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Abstract

Electrodynamic phenomena related to vortices in superconductors have

been studied since their prediction by Abrikosov, and seem to hold no fun-

damental mysteries. However, most of the effects are treated separately,

with no guiding principle. We demonstrate that the relativistic vortex

worldsheet in spacetime is the object that naturally conveys all electric

and magnetic information, for which we obtain simple and concise equa-

tions. Breaking Lorentz invariance leads to down-to-earth Abrikosov vor-

tices, and special limits of these equations include for instance dynamic

Meissner screening and the AC Josephson relation. On a deeper level, we

explore the electrodynamics of two-form sources in the absence of elec-

tric monopoles, in which the electromagnetic field strength itself acquires

the characteristics of a gauge field. This novel framework leaves room for

unexpected surprises.

1 Introduction.

The study of the matter formed from Abrikosov vortices in type-II superconduc-
tors[1] constitutes a vast and mature research subject. This subject is crucial for
the technological applications of superconductivity[2] but it has also proven to be
a fertile source for fundamental condensed matter physics research. The elastic
and hydrodynamical properties of matter formed from vortices can be very easily
tuned by external means and it has demonstrated to be an exceedingly fertile
model system to study generic questions regarding crystallization, the effects of
background quenched disorder and so forth[3, 4]. Especially after the discovery
of the cuprate high-Tc superconductors it became also possible to study the
fluids formed from vortices. Because of the strongly two-dimensional nature
of the superconductivity in the cuprates, the Abrikosov vortex lattice becomes
particularly soft and it melts easily due to thermal motions at temperatures
that are much below the mean field Hc2-line [5].

Many phenomena in this field are of a dynamical nature, associated with the
fact that vortices are in motion. This includes the vortex flow, the magnetic
field penetration and the flux creep, but also the large Nernst effect of the
vortex fluid and, perhaps most spectacularly, the use of cuprate vortices as
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source of terahertz radiation[6, 7]. This vortex dynamics is analogous to the
magnetohydrodynamics of electrically charged plasmas in the sense that the
forces exerted on vortices are exclusively of electromagnetic origin, while in turn
the vortex matter backreacts on the electromagnetic fields. The phenomena
that arise are rather thoroughly understood departing from the AC-and DC-
Josephson relations as well as the Maxwell equations as the force equations in
this “vortex magneto-hydrodynamics”.

Although the computations explaining these phenomena are correct, they are
of a rather improvised ad hoc nature, at least compared to the Landau–Lifshitz
style[8] of deriving the usual magnetohydrodynamics from first principles. In
so far as the forces are concerned, the latter eventually departs from the micro-
scopic action describing Maxwell electrodynamics,

S =

∫

d4x LMaxwell, (1)

LMaxwell = −1

4
FµνFµν +AµJµ, (2)

where the conserved currents Jµ parametrize the world lines of the charged
particle forming the plasma, sourcing via the electromagnetic gauge fields Aµ

the electromagnetic field strength Fµν = ∂µAν −∂νAµ. Varying the action with
respect to Aν one obtains the Euler–Lagrange equations of motion,

∂µFµν = −Jν , (3)

the Maxwell equations in relativistic shorthand notation. What are the corre-
sponding equations, dealing with the Abrikosov vortices sourcing the electro-
magnetic fields? In a related but yet different context[9] we stumbled on this
question, finding out that the answer is apparently not available in the literature.
To our impression this is rooted in the fact that one needs a piece of mathe-
matical technology that is unfamiliar to condensed matter physicists, while it
is well known in differential geometry[10] and string theory[11]. We refer to the
formalism of two-form gauge theory. This amounts to a generalization of the
familiar “one-form” Maxwell (and Yang–Mills) gauge theories characterized by
gauge fields (vector potentials) Aµ that carry one label. Instead one has gauge
fields bµν , representing antisymmetric tensors, that have gauge transformations
in the form of the addition of the gradient of a vector field (that therefore looks
like a Maxwell field strength fµν = ∂µaν − ∂νaµ even though the meaning is
completely different): bµν → bµν + fµν . How can such a structure arise?

The key ingredient is that vortices as topological excitations of the supercon-
ductor are lines in 3-dimensional space when they are static. Invoking time as
one should using the action principle, these lines spread out in space time as sur-
faces or world sheets, in the same way as point particles correspond with world
lines. In fact, in string theory, Abrikosov vortices are known as “Nielsen–Olesen
strings”[12], regarded as rather primitive as compared to the fundamental “crit-
ical” strings. We can now rely on Schwinger’s principle [13] that the sources are
the principal objects, emitting and absorbing the force-mediating gauge fields.
Dealing with point particles as the sources, their infinitesimal world line inter-
vals are parametrized in terms of a charge density ρ and current J which can be
combined in the spacetime covariant current Jµ = (cρ,J) of Eq.’s (2) and (3),
that satisfies a continuity equation,

∂µJµ = ∂tρ+∇ · J = 0. (4)
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The continuity equation is also a constraint that removes the longitudinal com-
ponent of Jµ. The fields Aµ that couple to Jµ are therefore gauge fields, since
the longitudinal component is not sourced and as a consequence not physical.
In this context of electromagnetic currents, the field Aµ just corresponds with
the photon gauge field.

In the case of the world sheets formed by the vortices in 3+1-dimensional
spacetime one has to depart instead from infinitesimal world sheet areas and
these have to be parametrized in antisymmetric tensors JV

µν . In analogy with the
particle currents, these “two-form currents” will source two-form gauge fields,
subjected to the transversality condition. The vortex action has therefore to
contain a term bµνJµν where bµν is a two-form gauge field. As we will show,
for the vortices in 3+1 dimensions the pieces fit in a remarkably elegant way:
instead of the gauge potential Aµ, now the physical electric and magnetic fields
E and B as collected in the Maxwell field strength Fµν , couple minimally as
two-form gauge fields to the vortex world sheet current. As we will show, this
gauge coupling involves actually the (Hodge) dual of the electromagnetic field
strength, so that the coupling term is Fµνǫ

µνκλJV
κλ, where ǫµνκλ is the fully

antisymmetric Levi-Civita symbol. Remarkably, in so far this “Schwinger side”
is concerned, the one-form Maxwell theory is lifted by an emergent gauge invari-
ance to a two-form gauge theory. Given that inside the type-II superconductor
only vortices are present as sources for the electromagnetic fields, and since these
carry only magnetic fluxes and no electrical monopole charges, the Maxwell field
strengths of the fundamental vacuum lose their physical meaning and turn into
gauge fields. However, there is a caveat: besides the vortices the electromag-
netic fields also experience the Meissner- and Thomas–Fermi screening. These
restore the physical reality of the Maxwell field strengths, explicitly breaking
the two-form gauge invariance. Only in the extreme type-II limit, where both
the Meissner and Thomas-Fermi screening lengths diverge, the emergent two-
form gauge invariance becomes literal. Otherwise the two-form gauge theory is
forced in a “fixed frame” corresponding with the generalized Lorenz gauge fix
of the fully gauge invariant theory. This peculiar gauge theoretical structure is
the key to the special nature of vortex electrodynamics.

On the practical side, with this mathematical technology at hand it is
straightforward to derive the fundamental action and equations of motion gov-
erning the electrodynamics of vortices in type-II superconductors: Eqs. (16) and
(61), (64) & (65) for the simpler relativistic- and the realistic non-relativistic vor-
tices, respectively. These originate from an action Eq. (29) resp. (56). Merely
for reasons of convenience we will develop much of the theory in the relativistic
limit where it is assumed that the superfluid phase velocity is coincident with
the speed of light. As in electrodynamics, this greatly simplifies the equations
and it is easier to follow the argument. Of course, in real superconductors this
phase velocity is a small fraction of the light velocity and it is straightforward
to break the Lorentz invariance to obtain the equations presented in Section 6
which are of relevance to earthly superconductors.

