1.1).
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Theorem 3.3.For each k≥ 1and eachε∈E, let(λk,−
ε ,uk,−

ε ) be the kth negative eigencouple
to (1.1) with MY∗(ρ)> 0 and (3.21). Then, there exists a subsequence E′ of E such that

λk,−
ε −

λ−
1

ε2 → ξk
0 in R as E∋ ε → 0 (3.22)

Pεv
k,−
ε → vk

0 in H1
0(Ω)-weak as E′ ∋ ε → 0 (3.23)

Pεv
k,−
ε → vk

0 in L2(Ω) as E′ ∋ ε → 0 (3.24)

∂Pεv
k,−
ε

∂x j

2s
−→

∂vk
0

∂x j
+

∂vk
1

∂y j
in L2(Ω) as E′ ∋ ε → 0 (1≤ j ≤ N) (3.25)

where(ξk
0,v

k
0) ∈ R×H1

0(Ω) is the kth eigencouple to the spectral problem




−
N

∑
i, j=1

∂
∂xi

(
1

MY∗(ρ̃)
q̃i j

∂v0

∂x j

)
= ξ0v0 in Ω

v0 = 0 on ∂Ω∫
Ω
|v0|

2dx=
−1

MY∗(ρ̃)
,

(3.26)

and where vk1 ∈ L2(Ω;H1
#(Y)). Moreover, for almost every x∈ Ω the following hold true:

(i) vk
1(x) is a solution to the noncoercive variational problem





vk
1(x) ∈ H1

#(Y)

ã(vk
1(x),u) =−

N

∑
i, j=1

∂vk
0

∂x j

∫
Y∗

ãi j (y)
∂u
∂yi

dy

∀u∈ H1
#(Y);

(3.27)

(ii) We have

i(vk
1(x)) =−

N

∑
j=1

∂vk
0

∂x j
(x)i(χ̃ j ) (3.28)

whereχ̃ j is any function in H1
#(Y) defined by the cell problem (3.20).

Remark3.4. • The eigenfunctions{vk
0}

∞
k=1 are orthonormalized by

∫
Ω

vk
0vl

0dx=
−δk,l

MY∗(ρ̃)
k, l = 1,2,3, · · ·

• Replacingρ with −ρ in (1.1), Theorem 3.3 adapts to the positive part of the spectrum
in the caseMY∗(ρ)< 0.

3.2 The caseMY∗(ρ) = 0

We prove a homogenization result for both the positive part and the negative part of the
spectrum simultaneously. As will be clear in the proof of Theorem 3.5 below, we assume
in this case that the eigenfunctions are orthonormalized asfollows

∫
Ωε

ρ(
x
ε
)uk,±

ε ul ,±
ε dx=±εδk,l k, l = 1,2, · · · (3.29)
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Let χ0 be a solution to(2.8) and put

ν2 =
N

∑
i, j=1

∫
Y∗

ai j (y)
∂χ0

∂y j

∂χ0

∂yi
dy. (3.30)

Indeed, the right hand side of (3.30) is positive and does notdepend on a particular solution
to (2.8). We now recall that the following spectral problem for a quadratic operator pencil
with respect toν, 




−
N

∑
i, j=1

∂
∂x j

(
qi j

∂u0

∂xi

)
= λ2

0ν2u0 in Ω

u0 = 0 on∂Ω,

(3.31)

has a spectrum consisting of two infinite sequences

0< λ1,+
0 < λ2,+

0 ≤ ·· · ≤ λk,+
0 ≤ . . . , lim

n→+∞
λk,+

0 =+∞

and

0> λ1,−
0 > λ2,−

0 ≥ ·· · ≥ λk,−
0 ≥ . . . , lim

n→+∞
λk,−

0 =−∞.

with λk,+
0 = −λk,−

0 k = 1,2, · · · and with the corresponding eigenfunctionsuk,+
0 = uk,−

0 .
We note by passing thatλ1,+

0 andλ1,−
0 are simple. We are now in a position to state the

homogenization result in the present case.

