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A unified stability property in spin glasses.
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Abstract

Gibbs’ measures in the Sherrington-Kirkpatrick type models satisfy two asymptotic
stability properties, the Aizenman-Contucci stochastic stability and the Ghirlanda-
Guerra identities, which play a fundamental role in our current understanding of these
models. In this paper we show that one can combine these two properties very naturally
into one unified stability property.
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1 Introduction and main results.

Let us consider a random discrete probability measure G on the unit ball of a separable
Hilbert space, G =

∑

l≥1wlδξl . We assume that the weights are arranged in non-increasing
order, w1 ≥ w2 ≥ . . . , and denote by Q = (ξl · ξl′)l,l′≥1 the matrix of scalar products of
the points in the support of G. Let (σl)l≥1 be an i.i.d. sequence of configurations from this
measure and denote by Rl,l′ = σl · σl′ the scalar product, or overlap, of σl and σl′. For any
n ≥ 1 and a function f = f(σ1, . . . , σn) of n configurations we will denote its average with
respect to G⊗∞ by

〈f〉 =
∑

l1,...,ln≥1

wl1 · · ·wln f(ξl1, . . . , ξln). (1.1)

We will denote by E the expectation with respect to the randomness of G. Random measure
G is said to satisfy the Ghirlanda-Guerra identities [6] if for any n ≥ 2, any bounded
measurable function f of the overlaps (Rl,l′)l,l′≤n and any integer p ≥ 1 we have

E〈fRp
1,n+1〉 =

1

n
E〈f〉E〈Rp

1,2〉+
1

n

n
∑

l=2

E〈fRp

1,l〉. (1.2)
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Given integer p ≥ 1, let (gp(ξl))l≥1 be a Gaussian sequence conditionally on G indexed by
the points (ξl)l≥1 with covariance

Cov
(

gp(ξl), gp(ξl′)
)

= (ξl · ξl′)p. (1.3)

Given t ≥ 0, consider a new sequence of weights

wt
l =

wle
tgp(ξl)

∑

j≥1wjetgp(ξj)
(1.4)

defined by a random change of density proportional to etgp(ξl). Let (wπ
l ) be the weights (wt

l)
arranged in the non-increasing order and let π : N → N be the permutation keeping track of
where each index came from, wπ

l = wt
π(l). Let us define by

Gπ =
∑

l≥1

wπ
l δξπ(l)

and Qπ =
(

ξπ(l) · ξπ(l′)
)

l,l′≥1
(1.5)

the probability measure G after the change of density proportional to etgp(ξl) and the matrix Q
rearranged according to the reordering of weights. Measure G is said to satisfy the Aizenman-
Contucci stochastic stability [1] if for any p ≥ 1 and t ≥ 0,

(

(wπ
l )l≥1, Q

π
) d
=

(

(wl)l≥1, Q
)

(1.6)

where equality in distribution is in the sense of finite dimensional distributions of these
arrays.

Random measures satisfying (1.2) and (1.6) arise as the asymptotic analogues of Gibbs’
measures in the Sherrington-Kirkpatrick type models and these two stability properties have
been used extensively in proving structural results for such measures (see e.g. [2], [3], [4],
[7], [8], [9], [10], [12], [14], [13], [15]). In this paper we will show that one can combine (1.2)
and (1.6) into a joint stability property as follows. It is known (Theorem 2 in [7]) that if
the measure G satisfies the Ghirlanda-Guerra identities and if q∗ is the supremum of the
support of the distribution of the overlap R1,2 under EG⊗2 then with probability one G is
concentrated on the sphere of radius

√
q∗. Let

bp = (q∗)p − E〈Rp
1,2〉. (1.7)

Then the following holds.

Theorem 1 Random measure G satisfies the Ghirlanda-Guerra identities (1.2) and the
Aizenman-Contucci stochastic stability (1.6) if and only if it is concentrated on the sphere
of constant radius

√
q∗ with probability one and for any p ≥ 1 and t ≥ 0,

(

(

wπ
l

)

l≥1
,
(

gp(ξπ(l))− bpt
)

l≥1
, Qπ

)

d
=
(

(

wl

)

l≥1
,
(

gp(ξl)
)

l≥1
, Q

)

. (1.8)

where equality in distribution is in the sense of finite dimensional distributions.
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The stability property (1.8) is known for the Poisson-Dirichlet cascades (Ruelle probability
cascades in the terminology of [3]), which is the result of Talagrand, Theorem 15.2.1 in [15].
Of course, the big open problem is whether it holds only for the Poisson-Dirichlet cascades
which is equivalent to proving that any measure satisfying (1.8) is ultrametric.