We claim that these equations of motion represent a fundamental and com-
plete description of the electrodynamics of the Abrikosov vortices in super-
conductors. We will demonstrate that all known physical properties associated
with this electrodynamics are economically encoded in this formalism: Thomas–
Fermi screening and dynamical Meissner screening, the electric fields induced
by vortex motion and the Nernst effect, the AC Josepson effect and radiation
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due to vortex motion. These all arise as special limits of our general equations.
Admittedly we have not achieved extracting new vortex physics but we believe
that there is a potential for surprises. We invite the expert readership to have a
closer look to find out whether they can profit from this particularly convenient
mathematical formulation of the problem.

The paper is organized as follows: the fundamental definition of a vortex
is reviewed in Section 2, and it is shown how vortices are described as world
lines and world sheets. In Section 3 we show how, in a superconductor, the vor-
tex world sheet dynamics follows directly from the time-dependent Ginzburg–
Landau equations by a single mathematical derivative operation. This is the
easiest way to actually obtain our central results. The next two sections have a
theoretical emphasis: in Section 4 we motivate the general mathematical struc-
ture of the electrodynamics sourced by two-form fields. We demonstrate here
that the field strength Fµν becomes itself a gauge field. A rigorous deriva-
tion of the action governing the electrodynamics of vortex sources using duality
techniques is presented in Section 5. This comprises the dual gauge field that
mediates interactions between vortices. Finally, by breaking the Lorentz in-
variance we derive the equations of motion of vortex electrodynamics from this
action in their full extent in Section 6, and we derive the physical phenomena
mentioned in the previous paragraph. Finally, in the Appendix this structure is
formulated in the general mathematical language of differential forms, allowing
us to extend the results to any spatial dimension larger than 2.

2 Vortex fields.

Let us consider vortices in type-II superconductors. These are of course the
familiar flux lines where the magnetic field penetrates through the supercon-
ducting sample, but the more profound statement is that a vortex is a region
where the superconducting phase is singular. Let us repeat precisely what is
meant by this for the case of a 2+1-dimensional superconductor. This argument
applies just as well to a superfluid (uncharged superconductor). More details
are found in Kleinert’s textbook [14, ch. II.1].

In the Ginzburg–Landau description, the parent state of a superconductor
obeys a U(1) symmetry, as the phase ϕ of the complex order parameter Ψ =
|Ψ|eiϕ is only defined up to global1 transformations Ψ → Ψeiα. However, across
the phase transition, the amplitude obtains a vacuum expectation value, and
one of all possible phases is singled out. This is the well known phenomenon of
spontaneous symmetry breaking. Hence, the superconductor is a state where
the phase has a preferred value over large length scales (Fig. 1(a)). It is now
possible that the system is disturbed so that a vortex is formed. In two spatial
dimensions, a vortex is pointlike (a ‘vortex pancake’). Tracking the deviation
of the phase from its preferred value along a contour C around the vortex origin
reveals that the phase changes by 2πN , where N is the winding number (Fig.
1(b)). The mathematical statement is,

∮

C

dxµ ∂µϕ = 2πN. (5)

1In a superconductor this is lifted to the local U(1) gauge symmetry of electromagnetism,
but that does not matter here as is well known. As we will see explicitly, the gauge symmetry
can be included in a next step.

4



(a) Phase coherence. Sponta-

neous symmetry breaking singles

out a preferred phase value.

C

(b) Vortex. A single vortex of winding num-

ber 1. Tracking the phase change along the

contour C (red) adds up to 2π. Also shown in

hatched red is the surface S enclosed by C.

Figure 1: Phase coherence and its distortion by a vortex. The hallmark of the

superconductor is the long-range correlations in the order parameter phase. The phase is a com-

pact variable, and as such permits vortex configurations, that cause the phase to change along its

perimeter in multiples of 2π only.

We can now formally invoke Stokes’ theorem, by converting the contour integral
into a surface integral of the curl of the integrand, over the surface S enclosed
by C,

∫

S

dSλǫλνµ ∂ν∂µϕ = 2πN. (6)

This is allowed rigorously only when ϕ is non-singular in all of S, but we turn
necessity into virtue by noticing that the above equation is satisfied when,

ǫλνµ∂ν∂µϕ(x) = 2πNδ
(2)
λ (x). (7)

Here δ
(2)
λ (x) is a two-dimensional delta-function in the plane orthogonal to λ.

It is only non-zero at the origin. This corresponds to the fact that for a vortex
ϕ is singular at the origin. For the same reason, the derivatives on the left-hand
side do not commute and the expression is not manifestly zero, as one would
expect for the contraction with the fully antisymmetric tensor ǫλνµ.

We define,
JV
λ (x) = ǫλνµ∂ν∂µϕ(x), (8)

as the vortex current. Its temporal component,

JV
t (x) = (∂x∂y − ∂y∂x)ϕ(x) = δ(2)(x), (9)

is the density of vorticity, just as ρ is the charge density related to the electro-
magnetic four-current Jµ = (cρ,J). Similarly, the spatial part JV

l represents the
current or the flow of the vortex. Together, the density and the current satisfy
a continuity equation,

∂λJ
V
λ = ∂tJ

V
t + ∂lJ

V
l = 0. (10)

The density of vorticity can only decrease (increase) when the vortex flows away
from (towards) the current location. In terms of Eq. (7), the continuity equation
is a conservation law or integrability condition, signalling that vortex world lines
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x

y

JµJt
J

(a) Vortex world line. Segment of a vortex world

line (red) in 2+1 dimensions. Shown in blue is the

line element Jµ and it temporal and spatial com-

ponents Jt and J. For an electric monopole, these

correspond to the charge and current densities ρ

and J.

t

x

y

κλ

(b) Vortex world sheet. Segment of a

vortex line tracing out a world sheet in

time. The vortex lies in the x-y-plane,

the third spatial dimension cannot be

drawn. Shown in blue is the world sheet

surface element Jκλ.

Figure 2: Vortex world line and world sheet A graphical picture of dynamical system

is provided by tracing the motion of particles or line objects through time. The traces are called

world lines or world sheets. In field theory, they are represented by one- or two-form fields, which

represent the line or surface elements of the world line or sheet. If the world lines or sheets can not

end in the middle of a system, the one- or two-form fields are conserved, as ∂µJµ = 0 or ∂κJκλ = 0.

cannot begin or end in the middle of a superconductor. It is revealing to regard
JV
λ as representing the world line of a vortex itself (Fig. 2(a)). At each point in

spacetime x, JV
λ (x) is the line element of the world line; its temporal component

reflects the density (in multiples of 2π) and the spatial components indicate in
which direction the vortex is moving.

With the physical meaning of the mathematical definition Eq. (8) being
explicit, we are now ready to generalize to 3+1 dimensions. In three spatial
dimensions the topological defects are vortex lines. In spacetime such a line
traces out a world sheet. In direct analogy with JV

λ (x) being understood as the
line element of a vortex world line, we now define,

JV
κλ(x) = ǫκλνµ∂ν∂µϕ(x) = 2πNδ

(2)
κλ (x), (11)

as the surface element of the vortex world sheet (Fig. 2(b)). In four space-time
dimensions, the Levi-Civita symbol ǫκλνµ has four indices. The vortex current is
antisymmetric in its indices κλ, which should be the case since those indices can
never be parallel when we are to define a surface element. The delta-function is
in the plane perpendicular to the world sheet.

What is the physical meaning of the six independent components of JV
κλ?

Analogous to the situation in 2+1 dimensions, the temporal components JV
tl

represents the density of vorticity of a vortex line along the l-direction, while
JV
kl is the flow of vorticity in the k-direction of a vortex line along the l-direction.

