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ON THE VERLINDE FORMULAS FOR SO(3)-BUNDLES

DEREK KREPSKI AND ECKHARD MEINRENKEN

Abstract. This paper computes the quantization of the moduli space of
flat SO(3)-bundles over an oriented surface with boundary, with prescribed
holonomies around the boundary circles. The result agrees with the general-
ized Verlinde formula conjectured by Fuchs and Schweigert.

1. Introduction

Let G be a compact, connected Lie group, Σ a compact oriented surface of genus
h with r boundary components. Given conjugacy classes C1, . . . , Cr ⊂ G, denote by

(1) M(Σ, C1, . . . , Cr)

the moduli space of flat G-bundles over Σ, with boundary holonomies in prescribed
conjugacy classes Cj . The choice of an invariant inner product on g defines a
symplectic structure on the moduli space. Under suitable integrality conditions
the moduli space carries a pre-quantum line bundle L, and one can define the
quantization

(2) Q(M(Σ, C1, . . . , Cr)) ∈ Z

as the index of the Spinc-Dirac operator with coefficients in L. (It may be necessary
to use a partial desingularization as in [16].) Choosing a complex structure on Σ
further defines a Kähler structure on the moduli space. If G is simply connected,
Kodaira vanishing results [20] show that the above index coincides with the dimen-
sion of the space of holomorphic sections of L. It is given by the celebrated Verlinde
formula [22, 21, 7, 19, 5]. For symplectic approaches to the Verlinde formulas, much
in the spirit of the present paper, see [11, 10, 12, 6, 2].

Much less is known for non-simply connected groups. For surfaces without
boundary (r = 0), and taking G = PU(n), Verlinde-type formulas were obtained
by Pantev [17] in the case n = 2 and by Beauville [4] for n prime. For more general
compact, semi-simple connected Lie groups, Fuchs and Schweigert [9] conjectured
a generalization of the Verlinde formula, expressed in terms of orbit Lie algebras.
Partial results on these conjectures were obtained in [2].

In this article, we will establish Fuchs-Schweigert formulas for the index (2)
for the simplest case G = SO(3). We will use the recently developed quantization
procedure [15, 14] for quasi-Hamiltonian actions with group-valued moment map [1].
In order to apply these techniques, we present the moduli spaces (1) as symplectic

quotients of quasi-Hamiltonian G̃-spaces for the universal cover G̃ = SU(2). In more
detail, let Di ⊂ SU(2) be conjugacy classes, and consider the quasi-Hamiltonian
SU(2)-space

M̃ = D1 × · · · × Ds × SU(2)2h
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with moment map the product of holonomies,

Φ̃(d1, . . . , ds, a1, b1, . . . , ah, bh) =

s∏

i=1

di

h∏

j=1

(ajbja
−1
j b−1

j ).

Put M = M̃/Γ, where Γ ⊂ Zs+2h is the subgroup preserving M̃ ⊂ SU(2)s+2h and

Φ̃. Then M is a quasi-Hamiltonian SU(2)-space, and all connected components of
moduli spaces (2) are symplectic quotientsM// SU(2) for suitable choices of Dj (see
Section 2.3). Our first main result gives necessary and sufficient conditions under
which the space M admits a level k pre-quantization [13]. Using localization, we
then compute the corresponding quantization Q(M) ∈ Rk(SU(2)), an element of
the level k fusion ring (Verlinde ring). These results are summarized in Theorem
3.7. We reformulate the result as an equivariant version of the Fuchs-Schweigert
formula (Theorem 4.1); the non-equivariant formula (see (16) in Section 4) is then
obtained from a ‘quantization commutes with reduction’ principle.

Using the results of [14], it is also possible to compute quantizations of moduli
spaces for non-simply connected groups of higher rank. However, the determination
of the pre-quantization conditions and the evaluation of the fixed point contribu-
tions becomes more involved. We will return to these questions in a forthcoming
paper; see also the author’s abstracts in Oberwolfach Report No. 2011/09.

2. Preliminaries

The following notation, consistent with [15], will be used in this paper. For the
Lie group SU(2) let T be the maximal torus given as the image of

j : U(1) → SU(2), j(z) = ( z 0
0 z̄ ).

Let Λ = ker expT ⊂ t denote the integral lattice and Λ∗ ⊂ t∗ its dual, the (real)
weight lattice. Let ρ ∈ Λ∗ be the generator dual to the generator dj(2πi) ∈ Λ. We
will use the basic inner product on su(2),

ξ · ξ′ := 1

4π2
tr(ξ†ξ′), ξ, ξ′ ∈ su(2)

to identify su(2) ∼= su(2)∗. Under this identification, ||ρ||2 = 1
2 , and Λ = 2Λ∗ with

generator 2ρ. The following two elements of SU(2) will play a special role in this
paper:

u∗ = ( 0 1
−1 0 ), t∗ = ( i 0

0 −i )

Observe that t∗ = exp(ρ/2), with square c = exp ρ the non-trivial element in the
center Z := Z(SU(2)) ∼= Z2. The element u∗ ∈ N(T ) represents the non-trivial
element of the Weyl group W = N(T )/T ∼= Z2. Both u∗, t∗ are contained in the
conjugacy class D∗ ⊂ SU(2) of elements of trace 0. Note that D∗ is the unique
conjugacy class in SU(2) that is invariant under multiplication by Z. The quotient
C∗ = D∗/Z ∼= RP (2) is the conjugacy class in SO(3) consisting of rotations by π.

2.1. The fusion ring Rk(SU(2)). We view the representation ring R(SU(2)) as
the subring of C∞(SU(2)) generated by characters of SU(2)-representations. As
a Z-module, it is free with basis χ0, χ1, χ2, . . ., where χm is the character of the
irreducible SU(2)-representation on the m-th symmetric power Sm(C2). The ring
structure is determined by the formula

χmχm′ = χm+m′ + χm+m′−2 + · · ·+ χ|m−m′|.



ON THE VERLINDE FORMULAS FOR SO(3)-BUNDLES 3

For k = 0, 1, 2, . . . let Ik(SU(2)) be the ideal generated by χk+1 and let

Rk(SU(2)) = R(SU(2))/Ik(SU(2))

be the level k fusion ring (or Verlinde ring). As a Z-module, Rk(SU(2)) is free, with
basis τ0, τ1, . . . , τk the images of χ0, χ1, . . . , χk under the quotient homomorphism.