The Ghirlanda-Guerra identities do not require the random measure G to be discrete
and, in fact, the Aizenman-Contucci stochastic stability can be formulated not only for
discrete measures as well. We will mention this more general formulation in the next section.
However, we prefer to state our main result in the setting of discrete measures since it allows
for a particularly attractive formulation (1.8) in the spirit of competing particle systems, as
in [12] and [3]. Moreover, from the point of view of studying structural properties of such
measures one can without loss of generality start with discrete measures since it is easy to
show that sampling an i.i.d. sequence of points from the original measure and assigning them
new independent weights from the Poisson-Dirichlet distribution creates a discrete measure
which still satisfies both properties. On the other hand, almost any geometric property of
the original measure will be encoded into a countable i.i.d. sample and, therefore, this new
discrete measure.

2 Proof.

Let (ρl)l≥1 be an i.i.d. sequence from measure Gπ defined in (1.5) and denote by Sl,l′ = ρl ·ρl′
the overlap of ρl and ρl

′

. Analogously to (1.1), for any n ≥ 1 and a function f = f(ρ1, . . . , ρn)
of n configurations we will denote its average with respect to (Gπ)⊗∞ by

〈f〉π =
∑

l1,...,ln≥1

wπ
l1
· · ·wπ

ln
f(ξπ(l1), . . . , ξπ(ln)). (2.1)

We now will denote by E the expectation with respect to the randomness of G and the
Gaussian sequence (gp). Let us first make a simple observation that equality of finite dimen-
sional distributions in (1.6) and (1.8) implies equality of averages with respect to the random
measures in the following sense.

Lemma 1 If (1.8) holds then for any k ≥ 1, any bounded measurable function f of the
overlaps on k replicas and any integers n1, . . . , nk ≥ 0,

E

〈

∏

l≤k

(

gp(ρ
l)− bpt

)nlf
(

(Sl,l′)l,l′≤k

)

〉

π
= E

〈

∏

l≤k

gp(σ
l)nlf

(

(Rl,l′)l,l′≤k

)

〉

(2.2)

Under (1.6), this holds with all nl = 0.

Remark. One can consider (2.2) with all nl = 0 as the definition of the Aizenman-Contucci
stochastic stability for non-atomic measures in which case (gp(ξ)) is the Gaussian field with
covariance (1.3). Moreover, in this case (2.2) should be considered as the analogue of (1.8).
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Proof. This is obvious by separating the sum in (1.1) and (2.1) into finitely many terms
corresponding to the largest weights and the remaining small weights. For example,

E

〈

∏

l≤k

gp(σ
l)nlf

(

(Rl,l′)l,l′≤k

)

〉

= E

∑

j1,...,jk≥1

wj1 · · ·wjn

∏

l≤k

gp(ξjl)
nlf

(

(ξjl · ξjl′ )l,l′≤k

)

= E

∑

j1,...,jk≤N

wj1 · · ·wjn

∏

l≤k

gp(ξjl)
nlf

(

(ξjl · ξjl′ )l,l′≤k

)

+RN ,

where the remainder RN consists of the terms with at least one index j1, . . . , jk > N . The left
hand side of (2.2) can be similarly broken into two sums. The finite sums are equal because
they involve only finitely many elements of the arrays (1.8) which are equal in distribution
by assumption. Thus, we only need to show that RN becomes small for large N . Since f is
bounded, taking expectation in Gaussian random variables (gp(ξl)) first we get

|RN | ≤ L(f, n1, . . . , nk)E
∑

(j1,...,jk≤N)c

wj1 · · ·wjn ≤ Lk E
∑

j>N

wj

which goes to zero as N → ∞. The remainder for the left hand side of (2.2) is controlled
similarly.