Since vorticity is topologically conserved, there cannot be any vortex flow in the
direction in which it is pointing, hence the antisymmetry in k and l. For each
spatial direction l there is a continuity equation relating the decrease (increase)
in vorticity to its flow away (towards) the current location. This may be sum-
marized as ∂κJ

V
κλ = 0. This generalizes the continuity equation to the flow of

strings; notice that this involves three independent conditions instead of the sin-
gle condition one finds for particles. To gain some intuition, imagine a straight
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vortex line in the z-direction, the density of which is given by JV
tz . It can move in

either the x- or the y-direction, denoted by JV
xz and JV

yz respectively. Together
they satisfy the continuity equation,

∂tJ
V
tz + ∂xJ

V
xz + ∂yJ

V
yz = 0. (12)

In the following sections it will become clear that treating vortex dynamics
in terms of its world sheet dynamics is simple and straightforward, allowing for
immediate derivations of many standard relations in superconductivity.

3 The vortex world sheet in relativistic super-

conductors.

We will now show how the vortex world sheet appears from the Ginzburg–
Landau equations. In section 4, we shall derive the more generic coupling of a
vortex current to electromagnetic fields.

Since we are pursuing a relativistic treatment, we adopt an action rather than
a Hamiltonian approach, where time coordinates and derivatives are treated on
equal footing with their spatial counterparts. At any time, the equations familiar
from condensed matter can be obtained from the spatial part of the Lagrangian.

Before we write down the partition function let us stress that it may be less
familiar to researchers in the field of superconductivity, since it will be fully rela-
tivistic. In particular it will have a squared time-derivative, whereas most works
start with a single time-derivative term. The latter applies to systems which
are diffusion-limited. Of course, in actual superconductors vortices are accom-
panied by such diffusion processes. However, the relativistic action is necessary
to derive the vortex worldsheet. Futhermore processes such as Thomas–Fermi
screening are in fact ballistic. Finally the validity of this relativistic approach is
verified by the results of Section 6. If one wishes to consider diffusion processes,
an appropriate term can be added to the Lagrangian at will.

The partition function associated with the relativistic Ginzburg–Landau ac-
tion deep in the superconducting state is,

Z =

∫

DϕDAµ F(Aµ) e
i/~

∫
d4x L, (13)

L = − 1

4µ0
F 2
µν − ~

2

2m∗
ρs(∂

ph
µ ϕ− e∗

~
Aph

µ )2. (14)

Here Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength; F(Aµ) denotes
an appropriate gauge fixing condition; ϕ is the superconducting phase related
to the order parameter Ψ =

√
ρse

iϕ; ρs is the superfluid density; m∗ and e∗ are
the mass and charge of a Cooper pair; and most importantly, one must take
great care to differentiate between the two velocities in the problem, namely
the velocity of light c pertaining to the photon field Aµ, and the phase velocity
in the superconductor cph. Therefore we have defined ∂µ = (∂0,∇), ∂0 = 1

c∂t

and ∂ph
µ = (∂ph

0 ,∇), ∂ph
0 = 1

cph
∂t. Furthermore Aµ = (− 1

cV,A) and Aph
µ =

(− 1
cph

V,A). The last form is dictated by gauge invariance of the second term

in Eq. (14). The metric is ηµν = diag(−1, 1, 1, 1), but we shall use only lower
indices for notational simplicity.

7



We shall for the moment proceed in the relativistic limit where cph = c, for
simplicity. The equations of motion then follow from variation with respect to
Aν ,

∂µ
∂L

∂(∂µAν)
− ∂L

∂Aν
= − 1

µ0
∂µ(∂µAν −∂νAµ)−

~
2

m∗
ρs
e∗

~
(∂νϕ− e∗

~
Aν) = 0. (15)

Now we act with ǫκλρν∂ρ on this equation, which leads to,

− λ2(ǫκλρν∂
2
µ∂ρAν −

✘
✘
✘
✘✘ǫκλρν∂ρ∂ν∂µAµ) + ǫκλρν∂ρAν =

~

e∗
ǫκλρν∂ρ∂νϕ =

~

e∗
JV
κλ.

(16)

Here we have defined the London penetration depth λ =
√

m∗

µ0e∗2ρs
; the second

term vanishes because the antisymmetric contraction of two derivatives; and
on the right-hand side we recognize from Eq. (11) the definition of the vortex
current JV

κλ. Let us consider the special case κ = t, and use the definition of
the magnetic field Bl = ǫlrn∂rAn,

− λ2∂2
µBl +Bl =

~

e∗
JV
tl =

~

e∗
2πNδ

(2)
l (x). (17)

Here we have used relation Eq. (11). This is precisely the textbook equation
for the Meissner screening of a vortex source of strength N , with flux quantum
Φ0 = 2π~/e∗ [15, eq.(5.10)]. But instead of ad hoc inserting the delta-function
source, we actually derived it from the singular phase field. The only difference is
that here also the dynamics are taken into account via the double time derivative
contained in ∂2

µ. The true power of the vortex world sheet shows itself when

considering the electric field E = −∇A0 − ∂tA and the spatial components JV
kl

of the vortex field. This will be further elaborated on in Section 6. But let
us first analyze how two-form sources couple to electromagnetism in general,
followed by a more general derivation of the above relations invoking a duality
mapping, by which we can treat the vortex fields in the action itself, rather
than only in the equations of motion. This can be regarded as revealing the
more fundamental structure of the problem. The reader who is less interested
in these theoretical matters may skip ahead directly to Section 6.

4 Electrodynamics of two-form sources.

We will formulate here the generalization of the standard Maxwell action and
equations of motion when the sources are not monopoles with charge density ρ
and current Jm, collected in a vector field Jµ = (cρ, Jm), but instead (vortex)
lines with line densities Jtl and line currents Jkl (which denote the current
in direction k of a line that extends in direction l), collected in a two-form
field Jκλ = (Jtl, Jkl). Let us first recall the established knowledge for ordinary
electromagnetism, in terms suited for this generalization. For clarity reasons we
again use a shorthand notation where we are intentionally sloppy with contra-
and covariant indices, leaving out dimensionful parameters in order to maximally
expose the principles. In the next section we will present the final results that
are accurate in this regard.

Let us start considering a set of electrical monopole sources collected in a
source field Jµ as in the above, satisfying a continuity equation/conservation
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law ∂µJµ = 0. These sources interact via the exchange of gauge particles, as
gauge fields Aµ that couple locally to the source fields, by an interaction term
in the Lagrangian of the form AµJµ. Because of current conservation, any
transformation of the gauge field Aµ → Aµ + ∂µε, where ε is any smooth scalar
field, will leave the coupling term invariant. Indeed,

AµJµ → AµJµ + (∂µε)Jµ = AµJµ − ε∂µJµ = AµJµ. (18)

Here we performed a partial integration in the second step. The field strength
Fµν = ∂µAν − ∂νAµ is also invariant under the same gauge transformation. An
immediate consequence of this definition are the Bianchi identities or homoge-
neous Maxwell equations,

ǫαβµν∂βFµν = ǫαβµν∂β∂µAν = 0, (19)

because the derivatives commute. These equations comprise ∇ · B = 0 and
∇×E = −∂tB. This suggests a Lagrangian of gauge invariant terms,

LMaxwell = −1

4
FµνFµν +AµJµ, (20)

accompanied by the Euler–Lagrange equations of motion obtained by variation
with respect to Aν ,

∂µFµν = −Jν . (21)

These are the inhomogeneous Maxwell equations comprising ∇ · E = ρ and
∇ × B − ∂tE = J. In a superconductor, one must also add a Meissner term,
which in the unitary gauge fix turns into a mass term for the gauge field Aµ,

