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Ghirlanda-Guerra identities and ultrametricity: An

elementary proof in the discrete case.

Dmitry Panchenko∗

Texas A&M University

Abstract

In this paper we give another proof of the fact that a random overlap array, which

satisfies the Ghirlanda-Guerra identities and whose elements take values in a finite set,

is ultrametric with probability one. The new proof bypasses random change of density

invariance principles for directing measures of such arrays and, in addition to the

Dobvysh-Sudakov representation, is based only on elementary algebraic consequences

of the Ghirlanda-Guerra identities.
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1 Introduction and main result.

In this paper we will give a simplified proof of the main result in [5]. Let us consider an
infinite random array R = (Rl,l′)l,l′≥1 which is symmetric, non-negative definite and weakly
exchangeable, which means that for any n ≥ 1 and for any permutation ρ of {1, . . . , n}
the matrix (Rρ(l),ρ(l′))l,l′≤n has the same distribution as (Rl,l′)l,l′≤n. We assume that diagonal
elements Rl,l = 1 and non-diagonal elements take finitely many values,

P
(

R1,2 = ql
)

= pl (1.1)

for some −1 ≤ q1 < q2 < . . . < qk ≤ 1 and pl > 0, p1 + . . . + pk = 1. The array R is said
to satisfy the Ghirlanda-Guerra identities [4] if for any n ≥ 2 and any bounded measurable
functions f = f

(

(Rl,l′)1≤l,l′≤n

)

and ψ : R → R,

Efψ(R1,n+1) =
1

n
Ef Eψ(R1,2) +

1

n

n
∑

l=2

Efψ(R1,l). (1.2)

By the positivity principle of Talagrand ([8], [10]), the Ghirlanda-Guerra identities imply
that R1,2 ≥ 0 with probability one and, therefore, we can assume that q1 ≥ 0.
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Theorem 1 ([5]) Under assumptions (1.1) and (1.2), the array R is ultrametric,

P
(

R2,3 ≥ min(R1,2, R1,3)
)

= 1. (1.3)

Another way to express the event in (1.3) is to say that

R1,2 ≥ ql, R1,3 ≥ ql =⇒ R2,3 ≥ ql for all 1 ≤ l ≤ k. (1.4)

Infinite arrays that satisfy the Ghirlanda-Guerra identities arise as the limits of the overlap
arrays in the Sherrington-Kirkpatrick spin glass models (see e.g. [10], [7]). The assumption
(1.1) is purely technical (and unfortunately is not satsified in the most important situations).
The first ultrametricity result was proved in [2] under different conditions which also included
(1.1), but instead of (1.2) the authors worked with the Aizenman-Contucci stochastic stability
[1]. The original proof of Theorem 1 in [5] utilized a key idea from [2], namely, the existence
of directing measures guaranteed by the Dovbysh-Sudakov representation result in [3], and
we will still rely on this representation here. However, we will completely avoid proving
any invariance principles under random changes of density for the directing measure, which
played crucial roles both in [2] and [5] and our new induction will be quite elementary
in nature. M. Talagrand gave a proof of Theorem 1 in [9] that did not use the Dovbysh-
Sudakov representation but still used the invariance principle from [5]. The Dovbysh-Sudakov
representation [3] (for detailed proof see [6]) states that given a symmetric, non-negative
definite and weakly exchangeable array R, there exists a random measure µ on H × [0,∞),
where H is a separable Hilbert space, such that R is equal in distribution to the array

(

σl · σl′ + al δl,l′
)

l,l′≥1
(1.5)

where (σl, al) is an i.i.d. sequence from µ and σ · σ′ denotes the scalar product on H . Let us
denote by G the marginal of µ on H. The following simple consequence of the Ghirlanda-
Guerra identities (1.2) was proved in Theorem 2 in [5].

Proposition 1 Under (1.1) and (1.2), the random measure G is (countably) discrete and
is concentrated on the sphere of radius

√
qk with probability one.

In particular, this implies that al = 1 − qk in (1.5) and without loss of generality we can
redefine the array by Rl,l′ = σl · σl′ for an i.i.d. sequence (σl) from G. Since Rl,l′ = qk if and
only if σl = σl′, we have

P(R1,2 = qk, R1,3 = qk, R2,3 < qk) = 0,

which proves “ultrametricity at the level k” in the sense of (1.4). As in [2] and [5], we would
like to find a way to make an induction step and prove “ultrametricity at the level k − 1”.
The main new idea of the paper will be to consider the distribution of the array (Rl,l′) condi-
tionally on the event that all replicas (σl) are different and prove that this new distribution
is well-defined and satisfies all the conditions of the Dovbysh-Sudakov representation. Since
on the above event the elements of the new array can not take value qk, the induction step
will follow.
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2 Proof.

