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Abstract

In this paper we consider a sample of a linearly elastic heterogeneous com-

posite in elastodynamic equilibrium and present universal theorems which

provide lower bounds for the total elastic strain energy plus the kinetic en-

ergy, and the total complementary elastic energy plus the kinetic energy.

For a general heterogeneous sample which undergoes harmonic motion at a

single frequency, we show that, among all consistent boundary data which

produce the same average strain, the uniform-stress boundary data render

the total elastic strain energy plus the kinetic energy an absolute minimum.

We also show that, among all consistent boundary data which produce the

same average momentum in the sample, the uniform velocity boundary data

render the total complementary elastic energy plus the kinetic energy an

absolute minimum. We do not assume statistical homogeneity or material

isotropy in our treatment, although they are not excluded. These univer-

sal theorems are the dynamic equivalent of the universal theorems already

known for the static case (Nemat-Nasser and Hori (1995)). It is envisaged

that the bounds on the total energy presented in this paper will be used to
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formulate computable bounds on the overall dynamic properties of linearly

elastic heterogeneous composites with arbitrary microstructures.

Keywords: Energy Bounds, Effective Dynamic Properties, Metamaterials,

Homogenization

1. Introduction

One of the main objectives of micromechanics is to estimate the overall

properties of a heterogeneous composite in terms of the architectural and ma-

terial properties of its micro-constituents. For the static case, this amounts

to defining effective properties which relate the domain averages of the stress

and strain tensors over a suitably large sample called a Representative Vol-

ume Element (RVE; See Hill (1963); Hashin (1965); Kröner (1977); Willis

(1981a,b)). The analysis is complicated by the following twin problems:

1. It is often difficult to identify a suitable RVE that characterizes the

composite.

2. In general the average values of the stress and strain tensors depend

upon the boundary conditions to which the RVE is subjected. Therefore, ef-

fective properties defined to relate these averages depend upon the boundary

conditions under which the averages are calculated.

To deal with these difficulties, statistical homogeneity is used which as-

sumes that the overall properties of the composite can be represented by

those of an RVE. Furthermore, it implies that the overall response of the

RVE is almost the same for any boundary condition as long as the aver-

age stress and strain tensors are kept constant. By employing statistical

homogeneity, strain and complementary energy functionals can be defined
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to estimate the overall properties of the heterogeneous composite Eshelby

(1957); Hashin and Shtrikman (1962a,b); Hashin (1965); Walpole (1966a,b);

Korringa (1973). However, such estimates have been shown to be merely

plausible bounds and not rigorous bounds on the effective properties Willis

(1981a). It was subsequently shown that exact inequalities for the elastic and

the complementary energies stored in a finite body under arbitrary boundary

conditions could be established Nemat-Nasser and Hori (1995, 1999). These

bounds on the energies were, in turn, used to provide improvable and com-

putable bounds on the static effective properties of heterogeneous composites.

The recent interest in metamaterials Smith et al. (2000); Sheng et al.

(2003); Liu et al. (2005); Milton and Willis (2007) has necessitated a sys-

tematic homogenization procedure to estimate the effective dynamic prop-

erties of composites by using field averaging or ensemble averaging techniques

Smith and Pendry (2006); Amirkhizi and Nemat-Nasser (2008a,b); Willis (2009);

Nemat-Nasser et al. (2011); Willis (2011). It has been shown that in the

homogenized representation the average stress is coupled with the average

velocity and that the average momentum is coupled with the average strain

(See also Shuvalov et al. (2011)). Recently, a micromechanical method to

calculate the effective properties of periodic elastic composites was proposed

Nemat-Nasser and Srivastava (2011); Srivastava and Nemat-Nasser (2011).

This method provides effective parameters which reduce to the effective pa-

rameters calculated from the ensemble averaging technique of Ref. Milton and Willis

(2007) or the field averaging technique of Ref. Nemat-Nasser and Srivastava

(2011) when the dispersion relation of the composite is enforced.