LMaxwell + Meissner = −1

4
FµνFµν − 1

2
AµAµ +AµJµ, (22)

In this form, the Meissner term breaks the gauge invariance of the Lagrangian.
This corresponds to releasing the longitudinal degrees of freedom of the photon
field. A gauge equivalent perspective is that this degree of freedom represents
the phase mode of the superconducting condensate. The equation of motion is
modified to,

∂µFµν −Aν = −Jν . (23)

Let us now repeat this procedure for antisymmetric two-form sources Jκλ =
(Jtl, Jkl). These must obey the continuity equations/conservation laws ∂κJκλ =
0, reflecting that the density of the source can only increase (decrease) when it
flows into (out of) the region under consideration, and that vortex lines cannot
end within in the system (no monopoles). Consider now that these sources
interact by exchanging two-form gauge fields, that we will tentatively denote by
Gκλ. Then these gauge fields couple locally to the sources as GκλJκλ. These
fields have to transform under gauge transformations as,

Gκλ → Gκλ +
1

2
(∂κελ − ∂λεκ), (24)

where ελ is any smooth vector field, in order to leave the coupling term invariant
as required by the current conservation. Indeed,

GκλJκλ → GκλJκλ + (∂κελ)Jκλ = GκλJκλ − ελ∂κJκλ = GκλJκλ. (25)
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Here we have used the antisymmetry of Jκλ in the first step, and partial integra-
tion in the second. The field strengthHµκλ = ∂[µGκλ] = ∂µGκλ+∂λGµκ+∂κGλµ

is also invariant under these gauge transformations. An immediate consequence
of this definition is the Bianchi identity,

ǫνµκλ∂νHµκλ = ∂[ν∂µGκλ] = 0, (26)

because the derivatives commute. With these definitions, we can write down a
gauge invariant Lagrangian,

L = − 1

12
H2

µκλ +GκλJκλ. (27)

Note that this Lagrangian is in terms of the dynamic variables Gκλ, which we
will see later is the dual of the electromagnetic field strength Fµν . In other words,
this Lagrangian is in terms of the electric and magnetic fields themselves, rather
than the gauge potential Aµ. The equations of motion follow after variation with
respect to Gκλ,

∂µHµκλ = −Jκλ. (28)

Now, in a gauge-invariance breaking medium such as a superconductor, one
must add a Higgs or Meissner term to the Lagrangian as,

L = − 1

12
H2

µκλ − 1

4
G2

κλ +GκλJκλ. (29)

Up to now we have just reviewed the standard derivation of non-compact U(1)
two-form gauge theory. Let us now specialize to the case of a vortex line in a
superconductor. For such an Abrikosov vortex, we know that the density JV

tl is
proportional to the magnetic field, and that the magnetic field is parallel to the
spatial orientation of the vortex line. In fact, when the magnetic field intensity
coincides with the lower critical field Hc1, the dimensionful vortex density may
be denoted as before, combining Eqs. (11) and (17),

JV
tl = Φ0δ

(2)
l (r), (30)

where Φ0 is the flux quantum h
e∗ . Because of these considerations, the vortex line

density should couple to the magnetic field Bl. The definition of the Maxwell
field strength is,

Ftn = En Fmn = ǫmnlBl, (31)

If we contract the last definition with
∑

mn ǫtbmn, one finds Bl = ǫtlmnFmn ≡
Gtl. Here we introduce the Hodge dual of the Maxwell field strength Gαβ ≡
1
2ǫαβµνFµν . Then the coupling of the vortex line density JV

tl to the magnetic
field Bl is written as GtlJ

V
tl and generalizes to GκλJ

V
κλ. Therefore, the general

two-form gauge field in Eq. (27) is now identified as the dual Maxwell field
strength Gκλ.

This has one immediate astonishing consequence: the Maxwell field strength
Fµν itself has now become a gauge field ! The gauge transformations Eq. (24)
correspond to,

Fµν → Fµν + ǫµνκλ∂κελ. (32)
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How does it come about that these all too physical Fµνs have suddenly turned
into gauge variant quantities? The reason is simple although perhaps defeat-
ing the physical intuition: in normal matter we always have electric monopole
sources Jν with the associated equations of motion ∂µFµν = −Jν . In the ab-
sence of any such sources, these equations reduce to ∂µFµν = 0. Together with
the inhomogeneous Maxwell equations ǫαβµν∂βFµν = 0, these imply that the
field strength cannot be measured at all. It amounts to the Schwinger wisdom
that fields which cannot be sourced do not have physical reality. The formal ex-
pression of this fact is that the field strength becomes pure gauge in the absence

of monopole sources.
Another insight is obtained by taking a closer look at the gauge transforma-

tions Eq. (32). For the Bianchi identities in Eq. (19) these imply,

ǫαβµν∂βFµν → ǫαβµν∂βFµν + ǫαβµν∂βǫµνκλ∂κελ

= ǫαβµν∂βFµν + (∂α∂λ − ∂2δαλ)ελ. (33)

In other words, the Bianchi identities are not invariant under these gauge trans-
formations! This makes sense: these identities are a direct result of expressing
the field strength in terms of a gauge potential Aν , which of itself has three de-
grees of freedom (four minus one gauge freedom). The Bianchi identities serve
to restrict the six degrees of freedom contained in Fµν to the proper number of
three. In the derivation of the two-form action Eq. (27), we have not assumed
anything about the origin of the two-form field. Next to three physical degrees
of freedom, there are three gauge degrees of freedom. Therefore the constraints
ǫαβµν∂βFµν = 0 are not strictly enforced, but can always be obtained by a
suitable gauge transformation.

We never observe the gauge character of the fields Fµν themselves because
the only two-form sources to which this action applies that we know of are
Abrikosov vortices in a superconductor. The superconducting matter causes a
finite penetration depth λ for the fields, which is reflected by the addition of
a Meissner term to the Lagrangian. The gauge-invariant form of this term is
known to be,

Hκλµ
1

∂2
Hκλµ = −Gκλ

δκµ∂
2 − ∂κ∂µ
∂2

Gκλ, (34)

in the same way as one can formally write the Meissner term in Eq. (22) as
Fµν

1
∂2Fµν . However, since the longitudinal components of Gκλ are not sourced

by the conserved Abrikosov vortices, we are naturally led to the Lorenz gauge
condition ∂κGκλ = 0, and the gauge freedom has been removed. With this
gauge condition Eq. (34) reduces to GκλGκλ, that appears in Eq. (29). In
other words, the superconducting medium forces us to the fixed frame action
Eq. (29).

We end up with the action Eq. (29), and we now put in dimensionful pa-
rameters. Please note that this action is equivalent to the regular action as
(14), but with the important difference that here we work with the dual field
strength Gκλ as the dynamic variable instead of the gauge potential Aµ .The
equations of motion (“Maxwell equations for relativistic vortices”) are now ob-
tained straightforwardly by varying with respect to Gκλ as,

λ2(∂2Gµν − ∂µ∂κGκν + ∂ν∂κGκµ)−Gµν = − ~

e∗
JV
µν . (35)
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This is to be compared with Eq. (23) and Eq. (17). The second and third
term can be set to zero by a gauge transformation Eq. (32) or alternatively by
invoking the Bianchi identities Eq. (19). The meaning of these equations is that
the two-form source JV

κλ, causes an electromagnetic field Gµν = 1
2ǫµνκλFκλ that

is now Meissner screened over a length scale λ. The case µ = t, together with
the definition Bn = 1

2ǫnabFab reduces to Eq. (17).
Summarizing, we have shown here that the action Eq. (29) can be postu-

lated, from which the correct equations of motion as introduced in Section 3
directly follow, without ever mentioning the gauge potential Aµ. One trades
in the Bianchi identities Eq. (19) for a set of gauge transformations Eq. (32).
This action is only meaningful in the absence of monopole sources, but is very
appropriate when considering two-form sources such as Abrikosov vortices. In
the case that the penetration depth λ becomes infinitely large, the field strength
Fµν recovers its status as a gauge field. This would correspond to the Coulomb
phase of two-form sources, as opposed to the Higgs phase that is always realized
in superconductors.