The “if” part of the Theorem 1 is easy since assuming (1.8) we only need to prove (1.2)
and this follows from integration by parts of (2.2) with n1 = 1, n2 = . . . = nk = 0. In this
case the right hand side is zero by averaging gp(σ

1) first and the left hand side is

E

〈

(gp(ρ
1)− bpt

)

f
(

(Sl,l′)l,l′≤k

)

〉

π
= tE

〈

(

k
∑

l=1

Sp

1,l − bp − kSp

1,k+1

)

f
(

(Sl,l′)l,l′≤k

)

〉

π

= tE
〈

(

k
∑

l=1

Rp

1,l − bp − kRp

1,k+1

)

f
(

(Rl,l′)l,l′≤k

)

〉

= tE
〈

(

k
∑

l=2

Rp

1,l + E〈Rp
1,2〉 − kRp

1,k+1

)

f
(

(Rl,l′)l,l′≤k

)

〉

where in the second line we used (1.6) part of (1.8) and Lemma 1, and in the third line we
used (1.7) and the fact that ξl · ξl = q∗. The fact that the last sum is zero is exactly (1.2).

To prove the ”only if” part we need the following key lemma.

Lemma 2 If (1.2) and (1.6) hold then (2.2) holds.

Proof. The proof is by induction on N = n1+. . .+nk. When N = 0, (2.2) is the consequence
of (1.6) by Lemma 1. Suppose (2.2) holds for all k ≥ 1, all f and for all N ≤ N0. Clearly,
we only need to prove the case of powers n1 + 1, n2, . . . , nk. Writing

gp(σ
1)n1+1 = gp(σ

1) gp(σ
1)n1

4



and using Gaussian integration by parts for gp(σ
1) we can rewrite the right hand side of (2.2)

with n1 + 1 instead of n1 as

∑

l≤k

nlE

〈

gp(σ
1)n1 . . . gp(σ

l)nl−1 . . . gp(σ
k)nkRp

1,l f
(

(Rl,l′)l,l′≤k

)

〉

. (2.3)

Again, writing
(gp(ρ

1)− bpt)
n1+1 = (gp(ρ

1)− bpt)(gp(ρ
1)− bpt)

n1

and using Gaussian integration by parts for gp(ρ
1) we can rewrite the left hand side of (2.2)

with n1 + 1 instead of n1 as I + II where I is given by

∑

l≤k

nlE

〈

(

gp(ρ
1)− bpt

)n1 . . .
(

gp(ρ
l)− bpt

)nl−1
. . .

(

gp(ρ
k)− bpt

)nkSp

1,l f
(

(Sl,l′)l,l′≤k

)

〉

π
(2.4)

and II is given by

tE
〈

∏

l≤k

(

gp(ρ
l)− bpt

)nl

(

∑

l≤k

Sp

1,l − bp − kSp

1,k+1

)

f
(

(Sl,l′)l,l′≤k

)

〉

π
. (2.5)

By induction hypothesis, (2.4) is equal to (2.3) and (2.5) is equal to

tE
〈

∏

l≤k

gp(σ
l)nl

(

∑

l≤k

Rp

1,l − bp − kRp

1,k+1

)

f
(

(Rl,l′)l,l′≤k

)

〉

. (2.6)

Since 〈·〉 does not depend on the Gaussian sequence (gp(ξl)) we can take expectation Eg with
respect to the randomness of this sequence conditionally on G first and notice that

Eg

∏

l≤k

gp(σ
l)nl = f ′

(

(Rl,l′)l,l′≤k

)

is the function f ′ of the overlaps of k configurations σ1, . . . , σk. Therefore, (2.6) is equal to

tE
〈(

k
∑

l=1

Rp
1,l − bp − kRp

1,k+1

)

(ff ′)
(

(Rl,l′)l,l′≤k

)

〉

(2.7)

= tE
〈(

k
∑

l=2

Rp

1,l + E〈Rp
1,2〉 − kRp

1,k+1

)

(ff ′)
(

(Rl,l′)l,l′≤k

)

〉

= 0,

where in the first equality we again used (1.7) and the fact that ξl · ξl = q∗ and the second
equality is by the Ghirlanda-Guerra identities (1.2). This finishes the proof.

The equality of joint moments (2.2) proved in Lemma 2 implies the following.