Let q = e
iπ

k+2 be the 2k + 4-th root of unity, and define special points

(3) tl = j(ql+1), l = 0, . . . , k.

Then Ik(SU(2)) ⊂ R(SU(2)) has an alternative description as the ideal of characters
vanishing at all special points (3). Hence, the evaluation of characters at the special
points descends to evaluations Rk(SU(2)) → C, τ 7→ τ(tl).

The product in the complexified fusion ring Rk(SU(2))⊗ZC can be diagonalized
using the S-matrix, given by the Kac-Peterson formula

(4) Sm,l = (k2 + 1)−
1
2 sin

(π(l+1)(m+1)
k+2

)
,

for l,m = 0, 1, . . . , k. The S-matrix is orthogonal, and the alternative basis elements

τ̃l =
∑

m

S0,lSm,lτm

satisfy τ̃m(tl) = δm,l, hence

τ̃mτ̃m′ = δm,m′ τ̃m.

The basis elements {τ0, . . . , τk} are expressed in terms of the alternative basis as
τm =

∑
l S

−1
0,l Sm,lτ̃l.

2.2. Quasi-Hamiltonian G-spaces. We recall some basic definitions and facts
from [1]. Let G be a compact Lie group with Lie algebra g, equipped with an
invariant inner product, denoted by a dot ·. Let θL, θR denote the left-invariant,
right-invariant Maurer-Cartan forms on G, and let η = 1

12θ
L · [θL, θL] denote the

Cartan 3-form on G. For a G-manifold M , and ξ ∈ g, let ξ♯ denote the generating
vector field, defined in terms of the action on functions f ∈ C∞(M) by (ξ♯f)(x) =
d
dt

∣∣∣
t=0

f(exp(−tξ).x). The Lie group G is itself viewed as a G-manifold for the

conjugation action.

Definition 2.1. A quasi-Hamiltonian G-space is a triple (M,ω,Φ) consisting of a
G-manifold M , a G-invariant 2-form ω on M , and an equivariant map Φ: M → G,
called the moment map, satisfying:

(1) dω +Φ∗η = 0,
(2) ιξ♯ω + 1

2Φ
∗((θL + θR) · ξ) = 0 for all ξ ∈ g,

(3) at every point x ∈M , kerωx ∩ ker dΦx = {0}.

The fusion product of two quasi-HamiltonianG-spaces (M1, ω1,Φ1) and (M2, ω2,Φ2)
is the product M1 ×M2, with the diagonal G-action, 2-form

ω = pr∗1ω1 + pr∗2ω2 +
1
2pr

∗
1Φ

∗
1θ
L · pr∗2Φ∗

2θ
R,(5)

and moment map Φ = Φ1Φ2.
The symplectic quotient of a quasi-Hamiltonian G-space is the symplectic space

M//G = Φ−1(e)/G. Similar to the theory of Hamiltonian group actions, the group
unit e is a regular value of Φ if and only if G acts locally freely on the level set
Φ−1(e), and in this case the pull-back of the 2-form to the level set descends to a
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symplectic 2-form on the orbifold Φ−1(e)/G. If e is a singular value, then M//G is
a singular symplectic space as defined in [18].

The conjugacy classes C ⊂ G are basic examples of quasi-Hamiltonian G-spaces.
The moment map is the inclusion into G, and the 2-form ω is given on generating
vector fields by the formula

(6) ωg(ζ
♯(g), ξ♯(g)) = 1

2 (ξ ·Adgζ − ζ · Adgξ).
Together with the double D(G) = G×G, equipped with diagonal G-action and mo-
ment map Φ(g, h) = ghg−1h−1, these are the building blocks of the main example
appearing in this paper. As shown in [1], the moduli space of flat G-bundles over a
compact, oriented surface Σ of genus h with s boundary components, with bound-
ary holonomies in prescribed conjugacy classes Cj , j = 1, . . . , s, is a symplectic
quotient of a fusion product:

(7) M(Σ, C1, . . . , Cs) = C1 × · · · × Cs ×D(G)h//G.

If the group G is simply connected, then the fibers of the moment map for any
compact, connected quasi-Hamiltonian G-space are connected. In particular, (7)
is connected in that case. If G is non-simply connected, the space (7) may have
several components.

To clarify the decomposition into components, we use the following construction.
Suppose p : Ǧ → G is a homomorphism of compact, connected Lie groups, with
finite kernel Z. Then Z is a subgroup of the center of Ǧ, and G = Ǧ/Z. For any
quasi-Hamiltonian G-space (N,ω,Φ), let Ň denote the fiber product defined by the
pull-back square

(8) Ň
Φ̌

//

pN

��

Ǧ

p

��

N
Φ

// G

Then (Ň , ω̌, Φ̌) is a quasi-Hamiltonian Ǧ-space, for the diagonal Ǧ-action on Ň ⊂
N × Ǧ, and with the 2-form ω̌ = p∗Nω. Simple properties of this construction are:

Proposition 2.2. (i) We have a canonical identification of symplectic quo-
tients

Ň//Ǧ ∼= N//G.

(ii) For a fusion product N = N1 × · · · × Nr of quasi-Hamiltonian G-spaces,
the space Ň is a quotient of Ň1 × · · · × Ňr by the group {(c1, . . . , cr) ∈
Zr| ∏r

j=1 cj = e}.
(iii) If Φ: N → G lifts to a moment map Φ′ : N → Ǧ, thus turning N into a

quasi-Hamiltonian Ǧ-space (N,ω,Φ′), then

Ň = N × Z

as a fusion product of quasi-Hamiltonian Ǧ-spaces. Here Z is viewed as a
quasi-Hamiltonian Ǧ-space, with trivial action and with moment map the
inclusion to Ǧ.