By Proposition 1, G =
∑

l≥1wlδξl for some random weights (wl) and random sequence (ξl)
in H such that ξl · ξl = qk. Let us denote by 〈·〉 the average with respect to G⊗∞ and by E

the expectation with respect to the randomness of G. With these notations, the Ghirlanda-
Guerra identities (1.2) can be rewritten as

E〈fnψ(R1,n+1)〉 =
1

n
E〈fn〉E〈ψ(R1,2)〉+

1

n

n
∑

l=2

E〈fnψ(R1,l)〉. (2.1)

For each n ≥ 2, let us consider the event

An = {Rl,l′ 6= qk, ∀1 ≤ l < l′ ≤ n} (2.2)

and let Pn be the distribution of the n× n matrix Rn = (σl · σl′)l,l′≤n conditionally on An,

Pn(B) =
E〈I(Rn ∈ B)IAn

〉
E〈IAn

〉 . (2.3)

It is obvious that Pn is concentrated on the symmetric non-negative definite matrices with off-
diagonal elements now taking values {q1, . . . , qk−1} and Pn is invariant under the permutation
of replica indices since the set An is. We will now show that Pn+1 restricted to the first n
replica coordinates coincides with Pn and, thus, the sequence (Pn) defines a law of the infinite
overlap array.

Lemma 1 For any measurable function f of the overlaps on n replicas,

E〈f(Rn)IAn+1
〉 = (1− pk)E〈f(Rn)IAn

〉. (2.4)

Proof. Notice that An = {σ1, . . . , σn are all different} by Proposition 1 and, therefore,

IAn+1
= IAn

−
∑

l≤n

IAn∩{Rl,n+1=qk}. (2.5)

This implies that

E〈f(Rn)IAn+1
〉 = E〈f(Rn)IAn

〉 −
∑

l≤n

E〈f(Rn)IAn
I(Rl,n+1 = qk)〉.

Using the Ghirlanda-Guerra identities (2.1), for each l ≤ n,

E〈f(Rn)IAn
I(Rl,n+1 = qk)〉 =

pk

n
E〈f(Rn)IAn

〉+ 1

n

n
∑

l′ 6=l

E〈f(Rn)IAn
I(Rl,l′ = qk)〉

=
pk

n
E〈f(Rn)IAn

〉

since An ⊆ {Rl,l′ 6= qk} and, thus, IAn
I(Rl,l′ = qk) = 0. Adding up over l ≤ n finishes the

proof.
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First, using (2.4) inductively for f ≡ 1 we get E〈IAn
〉 = (1 − pk)

n−1 and then dividing
(2.4) by (1− pk)

n gives
E〈f(Rn)IAn+1

〉
E〈IAn+1

〉 =
E〈f(Rn)IAn

〉
E〈IAn

〉 . (2.6)

This means that the family (Pn) is consistent and by Kolmogorov’s theorem we can define
the distribution of the infinite array with the corresponding marginals given by Pn. Let us
consider an array Q = (Ql,l′)l,l′≥1 with this distribution.

Proof of Theorem 1. By construction, Q is a symmetric, non-negative definite and
weakly exchangeable array with diagonal elements equal to qk and off-diagonal elements
taking values {q1, . . . , qk−1} with probabilities

P(Q1,2 = ql) =
pl

1− pk
. (2.7)

Using the Dovbysh-Sudakov representation for the array Q implies that there exists a random
measure G′ on H such that Q can be generated as

Ql,l′ = σl · σl′ + δl,l′(qk − σl · σl)

for an i.i.d. sequence (σl) from G′. Since σl · σl′ ∈ {q1, . . . , qk−1}, it is easy to see that
the support of G′ must be inside the sphere of radius

√
qk−1 for, otherwise, with positive

probability we could sample two points σ1, σ2 arbitrarily close to a point σ such that ‖σ‖ >√
qk−1 which would contradict that σ1 · σ2 ≤ qk−1 (see [2] or [5] for details). In particular,

the truncated array (Ql,l′ ∧ qk−1)l,l′≥1 can be computed as

Ql,l′ ∧ qk−1 = σl · σl′ + δl,l′(qk−1 − σl · σl) (2.8)

and it is non-negative definite as the sum of two non-negative definite arrays. If we recall
the definition (2.3), the matrix (Ql,l′)l,l′≤n is obtained by sampling n configurations from the
measure G =

∑

l≥1wlδξl conditionally on the event that these configurations are different.
Since with positive probability we can sample ξ1, . . . , ξn, we must have that the matrix
(ξl · ξl′ ∧ qk−1)l,l′≤n is non-negative definite and, therefore, (ξl · ξl′ ∧ qk−1)l,l′≥1 is non-negative
definite with probability one. This of course means that (Rl,l′ ∧qk−1)l,l′≥1 is also non-negative
definite. Since the function x ∧ qk−1 can be approximated by polynomials, the truncated
overlap array also satisfies the Ghirlanda-Guerra identities and its elements now take values
in {q1, . . . , qk−1}. One can proceed by induction on k.