As a final note it should be stressed, that although the vortex source is
intrinsically dipolar in nature, the equations stated above are not generally valid
for any dipole source. Here, the direction of the vortex line is always parallel
to the dipole moment. If one should instead consider for instance a string of
ferromagnetic material with moments not along the string, one must revert to
the omnipotent regular Maxwell equations.

For the reader familiar with differential forms, we have included an appendix
repeating these considerations in metric-independent language, valid in any spa-
tial dimension higher than 2.

5 Vortex duality in charged superfluids.

We shall now rigorously derive the coupling of Abrikosov vortex sources to the
electromagnetic fields, starting from the action describing a superconductor in
3+1 dimensions. This follows the same pattern as the first steps of the well
known vortex (or Abelian-Higgs) duality in 2+1 dimensions, where by Legendre
transformation the vortex–vortex interactions are expressed in an effective elec-
trodynamics sourced by the vortex sources. In a recent publication we demon-
strated how to extend this to 3+1 dimensions [16], in a language that is very
closely related to the present context, also resting on two-form gauge theory.
However, in this earlier work we concentrated on the neutral superfluid and here
we will go one step further by coupling in electromagnetism and integrating out
the condensate gauge fields, ending up with an effective action describing the
electromagnetism of vortices.

Our starting point is the partition function Eq. (13). To keep the equations
readable, we will transform to dimensionless units denote by a prime (which we
suppress when matters are unambiguous),

S′ =
1

~
S, x′

m =
1

a
xm, t′ =

c

a
t, A′

µ =
ae∗

~
Aµ, ρ′ =

~a2

m∗c
ρs,

1

µ′
=

~

µ0ce∗
2 .

(36)
Here a is a length scale relevant in the system, for instance the lattice constant.
We will assume the relativistic limit cph = c; later we shall return to dimen-
sionful quantities and it will become clear that the phase velocity is playing an
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essential role for the description of the non-relativistic vortices. The partition
function in these dimensionless units reads,

Z =

∫

DϕDAµ F(Aµ) e
i
∫
d4x L, (37)

L = − 1

4µ
F 2
µν − 1

2
ρ(∂µϕ−Aµ)

2. (38)

Now we perform the dualization procedure. A Hubbard–Stratonovich trans-
formation of Eq. (37) leads to,

Z =

∫

Dwµ DϕDAµ F(Aµ) e
i
∫
Ldual , (39)

Ldual = − 1

4µ
F 2
µν +

1

2ρ
wµwµ − wµ(∂µϕ−Aµ). (40)

Here wµ is the auxiliary variable in the transformation, but it is actually the
canonical momentum related to the velocity ∂µϕ, which can be found as,

wµ = − ∂L
∂(∂µϕ)

= ρ(∂µϕ−Aµ), (41)

and is related to the supercurrent as wµ = e∗

~
Jµ. If one integrates out the field

wµ from Eq. (39), one retrieves Eq. (37). In the presence of Abrikosov vortices,
the superconductor phase ϕ is no longer everywhere single-valued. Therefore
it is separated into smooth and multi-valued parts ϕ = ϕsmooth + ϕMV. The
smooth part can be partially integrated yielding,

Z =

∫

Dwµ Dϕsmooth DϕMV DAµ F(Aµ) e
i
∫
Ldual , (42)

Ldual = − 1

4µ
F 2
µν +

1

ρ
wµwµ + ϕsmooth∂µw

µ − wµ∂µϕMV + wµAµ. (43)

The smooth part can now be integrated out as a Lagrangemultiplier turning into
the constraint ∂µw

µ = 0, the supercurrent continuity equation. This constraint
can be explicitly enforced by expressing wµ as the curl of a gauge field. In 3+1
dimensions, this gauge field is a two-form field,

wµ = ǫµνκλ∂νbκλ. (44)

We can now substitute this expression in the partition function; the integral
over the fields wµ is replaced by one over bκλ, as long as we apply a gauge fixing
term F(bκλ) to take care of the redundant degrees of freedom. Since the gauge
field is smooth it can be partially integrated to give,

Z =

∫

DϕMV DAµ F(Aµ)Dbκλ F(bκλ) e
i
∫
Ldual , (45)

Ldual = − 1

4µ
F 2
µν +

1

ρ
(ǫµνκλ∂νbκλ)

2 − bκλǫ
κλνµ∂ν∂µϕMV + bκλǫ

κλνµ∂νAµ.

(46)

Here we recognize the definition Eq. (11) of the vortex source,

JV
κλ = ǫκλνµ∂

ν∂µϕMV, (47)
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and we have derived the dual partition function,

Z =

∫

DJκλ DAµ F(Aµ)Dbκλ F(bκλ) e
i
∫
Ldual , (48)

Ldual = − 1

4µ
F 2
µν +

1

ρ
(ǫµνκλ∂νbκλ)

2 − bκλJV
κλ + bκλǫ

κλνµ∂νAµ. (49)

The interpretation is as follows. The vortex sources JV
κλ interact through the

exchange of dual gauge particles bκλ coding for the long range vortex-vortex
interactions mediated by the condensate. The gauge field bκλ couples as well to
the electromagnetic field Aµ. Integrating out the electromagnetic field will lead
to a Meissner/Higgs term∼ b2κλ, showing that the interaction between vortices is
actually short-ranged in the superconductor. However, we are instead interested
in how the electromagnetic field couples to the vortices themselves. Therefore,
we shall integrate out the dual gauge field bκλ.

The first step is to complete the square in bκλ. The kinetic term for bκλ is
proportional to,

− bκλǫ
κλµν∂νǫρσαµ∂

αbρσ = −bκλ(δ
κµ∂2 − ∂κ∂µ)bµλ ≡ −bκλG−1

0

κµ
bµλ. (50)

Here G−1
0

κµ
is the inverse propagator. However, this expression cannot be in-

verted (the same problem arises in the quantization of the photon field). We
can solve this by imposing the Lorenz gauge condition ∂κbκλ = 0. Then the
inverse propagator is simply G−1

0

κµ
= δκµ∂2, and its inverse is G0κµ = δκµ

1
∂2 .

Now we can complete the square,

Ldual =
1

2

(

bκλ − ρ

∂2
JV
κλ + ǫκλνµ∂

νAµ
)(

− ∂2

ρ

)(

bκλ − ρ

∂2
JVκλ

+ ǫκλρσ∂ρAσ

)

− 1

2

(

− JV
κλ + ǫκλνµ∂

νAµ
)(

− ρ

∂2

)(

− JVκλ
+ ǫκλνµ∂νAµ

)

− 1

4µ
F 2
µν .