Proof. (i) By definition of Ň , the level sets Φ̌−1(ě) and Φ−1(e) are identified, and
the pull-backs of the 2-forms to the level sets coincide. Since central elements in Ǧ
act trivially on Ň , the orbit spaces Φ̌−1(ě)/Ǧ and Φ−1(e)/G are identified as well.
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(ii) Think of the spaces Ňi as submanifolds of Ni × Ǧ. The canonical map

Ň1 × · · · × Ňr → Ň , (x1, g1, x2, g2, . . . , xr, gr) 7→ (x1, . . . , xr, g1, . . . , gr)

is exactly the quotient map by {(c1, . . . , cr) ∈ Zr|
∏r
j=1 cj = e}, and it preserves

the Ǧ-actions and 2-forms.
(iii) The mapN×Z → Ň , (x, c) 7→ (x,Φ′(x)c) is the desired diffeomorphism. �

2.3. The moduli space example. Our main interest is the moduli space of flat
SO(3)-bundles with prescribed boundary holonomies, i.e. (7) with G = SO(3). In
the notation of the previous Section, we will describe the quasi-Hamiltonian SU(2)-
space Ň associated to the quasi-Hamiltonian SO(3)-space

N = C1 × · · · × Cs ×D(SO(3))h.

Choose conjugacy classesDj ∈ SU(2) with p(Dj) = Cj, and define a quasi-Hamiltonian
SU(2)-space

(9) M̃ = D1 × · · · × Ds ×D(SU(2))h.

Put

(10) M = M̃/Γ,

where Γ ⊂ Zs+2h consists of γ = (γ1, . . . , γs+2h) with the properties
∏s
j=1 γj = e

and γjDj = Dj for j ≤ s. (Equivalently, γj = e for all Dj 6= D∗). The conditions

guarantee that γ acts on M̃ , preserving the 2-form and moment map which hence
descend to M = M̃/Γ. Let C∗ ∼= RP (2) be the SO(3)-conjugacy class consisting of
rotations by π. It is the unique SO(3)-conjugacy class whose pre-image in SU(2)
is connected. This pre-image is the SU(2)-conjugacy class D∗

∼= S2 of matrices of
trace 0.

Lemma 2.3. With N as above, we have

Ň ∼=
{
M if ∃ j : Cj = C∗
M × Z if ∀ j : Cj 6= C∗.

Proof. The moment map D(SU(2)) → SU(2) (given by Lie group commutator) is
invariant under the action of Z ×Z, hence it descends to a lift D(SO(3)) → SU(2)
of the commutator map for SO(3). Thus

Ď(SO(3)) = D(SO(3))× Z.

If Cj 6= C∗, the map Dj → Cj is a diffeomorphism, and defines a lift of the moment
map Cj →֒ SO(3). Hence

Čj = Dj × Z

in that case. On the other hand, the conjugacy class C∗ satisfies

Č∗ = D∗.

With these ingredients, the claim follows from Proposition 2.2. �

We may choose the labeling of the conjugacy classes C1, . . . , Cs in such a way
that Cj = C∗ for j ≤ r and Cj 6= C∗ for j > r. The space (10) is then a fusion
product

(11) M =M ′ ×Dr+1 × · · · × Ds ×D(SO(3))h,
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where D(SO(3)) is viewed as a quasi-Hamiltonian SU(2)-space (using the canonical
lift of the SO(3) moment map, as in the proof of Lemma 2.3), and where

M ′ = (D∗ × · · · × D∗)/Γ
′

with r factors, and with Γ′ = {(γ1, . . . , γr) ∈ Zr| ∏
γj = e}. Let us describe

the 2-form ω′ of the space M ′, in terms of its pull-back ω̃′ to the universal cover
M̃ = D∗ × · · · × D∗. Since the 2-form on D∗ is just zero, only the fusion terms
contribute. By iterative use of the formula (5) for the fusion product, one obtains

(12) ω̃′ = 1
2

∑

i<j

g∗i θ
L ·Adgi+1···gj−1(g

∗
j θ
R),

where gi : M̃ → D∗ ⊂ SU(2) denotes projection onto the i-th factor.

3. Quantization of the moduli space of flat SO(3)-bundles

In this section we use localization to compute the quantization of the space
M = (D1 × · · · × Ds × D(SU(2))h)/Γ, as an element of the level k fusion ring
Rk(SU(2)).

3.1. Pre-quantization. Recall that we fix the inner product · on su(2) to be the
basic inner product. Then η ∈ Ω3(SU(2)) is integral, and represents a generator
x ∈ H3(SU(2);Z) ∼= Z. The condition dω +Φ∗η = 0 from the definition of a quasi-
Hamiltonian space says that the pair (ω, η) defines a relative cocycle in Ω3(Φ), the
algebraic mapping cone of the pull-back map Φ∗ : Ω∗(G) → Ω∗(M). Let k ∈ N.

Definition 3.1. [13, 15] A level k pre-quantization of a quasi-Hamiltonian SU(2)-
space (M,ω,Φ) is an integral lift α ∈ H3(Φ ;Z) of the class k[(ω, η)] ∈ H3(Φ ;R).

A necessary and sufficient condition for the existence of a level k pre-quantization
is that for all smooth singular 2-cycles Σ ∈ Z2(M), and all smooth singular 3-chains
C ∈ C3(G) such that ∂C = Φ(Σ),

k
( ∫

Σ

ω +

∫

C

η
)
∈ Z.

We list some basic properties and examples of level k pre-quantizations.

(a) The set of level k pre-quantizations is a torsor under the torsion group
Tor(H2(M,Z)) of isomorphism classes of flat line bundles.

(b) The level k pre-quantized conjugacy classes of SU(2) are exactly those of
the elements exp(mk ρ) with m = 0, . . . , k [15, Proposition 7.3].

(c) The double D(SO(3)) (viewed as a quasi-Hamiltonian SU(2)-space) admits
a level k pre-quantization if and only if k is even [15, Proposition 7.4].

(d) If M1 and M2 are pre-quantized quasi-Hamiltonian SU(2)-spaces at level
k, then their fusion product M1 ×M2 inherits a pre-quantization at level
k. Conversely, a pre-quantization of the product induces pre-quantizations
of the factors. See [13, Proposition 3.8].

(e) A level k pre-quantization of M induces a pre-quantization of the symplec-
tic quotient M// SU(2), equipped with the k-th multiple of the symplectic
form.