In this paper we begin with a brief overview of the elastostatic problem,
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stating the universal energy theorems for this case. For the elastodynamic

case, we present the general form of the effective constitutive relations and

briefly discuss the properties of the effective parameters which arise in the

averaged constitutive relations. Finally, we present universal theorems which

are the dynamic analogues of the static universal theorems presented in Ref.

Nemat-Nasser and Hori (1999). These universal theorems bound the total

elastic energy plus the kinetic energy and the total complementary energy

plus the kinetic energy of a composite in an elastodynamic state and pave the

way for subsequently establishing rigorous bounds on the effective dynamic

properties of the composite.

2. Elastostatic Universal Theorems

Consider the static case of a general heterogeneous solid which consists

of various elastic phases. There is no restriction on the number, geometry,

material, or orientation of each constituting microphase, i.e., neither sta-

tistical homogeneity nor isotropy is assumed. Consider an arbitrary finite

sample of volume Ω and boundary ∂Ω. The field variables for the problem

are the stress, σ(x), and strain, ǫ(x), tensors and the displacement vector,

u(x). The constitutive equation relates the stress to the strain through the

stiffness, C(x), or the compliance, D(x) = C−1, tensors; in what follows, the

x dependence is implicit,

σ = C : ε; ε = D : σ (1)

Strain is related to displacement through the kinematic relation (field

equation),
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ε =
1

2

[

∇u+∇
Tu

]

(2)

For elastostatically admissible boundary data, effective properties (effec-

tive stiffness and compliance tensors) are defined by relating the domain

averages of the stress and the strain tensors,

〈σ〉Ω = Ceff : 〈ε〉Ω; 〈ε〉Ω = Deff : 〈σ〉Ω (3)

where the domain average is defined by,

〈Q〉Ω =
1

Ω

∫

Ω

QdΩ

Effective properties defined above, depend upon the boundary conditions

under which the strain and stress fields are generated. It is, therefore, of

interest to study if there exist special boundary conditions which bound

the effective properties associated with any boundary data. It was shown

in Refs. Nemat-Nasser and Hori (1995, 1999) that the elastic energy and

complementary energy associated with the elastostatic system are bound

by special boundary conditions and that this fact could be used to place

strict bounds on the effective parameters. To this end, the following two

stress/strain states were defined:

• Weakly Kinematically Admissible Strain Fields : Any compatible strain

field with a prescribed average value.

• Weakly Statically Admissible Stress Fields : Any compatible stress field

with a prescribed average value.
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And the following two universal theorems were proved:

• Universal theorem for elastic strain energy : Among all weakly kine-

matically admissible strain fields, the strain field produced by uniform

boundary tractions renders the total strain energy an absolute mini-

mum.

• Universal theorem for complementary elastic energy : Among all weakly

statically admissible stress fields, the stress field produced by linear

displacement (uniform strain) boundary data renders the total comple-

mentary energy an absolute minimum.

In the present paper we show that analogous universal theorems exist for

the elastodynamic case. These universal theorems may subsequently be used

to place strict bounds on the effective dynamic parameters.

3. Elastodynamic Universal Theorems

Now consider the dynamic case of a general heterogeneous solid which

consists of various elastic phases. As for the elastostatic case, there is no re-

striction on the number, geometry, material, or orientation of each constitut-

ing microphase, i.e., neither statistical homogeneity nor isotropy is assumed.

Consider an arbitrary finite sample of volume Ω and boundary ∂Ω. The field

variables are represented by the stress, σ(x), and strain, ǫ(x), tensors and

the vectors of momentum, p(x), and velocity, u̇(x). Constitutive relations

relating the stress to the strain are given by Eqs. (1). The relation between

the momentum and the velocity at every point in Ω is,
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p = ρu̇ (4)

where ρ(x) is the density. The field equations relate the stress to the

momentum and the strain to the velocity,

∇ · σ = ṗ

ε̇ = (∇u̇+∇T u̇)
(5)

Dynamic homogenization is an active area of research (See Norris (1992);

Norris and Santosa (1992); Norris (1993); Wang and Rokhlin (2002); Andrianov et al.