(51)

Then we shift the field bκλ → bκλ + ρ
∂2J

V
κλ − ǫκλνµ∂

νAµ and integrate it out
in the path integral to leave an unimportant constant factor. Expanding the
remaining terms leads to,

Ldual =
1

2
JV
κλ

ρ

∂2
JVκλ

+
1

2
ǫκλνµ∂

νAµ ρ

∂2
ǫκλρσ∂ρAσ − ρJV

κλǫ
κλνµ ∂ν

∂2
Aµ − 1

4µ
F 2
µν

=
1

2
JV
κλ

ρ

∂2
JVκλ − 1

2
ρAµAµ − ρJV

κλǫ
κλνµ ∂ν

∂2
Aµ − 1

4µ
F 2
µν . (52)

In going to the second line we have performed partial integration on the second
term and invoked the Lorenz gauge condition ∂µAµ = 0. We can immediately
read off the physics encoded in this action: the first term describes the core
energy of the vortices and we shall not need it in this work; the second term is
the Higgs mass (including Meissner) for the electromagnetic field; the third term
is the coupling term between the electromagnetic field and the vortex source.
This last term looks rather awkward given the derivatives in the denominator.
This could signal that the coupling is non-local but that is not the case here.
The origin of this coupling follows from the notions presented in section 4: it is
not the gauge potential Aµ but rather the field strength Fµν itself that couples to
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the vortex source. We can confirm this expectation by computing the equations
of motion,

1

µ
∂µF

µν + ρǫµνκλ
∂µ
∂2

JV
κλ − ρAν = 0. (53)

Acting with ǫαβγν∂
γ on this equation, one obtains,

1

µρ
ǫαβγν∂

γ∂µF
µν + ǫαβγνǫ

µνκλ ∂
γ∂µ
∂2

JV
κλ − ǫαβγν∂

γAν = 0 (54)

Using Fµν = ∂µAν −∂νAµ one can see that from the first term only ǫαβµν∂
2Fµν

survives. Also, using ∂κJV
κλ = 0 one can see that ǫαβγνǫ

µνκλ∂γ∂µJ
V
κλ = ∂2JV

αβ ,
cancelling the derivatives in the denominator. Altogether we find,

1

2µρ
ǫαβµν∂

2Fµν − 1

2
ǫαβµνF

µν = −JV
αβ . (55)

This is the same result as Eq. (35). As we announced earlier, we have derived
here with a completely controlled procedure the dimensionless version of Eq.
(17), describing the interactions between the vortices and electromagnetic fields
inside a relativistic superconductor. Departing from this result we will derive
in the next section various physical consequences. Summarizing this section,
by dualizing the Ginzburg–Landau action for the superconductor, Eq. (37) got
reformulated in terms of the vortex currents Eq. (47) as the active degrees of
freedom, that interact via the effective gauge fields parametrizing the rigidity of
the superconductor. The latter were integrated out to obtain the direct coupling
of the vortices to the electromagnetic field, leading eventually to the concise
equations of motion Eq. (55). Although this strategy is well known dealing
with vortex ‘particles’ in 2+1 dimensions we are not aware that it was ever
explored in the context of the electrodynamics of vortices in 3+1D. Surely, the
derivation presented in the above is in regard with its rigour and completeness
strongly contrasting with the rather ad hoc way that the problem is addressed
in the standard textbooks [15, eq.(5.13)].

6 Vortex electrodynamics.

In order to establish contact with the physics in the laboratory all that remains
to be done is to break the Lorentz invariance, doing justice to the fact that
the phase velocity of the superconductor as introduced in the first paragraphs
of Section 3 is of order of the Fermi velocity of the metal and thereby a tiny
fraction of the speed of light. Subsequently we will analyze what the physical
ramifications are of our “Maxwell equations for vortices”.
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The non-relativistic version of the vortex action Eq. (52) is,

L =
~
2

2m∗
ρsJ

V
tl

1

−1/c2ph∂
2
t + ∂2

k

JV
tl −

~
2

2m∗
ρsJ

V
kl

c2ph
−1/c2ph∂

2
t + ∂2

k

JV
kl

− e∗2

2m∗c2ph
ρsV

2 − e∗2

2m∗
ρsA

2
m

− e∗~

m∗
ρs

1

− 1
c2
ph

∂2
t + ∂2

k

[ 1

cph
JV
abǫabtm(∂tAm + ∂mV ) +

1

2
JV
taǫtamn∂mAn

]

+
1

2µ0c2
(∂tAn + ∂nV )2 − 1

4µ0
(∂mAn − ∂nAm)2. (56)

Varying with respect to Aν and acting with ǫαβγν∂
γ and imposing current con-

servation ∂κJV
κλ = 0 will lead to the correct equations of motion. However, the

easiest way to obtain the non-relativistic versions of the equations of motion
Eq. (16) is to vary Eq. (14) directly with respect to V and An respectively,

−
c2ph
c2

λ2∂nEn − V =
~

e∗
∂tϕ, (57)

−λ2 1

c2
∂tEn + λ2ǫnmk∂mBk +An =

~

e∗
∂nϕ. (58)

Here λ =
√

m∗

µ0e∗2ρs
is the London penetration depth. Now we operate on

the first equation by ∂m = 1
2ǫmtabǫabrt∂r, and on the second by δmn∂t =

1
2ǫtmabǫabtn∂t and ǫtamn∂m respectively to obtain,

−
c2ph
c2

λ2∂m∂nEn − ∂mV =
~

e∗
cph

1

2
ǫmtabJ

V
ab, (59)

−λ2 1

c2
∂2
tEm − λ2∂2

n∂tAm + ∂tAm =
~

e∗
cph

1

2
ǫtmabJ

V
ab, (60)

λ2(∇2 − 1

c2
∂2
t )Ba − Ba = − ~

e∗
JV
ta. (61)

For the last equation we used the Maxwell equations ∇×E = −∂tB and ∇·B =
0. It is equal to the one we found before in Eq. (17), obviously, since there the
temporal terms do not play a role.

For the equations for the electric field is it useful to choose the Coulomb
gauge ∇ ·A = 0, and separate the electric field in longitudinal and transversal
parts: E = EL+ET, where ∇×EL = 0 and ∇·ET = 0. In the Coulomb gauge
we see from the definition E = −∇V − ∂tA that EL = −∇V and ET = −∂tA.
We can subtract the first equation above from the second to obtain,

λ2
(

− 1

c2
∂2
tEm +∇2ET

m +
c2ph
c2

∇2EL
m

)

− Em =
~

e∗
cphǫtmabJ

V
ab. (62)

Hence, as in the case of the Maxwell theory for non-relativistic matter one
finds instead of the highly symmetric relativistic result Eq. (16) two equations
of motion that are representing the spatial- (magnetic) and temporal (electrical)
sides of the physics, Eq. (61) and Eq. (62). One notices that the first ‘magnetic’
equation is quite like the relativistic one while the ‘electrical’ equation is now
more complicated for reasons that will become clear in a moment.
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The factor cph on the right-hand side of the electric equation is due to our
convention of rescaling the time derivative to having units of 1/length in the
definition of JV

κλ. Thus all components of JV
κλ have dimensions of a surface

density, and multiplying by a velocity is necessary to end up with a current
density. The sign difference on the right-hand side between the electric and
magnetic equations is related to the continuity equation 1

cph
∂tJ

V
tn = −∂mJV

mb.

To grasp the content of these equations, one should compare the magnetic
equation Eq. (61) with the standard form[15, eq.(5.13)],

λ2∇2Ba −Ba = −Φ0δ
(2)
a (r), (63)

Here Φ0 = 2π~/e∗ is the flux quantum. The factor of 2π is associated with the
definition of JV as in Eq. (11). Our treatment automatically takes dynamics
into account in the form of temporal derivatives. Otherwise, the correspondence
is complete. We have indeed exactly recovered the well-established vortex equa-
tion of motion.

The equation for the electric field (62) looks more involved, but this can be
made more insightful by writing the equations for the longitudinal and transver-
sal parts separately,

λ2
(

(
c2ph
c2

∇2 − 1
c2 ∂

2
t )E

L
m − EL

m =
~

e∗
cphǫ

L
tmabJ

V
ab, (64)

λ2
(

(∇2 − 1
c2 ∂

2
t )E

T
m − ET

m =
~

e∗
cphǫ

T
tmabJ

V
ab. (65)

The labels on the ǫ-symbol denote that they include a longitudinal or transversal
projection.

We can now read off the following physical relations:
1. Meissner screening: from Eq. (61) in the static limit ∂t → 0, a vortex

line sources a magnetic field, that falls off in the superconductor with a length
scale λ, the familiar Meissner effect.