(f) The long exact sequence in relative cohomology gives a necessary condition
kΦ∗(x) = 0 for the existence of a level k pre-quantization. IfH2(M ;R) = 0,
this condition is also sufficient [13, Proposition 4.2].
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(g) The existence of the canonical ‘twisted Spinc-structure’ [15, Section 6] on
quasi-Hamiltonian SU(2)-spaces (M,ω,Φ) implies that 2Φ∗(x) = W 3(M),
the third integral Stiefel-Whitney class. Since this is a 2-torsion class,
4Φ∗(x) = 0. In fact, there is a distinguished element β ∈ H3(Φ ;Z) whose
image in H3(SU(2) ;Z) is 4x. If H2(M,R) = 0, this element gives a distin-
guished level 4 pre-quantization.

Given a level k pre-quantization of a quasi-Hamiltonian SU(2)-space (M,ω,Φ)
the construction from [15] produces a quantization Q(M) ∈ Rk(SU(2)), an element
of the level k fusion ring. It is obtained as a push-forward in twisted equivariant
K-homology, using the Freed-Hopkins-Teleman theorem [8] to identify Rk(SU(2))
with the equivariant twisted K-homology of SU(2) at level k + 2. This is the
quasi-Hamiltonian counterpart of the Spinc quantization of an ordinary compact
Hamiltonian SU(2)-space, which produces an element of R(SU(2)) as the equivari-
ant index of a Spinc-Dirac operator with coefficients in an equivariant pre-quantum
line bundle. The quantization procedure for quasi-Hamiltonian G-spaces satisfies
properties similar to its Hamiltonian analog. These include

(1) compatibility with products, Q(M1 ×M2) = Q(M1)Q(M2); and
(2) the ‘quantization commutes with reduction’ principle, Q(M//G) = Q(M)G.

Here Rk(G) → Z, τ 7→ τG is the trace defined by τGm = δm,0.

3.2. Pre-quantization of M . Let us now consider level k pre-quantizations of the
quasi-Hamiltonian SU(2)-space

M = (D1 × · · · × Ds ×D(SU(2))h)/Γ

from (10).

Theorem 3.2. The quasi-Hamiltonian SU(2)-spaceM carries a level k pre-quantization
if and only if the following conditions are satisfied:

(i) The conjugacy classes Dj are of the form SU(2). exp(
mj

k ρ) with mj ∈
{0, . . . , k},

(ii) if h ≥ 1, then k ∈ 2N,
(iii) if the number of D∗-factors is r ≥ 3, then k ∈ 4N.

Note that if at least one D∗-factor appears, then the first condition requires that
k ∈ 2N since D∗ = SU(2). exp(12ρ).

Proof. Since a level k pre-quantization of M induces a level k pre-quantization of
the universal cover M̃ , it is a necessary condition that all Dj be pre-quantizable.
That is, Dj = SU(2). exp(

mj

k ρ) with mj ∈ {0, . . . , k}.
Let us enumerate the conjugacy classes in such a way that D1 = . . . = Dr = D∗.

Using the decomposition (11) and the known pre-quantization conditions (b),(c)
for the conjugacy classes Dj and the double D(SO(3)), together with the fusion
property (d), the proof is reduced to the case h = 0, s = r. We may thus assume
M = (D∗×· · ·×D∗)/Γ with r factors. If r = 1 thenM = D∗, which is pre-quantized
at level k if and only if k is even. Suppose r > 1. The non-trivial element c ∈ Z
acts on H2(D∗;R) ∼= R as multiplication by −1. Hence, Γ acts on H2(M ;R) ∼= Rr

by componentwise sign changes. In particular, the Γ-invariant part is trivial. Since
Γ acts freely, it follows that

H2(M ;R) ∼= H2(M̃ ;R)Γ = 0.
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Hence, by Property (f), a level k pre-quantization exists if and only if kΦ∗(x) = 0.
If r = 2, so that M = (D∗ × D∗)/Z2, Poincaré duality gives that H3(M ;Z) ∼= Z2;
therefore 2Φ∗(x) = 0. Hence the condition k ∈ 2N is also sufficient if r = 2.

It remains to consider the case r ≥ 3. By Property (g), the condition k ∈ 4N
is sufficient. Let us show that it is also necessary. Observe that the non-identity
component of the normalizer, the circle Tu∗ = N(T )−T , is a single conjugacy class

inside N(T ). Since u∗ ∈ D∗, it follows that Tu∗ ⊂ D∗. Let X̃ ⊂ M̃ = D∗×· · ·×D∗

be the 2-torus given as the image of the map

T × T → M̃, (h1, h2) 7→
(
h1u∗, h2u∗, h1h2u∗, u∗, . . . , u∗

)
,

and denote by X its image in M . Let ω̃X , ωX be the pull-backs of the quasi-
Hamiltonian 2-forms on X̃, X . Since Tu∗ = u∗T , we have Φ̃(X̃) = Φ(X) ⊂ Tu∗

r.
Since the generator x ∈ H3(SU(2),Z) pulls back to zero on this circle (for dimension
reasons), the existence of a level k pre-quantization ofM requires that k

∫
X ωX ∈ Z.

Since the projection X̃ → X is a 4-fold covering,
∫
X ωX = 1

4

∫
X̃
ω̃X . Hence it is

necessary that k
∫
X̃
ω̃X ∈ 4Z.

Let θ ∈ Ω1(T, t) be the Maurer-Cartan form for T . From the general formula
(12), and using (hu∗)

∗θL = −h∗θ, (hu∗)∗θR = h∗θ, we obtain

ω̃X =
1

2

(
− h∗1θ ∧ h∗2θ + h∗1θ ∧ (h1h2)

∗θ − h∗2θ ∧ (h1h2)
∗θ
)
=

1

2
h∗1θ ∧ h∗2θ.