(2008) and references therein.) Effective dynamic parameters are defined by

relating the domain averages of the field variables. The general form of the

averaged constitutive relation is given by (Milton and Willis (2007); Willis

(2009); Nemat-Nasser and Srivastava (2011); Willis (2011); Srivastava and Nemat-Nasser

(2011)),

〈ε〉Ω = D̄ : 〈σ〉Ω + S1 · 〈u̇〉Ω

〈p〉Ω = S2 : 〈σ〉Ω + ρ̄ · 〈u̇〉Ω
(6)

All the effective constitutive parameters are non-local in space and time.

The effective parameters may be complex even if there is no dissipation in the

system, the imaginary parts resulting from the asymmetries of, e. g., the unit

cell of a periodic composite. D̄ is the fourth-order effective compliance tensor

which has minor symmetries, D̄ijkl = D̄jikl = D̄ijlk. It does not have the

major symmetry associated with the elasticity or the compliance tensor but

has a hermitian relationship over the major transformation, D̄ijkl = [D̄klij]
∗,

where * denotes complex conjugation. Effective density is a second-order

tensor with a hermitian relationship over the transformation of its indices,
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ρ̄ij = [ρ̄ji]
∗, and S1, S2 are third-order coupling tensors with the relationship

S1

ijk = [S2

kij]
∗.

Defined as above, the effective parameters depend upon the boundary

conditions under which the domain averages of the field variables have been

calculated. It is, therefore, of interest to investigate the existence of special

boundary conditions which may bound the effective parameters by bounding

the associated total elastic energy plus the kinetic energy and the total com-

plementary elastic energy plus the kinetic energy for any boundary data. We

present two theorems which are the elastodynamic equivalent of the elasto-

static universal theorems stated above. These theorems prove the existence

of special boundary conditions under which the total elastic energy plus the

kinetic energy and the total complementary energy plus the kinetic energy

achieve their absolute minima.

3.1. Universal Theorems

We define the following concepts of weak admissibility,

• Weakly Kinematically Admissible Strain Fields : Any compatible strain

field with a prescribed average value.

• Weakly Dynamically Admissible Momentum Fields : Any compatible

momentum field with a prescribed average value.

It is not required for these fields to satisfy any specific boundary data,

only their averages are required to be equal to specified values.
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3.2. Universal Theorem for Total Elastic Strain and Kinetic Energy

Consider a weakly admissible strain field ǫ(x) which satisfies 〈ǫ〉Ω = ǫ
0.

The total elastic strain and kinetic energy associated with the body is given

by,

Π(ǫ; ǫ0) =
1

2
〈ǫ : C : ǫ〉Ω +

1

2
〈v · ρv〉Ω (7)

where the inner product is given by,

〈ǫ : C : ǫ〉Ω =
1

Ω

∫

Ω

ǫ : C : ǫ∗dΩ

〈v · ρv〉Ω =
1

Ω

∫

Ω

v · ρv∗dΩ
(8)

For any other weakly kinematically admissible strain field, ǫ̂(x); 〈ǫ̂(x)〉Ω =

ǫ
0, the total energy is given by,

Π(ǫ̂; ǫ0) =
1

2
〈ǫ̂ : C : ǫ̂〉Ω +

1

2
〈v̂ · ρv̂〉Ω (9)

where v̂(x) is the velocity field resulting from the displacement field û(x)

which corresponds to the strain ǫ̂(x). Since C has major symmetry, the

difference in the total energy for the two weakly admissible strain fields is,

Π(ǫ; ǫ0)− Π(ǫ̂; ǫ0) =
1

4
〈(ǫ− ǫ̂) : C : (ǫ− ǫ̂)〉Ω +

1

2
〈(ǫ− ǫ̂) : C : ǫ̂〉Ω

+
1

4
〈(v− v̂) · ρ(v − v̂)〉Ω +

1

2
〈(v− v̂) · ρv̂〉Ω + c.c.