Lemma 3 If (1.2) and (1.6) hold then
(

(

gp(ρ
l)− bpt

)

l≥1
, (Sl,l′)l,l′≥1

)

d
=

(

(

gp(σ
l)
)

l≥1
, (Rl,l′)l,l′≥1

)

(2.8)

where equality in distribution is in the sense of finite dimensional distributions.
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Proof. By choosing f to be monomials, (2.2) gives the equality of joint moments of the
corresponding elements of the two arrays in (2.8). In our case the joint moments uniquely
determine joint distributions, for example, by the main result in [11] which states that we
only need to ensure the uniqueness of one dimensional marginals and the fact that the one
dimensional marginals are either bounded or Gaussian.

Finally, we will show that (2.8) implies (1.8). First of all, by the well-known result of
Talagrand (Section 1.2 in [13]), the Ghirlanda-Guerra identities imply that the weights (wl)
must have a Poisson-Dirichlet distribution PD(m) where m is determined by

E〈I(R1,2 = q∗)〉 = E

∑

l≥1

w2
l = 1−m.

This means that if (ul) is a Poisson point process on (0,∞) with intensity measure x−m−1dx
then wl = ul/

∑

j≥1 uj. In particular, all the weights are different with probability one. This
point is not crucial but it makes for an easier argument. The reason why (2.8) implies (1.8)
is because one can easily reconstruct the arrays in (1.8) from the arrays (2.8) using that
(σl) is an i.i.d. sample from (ξl) according to weights (wl) and (ρl) is an i.i.d. sample from
(ξπ(l)) according to weights (wπ

l ). The key observation here is that given arrays (2.8) we
know exactly when σl = σl′ and ρl = ρl

′

since this is equivalent to Rl,l′ = q∗ and Sl,l′ = q∗.
Therefore, given N ≥ 1 and

((

gp(σ
l)
)

l≤N
, (Rl,l′)l,l′≤N

)

we can partition the set {1, . . . , N} according to the equivalence relation l ∼ l′ defined
by Rl,l′ = q∗, let the sequence of weights (wN

l )l≥0 be the proportions of the sets in this
partition arranged in non-increasing order and extended by zeros and, given any integer
j in the element of the partition corresponding to the weight wN

l , define ξNl = σj . We let
QN = (ξNl ·ξNl′ )l,l′≥1. The elements of (ξNl ) and QN with indices corresponding to zero weights
wN

l can be set to some fixed values, and we break ties between wN
l by any pre-determined

rule. Similarly, given
((

gp(ρ
l)− bpt

)

l≤N
, (Sl,l′)l,l′≤N

)

we can construct sequences (w̃N
l ), (ξ̃

N
l ) and Q̃N = (ξ̃Nl · ξ̃Nl′ ). Equation (2.8) implies that for

any fixed k ≥ 1,
(

(

w̃N
l

)

l≤k
,
(

gp(ξ̃
N
l )− bpt

)

l≤k
, (q̃Nl,l′)l,l′≤k

)

d
=
(

(

wN
l

)

l≤k
,
(

gp(ξ
N
l )

)

l≤k
, (qNl,l′)l,l′≤k

)

.

It remains to observe that the right hand side converges
(

(

wN
l

)

l≤k
,
(

gp(ξ
N
l )

)

l≤k
, (qNl,l′)l,l′≤k

)

→
(

(

wl

)

l≤k
,
(

gp(ξl)
)

l≤k
, (ql,l′)l,l′≤k

)

(2.9)

almost surely and, similarly, the left hand side converges a.s. to the corresponding array from
the left hand side of (1.8). To prove (2.9), we notice that by construction

GN :=
∑

l≥1

wN
l δξNl =

1

N

∑

i≤N

δσi

6



is the empirical measure based on the sample σ1, . . . , σN from the measure G =
∑

l≥1wlδξl .
By the strong law of large number for empirical measures (e.g. Theorem 11.4.1 in [5]), the
laws GN → G almost surely and since the Poisson-Dirichlet weights (wl) are all different a.s.,
the largest k weights must converge (wN

l )l≤k → (wl)l≤k almost surely and for large enough
N we must have (ξNl )l≤k = (ξl)l≤k and, thus, (2.9) holds.
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