Writing elements of T in the form h = j(e2πiv), we may take v ∈ [0, 1] as the
coordinate on T ∼= R/Z. Since the lattice Λ is generated by 2ρ, we find h∗i θ =
2dvi ⊗ ρ, hence

ω̃X = 2||ρ||2 dv1 ∧ dv2 = dv1 ∧ dv2
integrates to 1. This gives the condition k ∈ 4N. �

3.3. Fixed point components. Suppose M is a level k pre-quantized quasi-
Hamiltonian SU(2)-space, and let Q(M) ∈ Rk(SU(2)) be its quantization. By
[15, Theorem 9.5], the numbers Q(M)(t) with t = tl, l = 0, . . . , k are given as a
sum of contributions from the fixed point manifolds of t:

Q(M)(t) =
∑

F⊂Mt

∫

F

Â(F ) Ch(LF , t)1/2
DR(νF , t)

.(13)

The ingredients of the right hand side will be described below, and explicitly com-
puted in the context of our main example (10). The quantizations of SU(2)-
conjugacy classes and of the double D(SO(3)) (viewed as a quasi-Hamiltonian
SU(2)-space) were computed in [15].

For the remainder of this section, we therefore focus on the case h = 0, s = r ≥ 2,
i.e. M = (D∗ × · · · × D∗)/Γ.

3.3.1. Fixed point sets of M . We need to determine the components F ⊂M t of the
fixed point manifold for t = tl, l = 0, . . . , k, and describe various aspects of F and
its normal bundle νF . Consider first a general regular element t ∈ T reg. Define the
following two submanifolds of D∗, labeled by the elements of the center Z = {e, c}
as follows:

Y (e) = D∗ ∩ T = {t∗, t∗−1}, Y (c) = Tu∗.
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Thus Y (e) is the fixed point set of Ad(t∗), while Y
(c) consists of elements satisfying

Ad(t∗)(g) = cg. Note that both are Z-invariant. For γ = (γ1, . . . , γr) ∈ Γ, consider
the Γ-invariant submanifold

F̃ (γ) = Y (γ1) × · · · × Y (γr).

and put F (γ) = F̃ (γ)/Γ. Let l(γ) be the number of γi’s that are equal to c. Then

F̃ (γ) is a disjoint union of 2r−l(γ) tori of dimension l(γ). Let ε = (e, . . . , e) denote
the group unit in Γ. If γ 6= ε, then Γ acts transitively on the set of components of
F̃ (γ). Hence F (γ) is a (connected) torus, and since |Γ| = 2r−1, it follows that the

projection restricts to a 2l(γ)−1-fold covering on each component of F̃ (γ). If γ = ε,
F̃ (ε) consists of 2r points, and hence F (ε) consists of two points.

Proposition 3.3. The fixed point set of t ∈ T reg in M is

M t =

{
F (ε) if t /∈ {t∗, t∗−1},∐
γ∈Γ F

(γ) if t ∈ {t∗, t∗−1}.

Proof. An element (g1, . . . , gr) ∈ M̃ maps to a point in M t if and only if there
exists γ = (γ1, . . . , γr) ∈ Γ with Ad(t)gi = giγi, for i = 1, . . . , r. If γi = e,
this condition gives gi ∈ T , since t is regular. If γi = c, the condition says that
Ad(g−1

i )(t) = γit. Since t is regular, this happens if and only if t ∈ {t∗, t∗−1}, with
gi ∈ N(T ) representing the non-trivial Weyl group element. �

3.3.2. The symplectic volume of the components of the fixed point set. Each F (γ) ⊂
M t is a quasi-Hamiltonian T -space, with moment map the restriction of Φ. (See
e.g. [14, Proposition 3.1].) In particular, they are symplectic.

Lemma 3.4. The symplectic volume of each component of F̃ (γ) is equal to 1. Thus

vol(F (γ)) = 21−l(γ).

Proof. The construction from [3] associates to any quasi-HamiltonianG-space (with
G compact, but possibly disconnected) a Liouville volume, in such a way that the
volume of a fusion product is the product of the volumes. If G = T , so that the
space is symplectic, the Liouville volume coincides with the symplectic volume. For
a G-conjugacy class C ∼= G/Gg, the Liouville volume is given by the formula [3,
Proposition 3.6]

volC = |detg⊥
g
(1−Adg)|1/2

vol(G)

vol(Gg)
,

involving the Riemannian volumes of G and of the stabilizer group Gg. The spaces

Y (z) for z ∈ Z can be viewed as conjugacy classes for the group N(T ), of elements
t∗ if z = e and u∗ if z = c. Application of the formula gives

vol(Y (z)) =

{
2 if z = e

1 if z = c
.

This is obvious for z = e, while for z = c (so that g = u∗, N(T )g = Z4) we have

| dett(1 − Adu∗
)|1/2 =

√
2 (since Adu∗

acts as −1 on t), vol(N(T )) = 2 vol(T ) =

2||α|| = 2
√
2, and vol(N(T )g) = 4. It follows that

vol(F̃ (γ)) =

r∏

i=1

vol(Y (γi)) = 2r−l(γ).
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Since the moment map for the quasi-Hamiltonian N(T )-space F̃ (γ) takes values in
T , this coincides with the symplectic volume. Since 2r−l(γ) is also the number of
components of F̃ (γ), it follows that each component has volume 1. �

3.4. Fixed point contributions. In this Section, we assume thatM = (D∗×· · ·×
D∗)/Γ carries a level k pre-quantization. Thus k ∈ 2N if r = 2 and k ∈ 4N if r > 2.
Our aim is to compute the fixed point contributions to Q(M)(t), as described in
formula (13), for t = tl, l = 0, . . . , k.

If t 6= t∗, Proposition 3.3 shows that M t = F (ε) consists of just two points,
covered by the set M̃ t = F̃ (ε) (consisting of 2r points). The fixed point contribution

of F (ε) is just that for F̃ (ε), divided by |Γ| = 2r−1. Hence

Q(M)(t) = 21−rQ(M̃ t) = 21−rQ(D∗)
r(t),

with Q(D∗) = τk/2 [15, Proposition 11.2] .

If t = t∗, Q(M)(t∗) is a sum over the contributions from all F (γ), γ ∈ Γ.
The contribution from F (ε) is 21−r(Q(D∗)(t∗))

r, as before. Calculation of the
contributions from F = F (γ), γ 6= ε requires more work:

Proposition 3.5. The contribution of the fixed point manifold F = F (γ), γ 6= ε
to Q(M)(t∗) is

∫

F

Â(F ) Ch(LF , t∗)1/2
DR(νF , t∗)

= 21−r
(
k
2 + 1

)l(γ)/2
ϕ(γ),

where the scalar ϕ(γ) = µF (γ)(t∗) ∈ U(1) is the action of t∗ on the pre-quantum line
bundle over F (γ).