(10)

where c.c. denotes the complex conjugate of the preceding expression.

Setting σ̂ = C : ǫ̂ and ǫ̃ = (ǫ − ǫ̂), the second term on the right hand side

can be written as,
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1

2
〈(ǫ− ǫ̂) : C : ǫ̂〉Ω =

1

2Ω

∫

Ω

ǫ̃ij σ̂
∗

ijdΩ

Now we have,

ǫ̃ij σ̂
∗

ij =
1

2
(ũi,j + ũj,i)σ̂

∗

ij =
1

2
(ũiδkj + ũjδki),kσ̂

∗

ij

= 1

2

[

(ũiδkj + ũjδki)σ̂
∗

ij

]

,k
− 1

2
(ũiδkj + ũjδki)σ̂

∗

ij,k

= (σ̂∗

ijũj),i + σ̂∗

ij,jũi

(11)

For the static case the last term in the above equation is equal to zero

based on the conservation law σ̂∗

ij,j = 0. For the dynamic case, however, we

have σ̂∗

ij,j = ˆ̇p∗i , hence,

1

2
〈(ǫ− ǫ̂) : C : ǫ̂〉Ω =

1

2Ω

∫

Ω

∇ · (σ̂∗ · ũ)dΩ−
1

2Ω

∫

Ω

ˆ̇p∗ · ũdΩ

=
1

2Ω

∫

∂Ω

n · σ̂∗ · ũd∂Ω −
1

2Ω

∫

Ω

ˆ̇p∗ · ũdΩ
(12)

Now the last term in Eq. (10) is,

1

2
〈(v − v̂) · ρv̂〉Ω =

1

2Ω

∫

Ω

˜̇u · p̂∗dΩ (13)

This cancels with the volume integral in Eq. (12) if the two cases for

which the energies are being compared are in harmonic motion with the

same frequency. Moreover if the boundary conditions associated with the

strain field ǫ̂ are such that, on the boundary,

n(x) · σ̂(x)|∂Ω = n(x) ·Σ (14)

where Σ is a constant tensor, then the surface integral in Eq. (12) can

be written as,
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1

Ω

∫

∂Ω

n · σ̂∗ · ũd∂Ω = 〈(ǫ− ǫ̂)〉Ω : Σ∗ (15)

This is zero when both ǫ and ǫ̂ are weakly kinematically admissible fields

with volume averages equal to ǫ
0. Similar considerations apply to the com-

plex conjugate parts of Eq. (10) and it can be shown that the remaining

terms in Eq. (10) are always real and positive given the symmetric, positive-

definiteness of C and the scalar nature of ρ.

The above treatment shows that among all weakly kinematically admissi-

ble strain fields, the sum of the elastic strain and the kinetic energy contained

in a finite body, in harmonic motion at a common frequency, is minimum for

the case when the boundary conditions are one of uniform traction (constant

stress). To summarize, our first universal theorem for the total energy is,

In elastodynamics, among all weakly kinematically admissible strain fields

at a given frequency, the strain field produced by uniform boundary tractions

renders the total strain energy plus the kinetic energy an absolute minimum.

3.3. Universal Theorem for Total Complementary Energy

Now consider a weakly admissible momentum field p(x) which satisfies

〈p〉Ω = p0. The total complementary elastic energy plus the kinetic energy

associated with the body is given by,

Πc(p;p0) =
1

2
〈σ : D : σ〉Ω +

1

2
〈v · ρv〉Ω (16)

where D(x) = [C(x)]−1 is the compliance. For any other weakly ad-

missible momentum field, p̂(x); 〈p̂(x)〉Ω = p0, the total energy is now given

by,
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Πc(p̂;p0) =
1

2
〈σ̂ : D : σ̂〉Ω +

1

2
〈v̂ · ρv̂〉Ω (17)

The difference in the total complementary energy of these states is,

Πc(p;p0)−Πc(p̂;p0) =
1

4
〈(σ − σ̂) : D : (σ − σ̂)〉Ω +

1

2
〈(σ − σ̂) : D : σ̂〉Ω

+
1

4
〈(v − v̂) · ρ(v − v̂)〉Ω +

1

2
〈(v − v̂) · ρv̂〉Ω + c.c.