Theorem 3.5. For each k≥ 1 and eachε ∈ E, let (λk,±
ε ,uk,±

ε ) be the(k,±)th eigencouple
to (1.1) with MY∗(ρ) = 0 and (3.29). Then, there exists a subsequence E′ of E such that

ελk,±
ε → λk,±

0 in R as E∋ ε → 0 (3.32)

Pεu
k,±
ε → uk,±

0 in H1
0(Ω)-weak as E′ ∋ ε → 0 (3.33)

Pεu
k,±
ε → uk,±

0 in L2(Ω) as E′ ∋ ε → 0 (3.34)

∂Pεu
k,±
ε

∂x j

2s
−→

∂uk,±
0

∂x j
+

∂uk,±
1

∂y j
in L2(Ω) as E′ ∋ ε → 0 (1≤ j ≤ N) (3.35)

where(λk,±
0 ,uk,±

0 )∈R×H1
0(Ω) is the(k,±)th eigencouple to the following spectral problem

for a quadratic operator pencil with respect toν,





−
N

∑
i, j=1

∂
∂xi

(
qi j

∂u0

∂x j

)
= λ2

0ν2u0 in Ω

u0 = 0 on ∂Ω

(3.36)

and where uk,±1 ∈ L2(Ω;H1
#(Y)). We have the following normalization condition

∫
Ω
|uk,±

0 |2dx=
±1

λk,±
0 ν2

k= 1,2, · · · (3.37)
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Moreover, for almost every x∈ Ω the following hold true:
(i) uk,±

1 (x) is a solution to the noncoercive variational problem





uk,±
1 (x) ∈ H1

#(Y)

a(uk,±
1 (x),v) = λk,±

0 uk
0(x)

∫
Y∗

ρ(y)v(y)dy−
N

∑
i, j=1

∂uk,+
0

∂x j
(x)

∫
Y∗

ai j (y)
∂v
∂yi

dy

∀v∈ H1
#(Y);

(3.38)

(ii) We have

i(uk,±
1 (x)) = λk,±

0 uk
0(x)i(χ

0)−
N

∑
j=1

∂uk,±
0

∂x j
(x)i(χ j ) (3.39)

whereχ j (1≤ j ≤ N) andχ0 are functions in H1
#(Y) defined by the cell problems (2.7) and

(2.8), respectively.

Proof. Fix k≥ 1, using the minimax principle, as in [30], we get a constantC independent
of ε such that|ελk,±

ε |<C. We haveuk,±
ε ∈Vε and

N

∑
i, j=1

∫
Ωε

ai j (
x
ε
)
∂uk,±

ε
∂x j

∂v
∂xi

dx= (ελk,±
ε )

1
ε

∫
Ωε

ρ(
x
ε
)uk,±

ε vdx (3.40)

for any v ∈ Vε. Bear in mind that
∫

Ωε ρ(x
ε )(u

k,±
ε )2dx= ±ε and choosev = uk

ε in (3.40).

The boundedness of the sequence(ελk,±
ε )ε∈E and the ellipticity assumption (1.2) imply

at once by means of Proposition 2.4 that the sequence(Pεu
k,±
ε )ε∈E is bounded inH1

0(Ω).
Theorem 2.3 applies and gives usuk,± = (uk,±

0 ,uk,±
1 ) ∈ F

1
0 such that for someλk,±

0 ∈ R and
some subsequenceE′ ⊂ E we have (3.32)-(3.35), where (3.34) is a direct consequenceof
(3.33) by the Rellich-Kondrachov theorem. For fixedε ∈ E′, let Φε be as in Lemma 2.6.
Multiplying both sides of the first equality in (1.1) byΦε and integrating overΩ leads us to
the variationalε-problem

N

∑
i, j=1

∫
Ωε

ai j (
x
ε
)
∂Pεu

k,±
ε

∂x j

∂Φε

∂xi
dx= (ελk,±

ε )
1
ε

∫
Ωε
(Pεu

k,±
ε )ρ(

x
ε
)Φε dx.

Sendingε ∈ E′ to 0, keeping (3.32)-(3.35) and Lemma 2.6 in mind, we obtain

aΩ(uk,±,Φ) = λk,±
0

∫∫
Ω×Y∗

(
uk,±

1 (x,y)ψ0(x)ρ(y)+uk,±
0 ψ1(x,y)ρ(y)

)
dxdy (3.41)

The right-hand side follows as explained below. Using the decompositionΩε = Qε ∪ (Ωε \
Qε) and the equalityQε = Ω∩ εG we arrive at

1
ε

∫
Ωε
(Pεu

k,±
ε )ρ(

x
ε
)Φε dx =

1
ε

∫
Ω
(Pεu

k,±
ε )ψ0(x)ρ(

x
ε
)χG(

x
ε
)dx

+
∫

Ω
(Pεu

k,±
ε )ψ1(x,

x
ε
)ρ(

x
ε
)χG(

x
ε
)dx+o(1).
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On the one hand we have

lim
E′∋ε→0

∫
Ω
(Pεu

k,±
ε )ψ1(x,

x
ε
)ρ(

x
ε
)χG(

x
ε
)dx=

∫∫
Ω×Y

uk,±
0 ψ1(x,y)ρ(y)χG(y)dxdy.