Proof. Since F = F (γ) is a torus, Â(F ) = 1. To compute theDR-class, note that the
normal bundle of Tu∗ in D∗ is an orientable real line bundle, hence it is trivializable.
Consequently, the normal bundle νF̃ (γ) to F̃ (γ) in M̃ is trivializable, and thus the
normal bundle νF = νF̃ (γ)/Γ to F in M is a flat Euclidean vector bundle of rank
2r − l(γ). The element t∗ acts by multiplication by −1 on the fibers of νF , since
Ad(t∗) has order 2 and cannot act trivially. By definition of the DR-class (see [2,
Section 2.3] or [14, Section 5.3]), it follows that

DR(νF , t∗) = irank(νF )/2det
1/2
R

(1− (−1)) = (2i)r−
l(γ)
2 .

By [15, Proposition 9.3], the restriction TM |F inherits a distinguished Spinc-
structure (depending on the choice of level k pre-quantization), equivariant for the
action of t∗. The line bundle LF → F is the Spinc-line bundle associated to this
Spinc-structure, and

Ch(LF , t∗)1/2 = σ(LF )(t∗)1/2 exp(12 c1(LF ))
is the square root of its equivariant Chern character, with σ(LF )(t∗) ∈ U(1) the
action of t∗ the Spinc-line bundle. As discussed in [2, Section 2.3] (see also [14,
Section 5.3]), the sign of the square root is determined as follows. Since Φ restricts
to a surjective map F → T , the fixed point set F meets Φ−1(e). Pick any x ∈
F ∩ Φ−1(e). Observe that ω is non-degenerate at points of Φ−1(e), and choose
a t∗-invariant compatible complex structure to view TxM as a Hermitian vector
space. Let A ∈ U(TxM) be the transformation defined by t∗ and A1/2 its unique
square root for which all eigenvalues are of the form eiu with 0 ≤ u < π. Then

σ(LF )(t∗)1/2 = ϕ(γ)detC(A
1/2).
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Since t∗ acts trivially on TmF and as −1 on the normal bundle, the transformation
A1/2 acts trivially on TxF and as i on the normal bundle. Thus detC(A

1/2) =
ir−l(γ)/2, which cancels a similar factor in the expression for the DR-class.

It remains to find the integral
∫
F
exp(12c1(LF )). To this end, we interpret LF as

a pre-quantum line bundle. By the same argument as in Property (g) of Section 3.1,
(see also [15, Section 11.1]), the level k pre-quantization and the canonical twisted
Spinc-structure onM combine to give an element of H3(Φ ;Z) at level 2k+4. Since
H2(M ;R) = 0, this element defines a pre-quantization at level 2k + 4. Pull-back
to F defines a level 2k+4 pre-quantization of F , with LF as the pre-quantum line
bundle. Hence c1(LF ) is the 2k + 4-th multiple of the class of the symplectic form
on F . It follows that∫

F

exp(12c1(LF )) = (k + 2)l(γ) vol(F ) = 21−l(γ)/2
(
k
2 + 1

)l(γ)/2

where we have used Lemma 3.4. �

The phase factors ϕ(γ) depend on the choice of pre-quantization. Recall again
that the set of pre-quantizations of a quasi-Hamiltonian SU(2)-space is a torsor
under the group of isomorphism classes of flat line bundles. In our case this is the
group

Tor(H2(M ;Z)) ∼= Hom(Γ,U(1)).

The homomorphism ψ : Γ → U(1) defines the flat line bundle M̃ ×Γ Cψ, where Cψ
is the 1-dimensional Γ-representation defined by ψ. Changing the pre-quantization
by such a flat line bundle changes ϕ(γ) for F = F (γ) to ψ(γ)ϕ(γ). By Property (g)
of Section 3.1, and since H2(M ;R) = 0, there is a distinguished pre-quantization
at any level k ∈ 4N. Hence, the inequivalent pre-quantizations at level k ∈ 4N are
labeled by Hom(Γ,U(1)).

Lemma 3.6. If r ≥ 3 and k ∈ 4N, the phase factor for the pre-quantization labeled
by ψ ∈ Hom(Γ,U(1)) is given by

ϕ(γ) = (−1)
k
4 (r−l(γ)/2)ψ(γ).

Proof. The phase factor ϕ(γ) for the distinguished pre-quantization at level 4 is
given by detC(A) = (−1)r−l(γ)/2, in the notation from the proof of Proposition 3.5.
For the distinguished pre-quantization at level k ∈ 4N, we have to take the k

4 -th
power of this number, and changing the pre-quantization by ψ we have to multiply
by ψ(γ). �

If r = 2, there are |Γ| = 2 distinct pre-quantizations at all even levels k ∈ 2N,
related by elements ψ ∈ Hom(Γ,U(1)). Aside from the discrete fixed point set F (ε),
there is a single non-discrete fixed point component F (γ) of t∗, given by γ = (c, c).
The non-trivial homomorphism ψ ∈ Hom(Γ,U(1)) ∼= Z2 satisfies ψ(c, c) = −1,
hence the weight ϕ(γ) is equal to 1 for one of the pre-quantizations and −1 for the
other.

3.5. Quantization of M . We are now ready to summarize our computation of
Q(M) for M = (D∗ × · · · × D∗)/Γ. Assuming that k is even, recall that D∗ has a
unique pre-quantization at level k, and Q(D∗) = τk/2. Define an element

χ = τ0 − τ2 + τ4 − · · ·+ (−1)k/2τk ∈ Rk(SU(2)).
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By the orthogonality relations for Rk(SU(2)), this element satisfies χ(t∗) = (k2 +1)
and χ(t) = 0 for t = tl, l 6= k/2. Hence we may write the sum over the fixed point
contributions as follows:

Q(M)(t) = 21−r
(
τk/2(t)

r + χ(t)
∑

γ∈Γ\{ε}

(
k
2 + 1

)l(γ)/2−1
ϕ(γ)

)

Theorem 3.7. Consider the quasi-Hamiltonian SU(2)-spaceM = (D∗×· · ·×D∗)/Γ
with r ≥ 2 factors, where Γ ⊂ Zr consists of all γ = (γ1, . . . , γr) with

∏r
i=1 γi = e.