(18)

Denoting ǫ̂ = C : σ̂ and σ̃ = (σ− σ̂), the second term on the right hand

side can be written as,

1

2
〈(σ − σ̂) : D : σ̂〉Ω =

1

2Ω

∫

Ω

σ̃ij ǫ̂
∗

ijdΩ (19)

As shown in the previous subsection, we have

σ̃ij ǫ̂
∗

ij = (σ̃ij û
∗

j),i + σ̃ij,jû
∗

i (20)

so that Eq. (19) becomes,

1

2
〈(σ − σ̂) : D : σ̂〉Ω =

1

2Ω

∫

Ω

∇ · (σ̃ · û∗)dΩ−
1

2Ω

∫

Ω

˜̇p · û∗dΩ

=
1

2Ω

∫

∂Ω

n · σ̃ · û∗d∂Ω−
1

2Ω

∫

Ω

˜̇p · û∗dΩ
(21)

The volume integral in the above equation cancels the last term on the

right side of Eq. (18) if the two weakly admissible cases are harmonic mo-

tion with the same frequency. Therefore, for harmonic motion of the same

frequency, say, ω, if the boundary condition for the second case is such that

ˆ̇u(x)|∂Ω = U̇ = −iωU (22)
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then the surface integral in Eq. (21) can be written as,

1

Ω

∫

∂Ω

n · σ̃ · û∗d∂Ω = −
U̇∗

i

iωΩ

∫

Ω

σ̃ij,jdΩ = −
U̇∗

i

iωΩ

∫

Ω

˜̇pidΩ (23)

Invoking the harmonic nature of the motion, we can write the final term

in the above equations as,

−
U̇∗

i

iωΩ

∫

Ω

˜̇pidΩ =
U̇∗

i

Ω

∫

Ω

p̃idΩ (24)

The above integral goes to zero when the momentum fields for the two

cases have the same average value. Similar comments apply to the complex

conjugate part of Eq. (18). In light of this, our second universal theorem is,

In elastodynamics, among all weakly dynamically admissible momentum

fields at a given frequency, the momentum field produced by uniform boundary

velocities renders the total complementary energy plus the kinetic energy an

absolute minimum.

4. Conclusions

The static energy theorems given in Ref. Nemat-Nasser and Hori (1999)

proved that the elastic energy and the complementary energy of a hetero-

geneous solid corresponding to any boundary conditions, are bounded from

below by that corresponding to special boundary conditions, i.e., constant

stress and linear displacement, respectively. Thus, the energy theorems show

that the effective properties are bounded by the effective properties defined

for these special boundary data. This was then used to calculate strict and

computable bounds on the static effective parameters. For the dynamic case

we, have proved the existence of analogous theorems which bound the total
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strain energy plus the kinetic energy, and the total complementary energy

plus the kinetic energy. It is worth to note that the boundary condition which

provides a bound for the strain energy in the static case, i.e., the constant

boundary tractions, also provides a bound for the total strain energy plus

the kinetic energy for the dynamic case. On the other hand, the boundary

condition which provides a bound for the complementary energy in the static

case, i. e., linear displacements (or constant strain) does not provide a bound

for the total complementary energy plus the kinetic energy in the dynamic

case. Instead now, for a common average momentum, it is the uniform ve-

locity boundary data that provide the bound for the total complementary

energy plus the kinetic energy of the elastic composite. The energy bounds

proved for the elastodynamic case in this paper are expected to provide strict

bounds on the effective dynamic properties of heterogeneous composites.
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