On the other hand, owing to (2.5) of Theorem 2.3, the following holds:

lim
E′∋ε→0

1
ε

∫
Ω
(Pεu

k,±
ε )ψ0(x)ρ(

x
ε
)χG(

x
ε
)dx=

∫∫
Ω×Y

uk,±
1 (x,y)ψ0(x)ρ(y)χG(y)dxdy.

IndeedρχG ∈ L2
#(Y) as we clearly have

∫
Y ρ(y)χG(y)dy=

∫
Y∗ ρ(y)dy= 0. We have just

proved that(λk,+
0 ,uk,±) ∈ R×F

1
0 solves the followingglobal homogenized spectral prob-

lem: 



Find (λ,u) ∈ C×F
1
0 such that

aΩ(u,Φ) = λ
∫∫

Ω×Y∗
(u1(x,y)ψ0(x)ρ(y)+u0ψ1(x,y)ρ(y))dxdy

for all Φ ∈ F
1
0.

(3.42)

To prove (i), chooseΦ = (ψ0,ψ1) in (3.41) such thatψ0 = 0 and ψ1 = ϕ ⊗ v1, where
ϕ ∈ D (Ω) andv1 ∈ H1

#(Y) to get

∫
Ω

ϕ(x)

[
N

∑
i, j=1

∫
Y∗

ai j (y)

(
∂uk,±

0

∂x j
+

∂uk,±
1

∂y j

)
∂v1

∂yi
dy

]
dx=

∫
Ω

ϕ(x)
[

λk,±
0 uk,±

0 (x)
∫

Y∗
v1(y)ρ(y)dy

]
dx

Hence by the arbitrariness ofϕ, we have a.e. inΩ

N

∑
i, j=1

∫
Y∗

ai j (y)

(
∂uk,±

0

∂x j
+

∂uk,±
1

∂y j

)
∂v1

∂yi
dy= λk,±

0 uk,±
0 (x)

∫
Y∗

v1(y)ρ(y)dy

for anyv1 in H1
#(Y), which is nothing but (3.38).

Fix x∈ Ω, multiply both sides of (2.7) by− ∂uk,±
0

∂xj
(x) and sum over 1≤ j ≤ N. Adding

side by side to the resulting equality that obtained after multiplying both sides of (2.8) by

λk,±
0 uk,±

0 (x), we realize thatz(x) = −∑N
j=1

∂uk,±
0

∂xj
(x)χ j (y)+ λk,±

0 uk,±
0 (x)χ0(y) solves (3.38).

Hencei(z(x)) = i(uk,±
1 (x)) by uniqueness of the solution to the coercive variational problem

in H1
#(Y

∗) corresponding to the non-coercive variational problem (3.38) (see the proof of
Proposition 2.7). Thus (3.39) sincei is linear.

This being so, we recall that (3.39) precisely means that almost everywhere inx∈ Ω,

Dyu
k,±
1 (x) = λk,±

0 uk,±
0 (x)Dyχ0−

N

∑
j=1

∂uk,±
0

∂x j
(x)Dyχ j a.e. inY∗, (3.43)

so that there is somec∈ L2(Ω) with

uk,±
1 (x,y) = λk,±

0 uk,±
0 (x)χ0(y)−

N

∑
j=1

∂uk,±
0

∂x j
(x)χ j(y)+c(x) a.e. inY∗. (3.44)
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Considering nowΦ = (ψ0,ψ1) in (3.41) such thatψ0 ∈ D (Ω) andψ1 = 0 we get

N

∑
i, j=1

∫∫
Ω×Y∗

ai j (y)

(
∂uk,±

0

∂x j
+

∂uk,±
1

∂y j

)
∂ψ0

∂xi
dxdy= λk,±

0

∫∫
Ω×Y∗

uk,±
1 (x,y)ρ(y)ψ0(x)dxdy,

which by means of (3.43) and (3.44) leads to

N

∑
i, j=1

∫
Ω

qi j
∂uk,±

0

∂x j

∂ψ0

∂xi
dx+λk,±

0

N

∑
i, j=1

∫
Ω

uk,±
0 (x)