(1) If r ≥ 3, the space M is pre-quantized at level k if and only if k ∈ 4N. The
different pre-quantizations are indexed by the elements ψ ∈ Hom(Γ,U(1)),
and the corresponding level k quantization is given by the formula,

Qψ(M) = 21−r
(
(τk/2)

r + χ
∑

γ∈Γ\{ε}

ψ(γ)(k2 + 1)
l(γ)
2 −1(−1)

k
4 (r− l(γ)

2 )
)
.

(2) If r = 2, the space M is pre-quantized at level k if and only if k ∈ 2N.
At any such level, there are two distinct pre-quantizations indexed by the
action ±1 of t∗ on the pre-quantum line bundle over F (γ), for γ = (c, c).
The corresponding level k quantizations of M are

Q±(M) =
1

2

(
(τk/2)

2 ± χ
)
.

3.6. Multiplicity computations. Being elements of Rk(SU(2)), the coefficients
of Q(M) in its decomposition with respect to the basis τ0, . . . , τk must be integers.
In this Section, we will compute these multiplicities for small r.

3.6.1. r = 2 factors. Assume k ∈ 2N, and let Q±(M) be the quantizations corre-
sponding to the pre-quantizations labeled by ±1. The multiplication rules for level
k characters give

(τk/2)
2 = τ0 + τ2 + . . .+ τk.

Hence, if k ∈ 4N we obtain

Q+(M) = τ0 + τ4 + . . .+ τk,

Q−(M) = τ2 + τ6 + . . .+ τk−2,

while for k ∈ 4N− 2,

Q+(M) = τ0 + τ4 + . . .+ τk−2,

Q−(M) = τ2 + τ6 + . . .+ τk.

3.6.2. r = 3 factors. Let Qψ(M) denote the level k ∈ 4N pre-quantization indexed
by ψ ∈ Hom(Γ,U(1)). Since r = 3, l(γ) = 2 for any γ 6= ε and the quantization
formula simplifies to:

Qψ(M) =
1

4

(
τ32m + χ

∑

γ 6=ε

ψ(γ)
)
.

For the trivial homomorphism ψ = 1, we have
∑
γ 6=ε ψ(γ) = 3, while for a non-

trivial homomorphism ψ 6= 1,
∑

γ 6=ε ψ(γ) = −1. We have,

(τk/2)
3 = τ0 + 3τ2 + . . .+ (k2 + 1)τk/2 + . . .+ 3τk−2 + τk.
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We therefore obtain

Qψ(M) = (τ0 + 2τ4 + 3τ8 + . . . 3τk−8 + 2τk−4 + τk)

+ (τ6 + 2τ10 + . . .+ 2τk−10 + τk−6) if ψ = 1,

Qψ(M) = (τ0 + τ4 + 2τ8 + . . .+ 3τk−8 + 2τk−4 + τk)

+ (τ2 + 2τ6 + 3τ10 + . . .+ 3τk−10 + 2τk−6 + τk−2) if ψ 6= 1.

Note that the coefficients are symmetric about the midpoint k
2 of the interval [0, k].

In closed form, Qψ(M) =
∑k/2

j=0 a2jτ2j , where

a2j =

{
1
4 (2j + 1 + (4δψ,1 − 1)(−1)j) : 2j ≤ k/2,
1
4 (k − 2j + 1 + (4δψ,1 − 1)(−1)j) : 2j ≥ k/2.

3.6.3. r = 4 factors. If r = 4 we have |Γ| = 8. There is a unique element γ′ ∈ Γ
with l(γ′) = 4, and l(γ) = 2 for γ 6= γ′, ε. Hence we may write the quantization
formula for levels k ∈ 4N as:

Qψ(M) =
1

8

(
τ4k/2 +

(
ψ(γ′)

(
k
2 + 1

)
+ (−1)k/4

∑

l(γ)=2

ψ(γ)
)
χ
)
.

One finds that there are 4 homomorphisms ψ with
∑

l(γ)=2 ψ(γ) = 0, ψ(γ′) = −1

and 3 homomorphisms with
∑

l(γ)=2 ψ(γ) = −2, ψ(γ′) = 1. Of course,
∑

l(γ)=2 ψ(γ) =

6, ψ(γ′) = 1 for ψ = 1. Therefore, we have

Qψ(M) =





1
8

(
τ4k/2 +

(
6(−1)k/4 +

(
k
2 + 1

))
χ
)

: ψ = 1

1
8

(
τ4k/2 −

(
k
2 + 1

)
χ
)

:
∑

l(γ)=2 ψ(γ) = 0

1
8

(
τ4k/2 +

(
2(−1)k/4+1 +

(
k
2 + 1

))
χ
)

:
∑

l(γ)=2 ψ(γ) = −2

with

(τk/2)
4 =

k/2∑

j=0

(k2 + 1− 2j2 + jk)τ2j .

One may verify that the multiplicities of τ2j in Qψ(M) are integers, as required.

4. Fuchs-Schweigert

The formulas appearing in Theorem 3.7 may be rewritten in terms of the so-

called S-matrix. For z ∈ Z, define S
(z)
m,l by

S
(z)
m,l =

{
1 if z = c

Sm,l if z = e.