Even though we did not need it in the proof, one can show that the measure G′ is actu-
ally concentrated on the sphere of radius

√
qk−1 by using Proposition 1 and the following

observation.

Lemma 2 The distribution of Q satisfies the Ghirlanda-Guerra identities,

Ef(Qn)ψ(Q1,n+1) =
1

n
Ef(Qn)Eψ(Q1,2) +

1

n

n
∑

l=2

Ef(Qn)ψ(Q1,l). (2.9)
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Proof. For simplicity of notations let us consider the case of ψ(x) = xp. Using (2.5),

E〈f(Rn)R
p
1,n+1IAn+1

〉 = E〈f(Rn)R
p
1,n+1IAn

〉 −
∑

l≤n

E〈f(Rn)R
p
1,n+1IAn∩{Rl,n+1=qk}〉

= E〈f(Rn)R
p
1,n+1IAn

〉 −
∑

l≤n

E〈f(Rn)R
p
1,lIAn∩{Rl,n+1=qk}〉. (2.10)

since Rl,n+1 = qk implies that σl = σn+1 and, thus, R1,n+1 = R1,l. By the Ghirlanda-Guerra
identities, the lth term in the last sum is equal to

pk

n
E〈f(Rn)R

p
1,lIAn

〉+ 1

n

n
∑

l′ 6=l

E〈f(Rn)R
p
1,lIAn∩{Rl,l′=qk}〉 =

pk

n
E〈f(Rn)R

p
1,lIAn

〉

since An ∩ {Rl,l′ = qk} = ∅. Similarly,

E〈f(Rn)R
p
1,n+1IAn

〉 =
1

n
E〈f(Rn)IAn

〉E〈Rp
1,2〉+

1

n

n
∑

l=2

E〈f(Rn)R
p
1,lIAn

〉.

Using that R1,1 = qk and combining all the terms in (2.10), E〈f(Rn)R
p
1,n+1IAn+1

〉 equals
1

n
E〈f(Rn)IAn

〉
(

E〈Rp
1,2〉 − q

p
k pk

)

+
1− pk

n

n
∑

l=2

E〈f(Rn)R
p
1,lIAn

〉

=
1

n
E〈f(Rn)IAn

〉E〈Rp
1,2IA2

〉+ 1

n

n
∑

l=2

E〈f(Rn)R
p
1,lIAn

〉E〈IA2
〉.

Recalling that E〈IAn
〉 = (1− pk)

n−1 and dividing everything by (1− pk)
n, we get

E〈f(Rn)R
p
1,n+1IAn+1

〉
E〈IAn+1

〉 =
1

n

E〈f(Rn)IAn
〉

E〈IAn
〉

E〈Rp
1,2IA2

〉
E〈IA2

〉 +
1

n

n
∑

l=2

E〈f(Rn)R
p
1,lIAn

〉
E〈IAn

〉 .

Comparing with (2.3), this is exactly (2.9).

We would like to point out that the idea of the proof of Theorem 1 suggests the following
criterion of ultrametricity in the general case without the assumption (1.1). Given q ∈ [0, 1]
such that P(R1,2 < q) > 0, consider the events

An,q = {Rl,l′ < q, ∀1 ≤ l < l′ ≤ n} (2.11)

and let Pn,q be the distribution of Rn conditionally on An,q.

Theorem 2 Under (1.2), the array R is ultrametric if and only if for any q such that
P(R1,2 < q) > 0 and any set B of 3 × 3 matrices such that P3,q(R

3 ∈ B) > 0 we have
lim supn→∞ Pn,q(R

3 ∈ B) > 0.

One can check that, in one direction, ultrametricity yields a relationship of the type (2.5)
which implies the consistency of the sequence (Pn,q) as in Lemma 1 and Pn,q(R

3 ∈ B) =
P3,q(R

3 ∈ B). In the other direction, for any B with P3,q(R
3 ∈ B) > 0 we can choose the

limit Pq over a subsequence of Pn,q such that Pq(R
3 ∈ B) > 0. If ultrametricity fails, one

can make a choice of a subset of non-ultrametric configurations B and q that will lead to
contradiction with the Dovbysh-Sudakov representation for Pq.
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