∂ψ0

∂xi
dx

(∫
Y∗

ai j (y)
∂χ0

∂y j
(y)dy

)

=−λk,±
0

N

∑
j=1

∫
Ω

∂uk,±
0

∂x j
ψ0(x)dx

(∫
Y∗

ρ(y)χ j(y)dy

)
(3.45)

+(λk,±
0 )2

∫
Ω

uk,±
0 (x)ψ0(x)dx

(∫
Y∗

ρ(y)χ0(y)dy

)
.

The term withc(x) vanishes because ofMY∗(ρ) = 0. Choosingχl (1 ≤ l ≤ N) as test
function in (2.8) andχ0 as test function in (2.7) we observe that

N

∑
j=1

∫
Y∗

al j (y)
∂χ0

∂y j
(y)dy=

∫
Y∗

ρ(y)χl (y)dy= a(χl ,χ0) (l = 1, · · ·N).

Thus, in (3.45), the second term in the left hand side is equalto the first one in the right
hand side. This leaves us with

∫
Ω

qi j
∂uk,±

0

∂x j

∂ψ0

∂xi
dx= (λk,±

0 )2
∫

Ω
uk,±

0 (x)ψ0(x)dx

(∫
Y∗

ρ(y)χ0(y)dy

)
. (3.46)

Choosingχ0 as test function in (2.8) reveals that
∫

Y∗
ρ(y)χ0(y)dy= a(χ0,χ0) = ν2.

Hence
N

∑
i, j=1

∫
Ω

qi j
∂uk,±

0

∂x j

∂ψ0

∂xi
dx= (λk,±

0 )2ν2
∫

Ω
uk,±

0 (x)ψ0(x)dx,

and

−
N

∑
i, j=1

∂
∂xi

(
qi j

∂uk,±
0

∂x j
(x)

)
= (λk,±

0 )2ν2uk,±
0 (x) in Ω.

Thus the convergence (3.32) holds for the whole sequenceE. As regards (3.37), we notice
that for fixedk≥ 1 and anyφ ∈ D (Ω) one has (keep (2.5) in mind)

lim
E′∋ε→0

1
ε

∫
Ω
(Pεu

k,±
ε )φ(x)ρ(

x
ε
)χG(

x
ε
)dx=

∫∫
Ω×Y∗

uk,±
1 (x,y)φ(x)ρ(y)dxdy.

Hence, asE′ ∋ ε → 0

1
ε
(Pεu

k,±
ε )ρεχε

G ⇀
∫

Y∗
uk,±

1 (·,y)ρ(y)dy in L2(Ω)−weak.
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Using once again the decompositionΩε = Qε∪ (Ωε \Qε) and the equalityQε = Ω∩εG, we
get asE′ ∋ ε → 0

1
ε

∫
Ωε
(Pεu

k,±
ε )(Pεu

l ,±
ε )ρ(

x
ε
)dx→

∫∫
Ω×Y∗

uk,±
1 (x,y)ul ,±

0 (x)ρ(y)dxdy,

for fixed l ≥ 1. This together with (3.29) and (3.44) yields

λk,±
0 ν2

∫
Ω

ul ,±
0 uk,±

0 dx−
N

∑
j=1

a(χ j ,χ0)
∫

Ω

∂uk,±
0

∂x j
ul ,±

0 dx=±δk,l , k, l = 1,2, · · · (3.47)

If k= l , then by Green’s formula the sum on the left hand side vanishes and (3.47) reduces
to the desired result. This concludes the proof.

Remark3.6. • The eigenfunctions{uk,±
0 }∞

k=1 are orthonormalized by

∫∫
Ω×Y∗

ul ,±
1 (x,y)uk,±

0 (x)ρ(y)dxdy=
∫∫

Ω×Y∗
uk,±

1 (x,y)ul ,±
0 (x)ρ(y)dxdy=±δk,l

k, l = 1,2, · · ·

• If λk,±
0 is simple (this is the case forλ1,±

0 ), then by Theorem 3.5,λk,±
ε is also simple,

for small ε, and we can choose the eigenfunctionsuk,±
ε such that the convergence

results (3.3)-(3.5) hold for the whole sequenceE.
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