In the terminology of [9], S
(z)
m,l is the S-matrix of the orbit Lie algebra associated

to the central element z. (This interpretation may seem obscure for SU(2), but

becomes natural for higher rank groups.) Consider once again the spaceM = M̃/Γ
from (10). Recall that Γ consists of elements γ = (γ1, . . . , γs+2h) ∈ Zs+2h such that∏s
j=1 γj = e, and γj = e for all j ≤ s with Cj 6= C∗. In particular |Γ| = 22h+r−1

if r ≥ 1, while |Γ| = 22h if r = 0. To write the Fuchs-Schweigert formula, it is

convenient to use the following notation. For γ ∈ Γ, let
∑(γ)

l denote the full sum∑k
l=0 if all γi = e, and consisting of the single term l = k

2 if at least one γi 6= e.
(For higher rank groups, this becomes a sum over level k weights that are fixed
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under the action of all γi ∈ Z on the set of level k weights.) We will prove the
following equivariant analogue to the Fuchs-Schweigert formula:

Theorem 4.1. Suppose the quasi-Hamiltonian SU(2)-space

M =
(
D1 × · · · × Ds ×D(SU(2))h

)
/Γ

is pre-quantized at level k. Then

(14) Q(M) =
1

|Γ|
∑

γ∈Γ

ϕ′(γ)
∑

l

(γ) S
(γ1)
m1,l

· · ·S(γs)
ms,l

(S0,l)s+2h
τ̃l,

where ϕ′(γ) ∈ U(1) are phase factors depending on the choice of pre-quantization,
with ϕ′(ε) = 1.

An explicit description of the phase factors ϕ′(γ) will be given during the course
of the proof.

Proof of Theorem 4.1. The space M is a fusion product of the space (̃C∗)r, conju-
gacy classes Dj 6= D∗, and h factors of D(SO(3)) (viewed as a quasi-Hamiltonian
SU(2)-space). Since the fusion product in the basis τ̃m is diagonalized, we may
verify the formula separately for factors of these three types.

We begin with the case h = 0, s = r, with r ≥ 3 (thus necessarily k ∈ 4N). We
re-write the right hand side of (14), separating the term γ = ε from the sum over
terms γ 6= ε. The right hand side of (14) becomes

(15) Q(M) =
1

|Γ|
(
ϕ′(ε)

∑

l

(Sk/2,l)
r

(S0,l)r
τ̃l +

∑

γ 6=ε

ϕ′(γ)
(Sk/2,k/2)

r−l(γ)

(S0,k/2)r
τ̃k/2

)
.

The sum over l is just (τk/2)
r. The element χ ∈ Rk(SU(2)) considered in Section

3.5 satisfies χ(tl) = (k2 + 1)δl,k/2 for l = 0, . . . , k, hence

τ̃ k
2
= (k2 + 1)−1χ.

Furthermore, by definition of the S-matrix,

S0,k/2 = (k2 + 1)−
1
2 , Sk/2,k/2 = (k2 + 1)−

1
2 (−1)

k
4 .

Equation (15) becomes

Q(M) =
1

2r−1

(
ϕ′(ε)(τk/2)

r +
∑

γ 6=ε

ϕ′(γ)(−1)
k
4 (r−l(γ))(k2 + 1)

l(γ)
2 −1χ

)

which agrees with Theorem 3.7 for ϕ′(γ) = ψ(γ)(−1)
k l(γ)

8 .
The calculation is similar for the case h = 0, s = r = 2, k ∈ 2N. Here, |Γ| = 2,

and the generator γ = (c, c) ∈ Γ has l(γ) = 2. We hence obtain

Q(M) =
1

2

(
ϕ′(e, e)(τk/2)

r + ϕ′(c, c)χ
)

which agrees with Theorem 3.7 if we put ϕ′(e, e) = 1, and ϕ′(c, c) = ±1. If
h = 0 and s = r = 1, k ∈ 2N, then Γ = {e}, and the formula becomes Q(M) =
ϕ′(e)τk/2, which is the correct expression for Q(D∗) for ϕ′(e) = 1. Similarly, if
h = r = 0, s = 1 so that M is a conjugacy class Dj 6= D∗, the formula reduces to
Q(M) = τmj = Q(Dj).

Consider finally the case h = 1, s = 0 so thatM = D(SO(3)). Pre-quantizability
of this space requires k ∈ 2N, and as shown in [15] the distinct pre-quantizations



ON THE VERLINDE FORMULAS FOR SO(3)-BUNDLES 15

are indexed by ϕ ∈ Hom(Γ,U(1)), with Γ = Z × Z. Separating off the term (e, e),
(14) becomes

Q(M) =
1

4

(
ϕ′(ǫ)

∑

l

1

S2
0,l

τ̃l +
∑

γ 6=(e,e)

ϕ′(γ)
1

S2
0,k/2

τ̃k/2

)
.

We have 1
S2
0,k/2

τ̃k/2 = χ, and

Q(D(SU(2))) =
∑

m

τ2m =
∑

l,m

S2
m,l

S2
0,l

τ̃l =
∑

l

1

S2
0,l

τ̃l,

where we use the symmetry and orthogonality of the S-matrix. Thus the formula
may be re-written

Q(M) =
1

4

(
ϕ′(ǫ)Q(D(SU(2))) +

∑

γ 6=(e,e)

ϕ′(γ) χ
)
.

This agrees with the formula for Q(D(SO(3)) given in [15, Section 11.4] if one puts
ϕ′(e, e) = 1 and ϕ′(γ) = (−1)k/2ϕ(γ) for γ 6= (e, e). �

By combining this result with the ‘quantization commutes with reduction’ theo-
rem for quasi-Hamiltonian spaces [15, Theorem 10.1], and since the coefficient of τ0
in τ̃l is S

2
0,l, we obtain the Fuchs-Schweigert formula [9] for the SO(3) moduli space

M(Σ, C1, . . . , Cs), where Σ is of genus h with s boundary components. Recall that
this moduli space has up two 2 connected components, of the form M// SU(2) for
suitable choice of lifts Dj . We have,

(16) Q(M// SU(2)) =
1

|Γ|
∑

γ∈Γ

ϕ′(γ)
∑

l

(γ)S
(γ1)
m1,l

· · ·S(γs)
ms,l

(S0,l)s+2h−2
.

Remark 4.2. The above Fuchs-Schweigert type formula computes the quantization
of the moduli space of SO(3)-bundles interpreted as the index of a pre-quantum line
bundle, while the original conjecture in [9] concerns the dimension of the space of
conformal blocks. It is expected that, just as in the case of simply-connected groups,
the space of conformal blocks can be re-interpreted as the space of holomorphic
sections, and that a Kodaira vanishing result can further identify its dimension
with the index considered here. We are not aware of a reference addressing such
questions in generality for non-simply connected groups.
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