2. Thomas–Fermi screening: from Eq. (64) one infers that the longitudinal
(electrostatic) electric field penetrates up to a much smaller length

cph
c λ, which

is the Thomas–Fermi length (c ≈ 300cph). This just amounts to the well known
fact that the electrical screening is the same in the metal as in the superconduc-
tor. Notice that this length scale is obtained without referral to the electrons
in the normal metal state as in the textbook derivation.

3. Dynamic Meissner screening or the Higgs mass : taking into account the
time-dependence, Eq. (61) and Eq. (65) show that the transversal photon parts
of the fields are screened not only in space, but also in time with characteric
time scale λ

c . This is just the familiar statement that the two propagating

photon polarizations in 3+1 dimensions acquire a “Higgs mass” ∼ ~

λc inside the
superconductor.

4. Electrical field of a moving vortex and the Nernst effect : disregarding the
dynamical term in Eq. (62), one is left with

Em = − ~

e∗
cphǫtmklJ

V
kl. (66)

Recall from section 2 that we had interpreted JV
kl as the flow or velocity in the

k-direction of a vortex line in the l direction. Since we know that one vortex
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B

(a) A vortex in a Josephson junction between two

superconductors (grey); it has no normal core.

The magnetic field B is along the vortex; any elec-

tric field across the junction causes the vortex to

move in the perpendicular direction. Such mo-

tion induces electromagnetic radiation that may

escape to the outside world.

B
E

v

(b) Vortex. Geometry of the electric field E

generated by a vortex line parallel to the mag-

netic field B and moving with a speed v. This

phenomenon related to the Lorentz force follows

directly from the vortex equations of motion.

Figure 3: Additional vortex configurations.

line carries a magnetic flux of Φ0 = 2π ~

e∗ , we can write ~

e∗ cphJ
V
kl = vlB

0
k, where

B0 denotes the field associated with one quantum of flux, and vl = cphêl is the
velocity. In practice there is always a drag force that greatly slows down the
vortices. Still, Josephson vortices that do not have a normal core (Fig. 3(a))
may achieve this large speed. With this interpretation, (62) reads,

E = −v ×B0, (67)

which is precisely the known result [17] for the electric field generated by a
vortex moving in a magnetic field B0 (Fig. 3(b)). When the motion is caused
by a temperature gradient this is responsible for the large Nernst effect of the
vortex fluid.

5. AC Josephson relation: another interpretation of Eq. (64) is found by
inserting the definition of the vortex current, JV

ab = ǫabtn
1

cph
∂t∂nϕ, taking m as

the longitudinal direction and neglecting the higher derivative terms. In this
case,

∂mV =
~

e∗
∂t(∂mϕ). (68)

Here the left-hand side is the potential difference, and the right-hand side is the
time derivative of the superconducting phase difference. This is exactly the AC
Josephson relation. The full equations Eq. (62) reveal also that the induced
electric field is screened inside the superconductor.

6. Moving vortices as radiation sources : in the same spirit, the moving vor-
tex is also inducing dynamic transversal fields according to Eq. (65). In other
words: moving vortices radiate [6]. But since the field is Meissner screened, it
is very hard to detect this radiation. All our results also apply to Josephson
vortices (line vortex solutions in a Josephson junction between two supercon-
ductors parallel to the interface, Fig. 3(a)), which differ only in the regard that
they do not have a normal core. There is much recent interest in radation from
(arrays of) Josephson junctions, see e.g. [18]. Since inside the junction the field
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is not expelled by Meissner and metallic screening, the radiation may escape to
the outside world. In this literature one finds the following result[19, eq.(13)],

− λ̃2∇2A+A =
~

e∗
∇φ. (69)

Here λ̃ differs from λ because of a special geometry. Compare this with a result
that follows from Eq. (65),

∂t
[

− λ2
(

(∇2 − 1
c2 ∂

2
t )A+A

]

= ∂t
[ ~

e∗
∇ϕ

]

, (70)

confirming Eq. (69) but showing in addition how to take care of a possible time
dependence of the photon field.

Summarizing, to the best of our knowledge we have addressed all known
electrodynamical properties of vortex matter departing from a single action
principle.

7 Conclusions.

We are of the opinion that our action principle for vortex electrodynamics Eq.
(52) resp. (56) and the associated “vortex-Maxwell” equations Eq. (55), (61)
and (62) deserve a place in the textbooks on the subject. In contrast with
the clever but improvising discussions one usually finds, our formulation has
the same ‘mechanical’ quality as for instance the Landau–Lifshitz treatise of
electromagnetism. One just departs from the fundamentals, to expose the con-
sequences by unambiguous and straightforward algebraic manipulations that are
worshipped by any student of physics. A potential hurdle is that one has to get
familiar with the two-form gauge field formalism, but then again this belongs
to the kindergarten of differential geometry and string theory.

Our analysis also reveals the origin of the peculiar nature of this vortex
electrodynamics. The realization that it is in fact governed by a two-form gauge
structure amounts to an entertaining excursion in the fundamentals of gauge
theory itself, nota bene associated with the superficially rather mundane and
technology-oriented vortex physics, at least when viewed from the perspective of
fundamental physics. In fact, our pursuit started in the quite different subject
of the dual description of Bose-Mott insulators in terms of superconducting
vortex matter where quite similar issues arise. In this context one does not get
anywhere with physical intuition and one just needs full mathematical control
to make any progress. Therefore we decided to inspect these matters first in the
more familiar present context.

On the practical side, as we implicitly emphasized in the last section our ap-
proach offers a unified description of the electrodynamics of vortices. Although
we got as far as recovering the known physical effects in terms of special lim-
its of our equations, we sense that there is a potential to use them to identify
hitherto unknown effects and perhaps to arrive at a more complete description
of the electrodynamics vortex matter. Being well aware of the large body of
knowledge of this large field in physics, we leave this as an open question to the
real experts.
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name field ?-form 2+1d 3+1d representative
in d=3+1

electric field E 1 1 1 Ex dx
dielectric current D = ε ∗s E d-2 1 2 Dx dy ∧ dz
magnetic field B 2 2 2 Bx dy ∧ dz
magnetic intensity H = µ ∗s B d-3 0 1 Hx dx
charge density ρ d-1 2 3 ρ dx ∧ dy ∧ dz
current density J d-2 1 2 Jx dy ∧ dz
covariant current j = ρ+ J ∧ dt d-1 2 3 jx dy ∧ dz ∧ dt
field strength F = B+ E ∧ dt 2 2 2 Fxy dx ∧ dy
gauge potential A 1 1 1 Ax dx
vortex source JV d-2 1 2 JV

xy dx ∧ dy
Lagrangian density L d 3 4 L dt∧dx∧dy∧dz

Table 1: Electrodynamical quantities in differential forms. Here ε and µ are the
electric permittivity and the magnetic permeability, and ∗s is the spatial Hodge
dual. Other factors of c are suppressed. Minus signs are subject to convention.
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A Electrodynamics with differential forms.

For the reader familiar with the mathematical language of differential forms, we
present the electrodynamics of vortex sources for any dimension d = D+1 higher
than 2. For our purposes, a differential form can be thought of as something that
can be integrated over; in other words: it is a density function combined with the
integrand. For instance, the electric field is a 1-form E = Eidxi = Exdx+Eydy+
Ezdz. Higher forms are always obtained through the wedge product a∧b, which
is the antisymmetrization of the tensor product of a and b. Another common
operation is the Hodge dual ∗a of a, which turns an n-form into a (d− n)-form.
For instance in three spatial dimensions ∗E = Exdy∧dz+Eydz∧dx+Ezdx∧dy.
For a pedagogical introduction to differential forms in Maxwell electrodynamics
see [20].

In the familiar case of d = 3 + 1, a 1-form is a line density or “field inten-
sity” like the electric field; a 2-form is a surface density or flux density like the
magnetic field; a 3-form is a volume density like the charge density. Confusion
may arise when it is not immediately clear whether an object is an n-form or
a d − n-form, which is important for generalization to other dimensions. We
distinguish the regular Hodge dual ∗ from the spatial Hodge dual ∗s, where the
latter does not involve the temporal dimension. The exterior derivative opera-
tor is d = ∂

∂t dt ∧ +
∑

i
∂

∂xi
dxi∧, and the one with only spatial components is

ds =
∑

i
∂

∂xi
dxi∧. The Leibniz rule is d(a ∧ b) = da∧ b+ (−1)ra ∧ db, where a

is an r-form. This can be used for partial integration.
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In table 1 we have listed the differential forms of the relevant fields. Some of
these definitions seem perhaps unfamiliar. In particular, we are used to thinking
of the magnetic field as a vector field; however, its solenoidal nature is typical
of a two-form. This becomes even more clear when it is expressed as the curl of
the vector potential B = dsA, which holds in 3+0 dimensions. Also the current
density J is naturally a flux or a 2-form, but its generalization is as a d−2-form.
One way to see that this must be so, is to write down the continuity equation
in differential forms,

∂tρ+∇ · J = 0 → (∂tρ+ dsJ) ∧ dt = dj = 0. (71)

The current density appearing as a vector field for instance in Ohm’s law, J =
σE is actually the spatial Hodge dual of J.

We shall now write down the familiar expressions of Maxwell electrodynam-
ics. The Lagrangian density is a spacetime volume density. All terms must
therefore combine into d-forms. The field strength is F = dA. From this defini-
tion it is clear that the gauge transformations A → A+ dξ, with ξ any 0-form,
leave the field strength unchanged, since d2 = 0. The field strength is contracted
with its dual to obtain a d-form in the Lagrangian. The sources couple to the
gauge potential (this is another reason why the source is a d − 1 form). The
Maxwell action is then,

S =

∫

−F ∧ ∗F+ A ∧ j. (72)

The second term is also invariant under the same gauge transformations, pro-
vided that dj = 0, the continuity equation. The Euler–Lagrange equations are,

d
∂L

∂dA
− ∂L

∂A
= 0, (73)

resulting in the inhomogeneous Maxwell equations,

d ∗ dA = d ∗ F = −j, (∂µFµν = −Jν). (74)

Applying the exterior derivative on this equation directly leads to the continuity
equation, since d2 = 0. Similarly, from the definition F = dA it immediately
follows that,

dF = 0, (75)

which are the homogeneous Maxwell equations, or in this context rather the
Bianchi identities.

Now let us repeat the reasoning of section 4. In the absence of monopole
sources J, we have both d ∗ F = 0 and dF = 0. This implies that the field
strength has become “pure gauge”. The first of these equations still holds when
we add any 1-form ξ as ∗F → ∗F + dξ. The original Bianchi identities are not
invariant under these transformations. The dual field strength ∗F turns into
a gauge potential, and is accompanied by its own field strength K = d ∗ F,
which contracts with its dual in the Lagrangian. The field strength can couple
to a d − 2-form source, which we anticipatingly denote by JV, provided that
d ∗ JV = 0. Indeed,

F ∧ JV → F ∧ JV + ∗dξ ∧ JV = F ∧ JV − ξ ∧ d ∗ JV = F ∧ JV. (76)
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The second step is achieved by partial integration, and the last equality holds
if the vortex current is conserved, d ∗ JV = 0. The action for vortices directly
sourcing the field tensor is, (with G = ∗F),

S =

∫

−K ∧ ∗K+ F ∧ JV =

∫

−K ∧ ∗K+ G ∧ ∗JV. (77)

Variation with respect to G leads to,

∗ d ∗ dG = −JV. (78)

This equation corresponds to ǫκλµν∂
2Fµν = −JV

κλ as in eq. (55), but is valid in
any dimension. The addition of a Meissner term results in

S =

∫

−K ∧ ∗K− G ∧ ∗G+ G ∧ ∗JV. (79)

and,
∗ d ∗ dG− G = −JV. (80)

This is the equation of motion for d − 1-dimensional superconductors, which
have d− 2-dimensional vortex worldbranes JV.

References

[1] A. A. Abrikosov. On the magnetic properties of superconductors of the
second group. Soviet Journal of Experimental and Theoretical Physics,
5:1174, 1957.

[2] H. Rogalla and P.H. Kes, eds. 100 Years of Superconductivity. CRC Press,
New York, September 2011.

[3] D.R. Nelson. Vortex entanglement in high-Tc superconductors. Physical

Review Letters, 60(19):1973–1976, May 1988.

[4] Baruch Rosenstein and Dingping Li. Ginzburg–Landau theory of type II
superconductors in magnetic field. Reviews of Modern Physics, 82(1):109–
168, Jan 2010.

[5] G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M.
Vinokur. Vortices in high-temperature superconductors. Reviews of Modern

Physics, 66(4):1125–1388, Oct 1994.

[6] L.N. Bulaevskii and E.M. Chudnovsky. Electromagnetic radiation from vor-
tex flow in type-II superconductors. Physical Review Letters, 97(19):197002,
Nov 2006.

[7] L. N. Bulaevskii and A. E. Koshelev. Radiation from a single Josephson
junction into free space due to Josephson oscillations. Physical Review

Letters, 97(26):267001, Dec 2006.

[8] L.D. Landau and E.M. Lifshitz. Electrodynamics of continuous media.
Number 8 in Course of theoretical physics. Pergamon, Oxford, 1960.

22



[9] A.J. Beekman and J. Zaanen. Type-II Bose-Mott insulators. (in prepara-
tion).

[10] M. Henneaux and C. Teitelboim. Quantization of Gauge Systems. Prince-
ton University Press, Princeton, NJ, 1992.

[11] J. Polchinski. String Theory, Vol. I+II. Cambridge University Press, Cam-
bridge, 1998.

[12] H.B. Nielsen and P. Olesen. Vortex-line models for dual strings. Nuclear

Physics, B61:45–61, 1973.

[13] Julian Schwinger. Particles, Sources and Fields. Addison-Wesley, Reading,
MA, 1970.

[14] H. Kleinert. Gauge Fields in Condensed Matter, Vol.I Superflow and Vortex

Lines. World Scientific, Singapore, 1989.

[15] M. Tinkham. Introduction to superconductivity. McGraw-Hill, New York,
2nd edition, 1996.

[16] A.J. Beekman, D. Sadri, and J. Zaanen. Condensing Nielsen–Olesen strings
and the vortex-boson duality in 3+1 and higher dimensions. New Journal

of Physics, 13:033004, 2011.

[17] B. D. Josephson. Potential differences in the mixed state of type II super-
conductors. Physics Letters, 16(3):242 – 243, 1965.

[18] S. Savel’ev, V.A. Yampol’skii, A.L. Rakhmanov, and F. Nori. Terahertz
Josephson plasma waves in layered superconductors: spectrum, genera-
tion, nonlinear and quantum phenomena. Reports on Progress in Physics,
73(2):026501, 2010.

[19] R.G. Mints and I.B. Snapiro. Electromagnetic waves in a Josephson junc-
tion in a thin film. Physical Review, B51(5):3054–3057, Feb 1995.

[20] K.F. Warnick and P. Russer. Two, three and four-dimensional electromag-
netics using differential forms. Turkish Journal of Electrical Engineering &

Computer Sciences, 14(1):153–172, 2006.

23


	1 Introduction.
	2 Vortex fields.
	3 The vortex world sheet in relativistic superconductors.
	4 Electrodynamics of two-form sources.
	5 Vortex duality in charged superfluids.
	6 Vortex electrodynamics.
	7 Conclusions.
	A Electrodynamics with differential forms.
	References

