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Abstract

We construct new Yang-Baxter integrable boundary conditions in the lattice approach to the logarith-
mic minimal modelWLM(1, p) giving rise to reducible yet indecomposable representations of rank 1 in
the continuum scaling limit. We interpret these W-extended Kac representations as finitely-generated
W-extended Feigin-Fuchs modules over the triplet W -algebra W(p). The W-extended fusion rules of
these representations are inferred from the recently conjectured Virasoro fusion rules of the Kac rep-
resentations in the underlying logarithmic minimal model LM(1, p). We also introduce the modules
contragredient to the W-extended Kac modules and work out the correspondingly-extended fusion al-
gebra. Our results are in accordance with the Kazhdan-Lusztig dual of tensor products of modules over
the restricted quantum universal enveloping algebra Ūq(sl2) at q = eπi/p. Finally, polynomial fusion
rings isomorphic with the various fusion algebras are determined, and the corresponding Grothendieck
ring of characters is identified.
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1 Introduction

Physical systems described by logarithmic conformal field theories (CFTs) [1–3] include polymers [4–9],
percolation [10–16], symplectic fermions [17,18] and the abelian sandpile model [19–23]. In fact, an in-
finite series of logarithmic CFTs arises in the continuum scaling limit of certain two-dimensional lattice
models of non-local statistical mechanical systems at criticality [24]. Polymers [7,9], percolation [25,26]
and symplectic fermions [27] are all described by these logarithmic minimal models. Quantum spin
chains with a non-diagonalizable Hamiltonian [28] likewise give rise to logarithmic CFTs.

Mathematically, vertex operator algebras (VOAs) [29–32] provide an algebraic pendant to CFTs.
The abelian category of modules over a VOA associated with a rational CFT is semi-simple and
contains only finitely many simple objects (irreducible representations). In order for a CFT to make
sense on a higher-genus Riemann surface, the corresponding VOA must satisfy Zhu’s C2-cofiniteness
condition [33]. The triplet W -algebra W(p) [34], where p = 2, 3, . . ., is an example of such a VOA, as
demonstrated in [35,36]. The corresponding abelian category of modules is non-semi-simple, however,
and the associated CFT is logarithmic [17, 37–39]. VOAs of logarithmic CFTs are discussed more
generally in [40–44].

In a series of papers [45–48], Feigin et al conjectured and examined a Kazhdan-Lusztig duality
between the logarithmic CFTs based on the triplet W -algebra W(p) and the representation theory of
the restricted quantum universal enveloping algebra Ūq(sl2) at q = eπi/p [49–52]. It was subsequently
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proven [53] that the category of W(p)-modules and the category of finite-dimensional Ūq(sl2)-modules
indeed are equivalent as abelian categories for all p = 2, 3, . . .. For p > 2, they are not, however,
equivalent as braided quasi-tensor categories since their natural tensor structures are not fully compat-
ible [54].

The present work concerns the logarithmic minimal models LM(p, p′) [24] in the W-extended
picture [26,27,55] where they are denoted by WLM(p, p′). The parameters p and p′ constitute a pair
of coprime positive integers 1 ≤ p < p′, and focus here is on the case WLM(1, p′). For simplicity,
this is denoted by WLM(1, p) where p = 2, 3, . . ., and the extension is believed to be with respect to
the triplet W -algebra W(p). The logarithmic minimal model WLM(1, p) is thus conjectured to be
associated with the VOA based on W(p), and we will assert this in the following.

Associated with a Yang-Baxter integrable boundary condition in the lattice approach to LM(1, p),
there is a so-called Kac representation (r, s) for each pair of positive Kac labels r, s ∈ N. The corre-
sponding Virasoro modules were identified in [56] and conjectured to be finitely-generated Feigin-Fuchs
modules [57]. The fusion algebras generated by the Kac representations and their contragredient coun-
terparts (r, s)∗ were also determined in [56] and confirmed in [58] based on the Kazhdan-Lusztig duality
conjectured in [59]. Here we lift the findings of [56] to theW-extended picture using methods developed
in [27].

In Section 2, we review the logarithmic minimal models LM(1, p) in the Virasoro picture. Fol-
lowing [56], we discuss the fusion properties of the Kac representations and their contragredient coun-
terparts. In Section 3, we generalize the construction of W-extended representations in [27] from
W-irreducible to general W-extended Kac representations (r, s)W where r, s ∈ N. We thus introduce
new Yang-Baxter integrable boundary conditions whose continuum scaling limits give rise to these
W-extended Kac representations. We interpret these representations as finitely-generated W-extended
Feigin-Fuchs modules over the triplet W -algebra W(p). The contragredient modules (r, s)∗W of the
W-extended Kac representations (r, s)W are also introduced, and the various fusion rules are inferred
from the recently conjectured Kac fusion algebra in the Virasoro picture [56]. This Kac fusion algebra
is summarized in Appendix A. In Section 4, we determine polynomial fusion rings isomorphic with the
W-extended Kac fusion algebra and its contragredient extension. We also identify the corresponding
Grothendieck ring associated with the Virasoro characters of the W-extended representations. Sec-
tion 5 contains some concluding remarks and a comparison of our results on fusion with the tensor
structure of the restricted quantum universal enveloping algebra Ūq(sl2) at q = eπi/p [54]. To facilitate
this comparison, a dictionary relating the different notations is presented in Appendix B.

Notation

For n,m ∈ Z and modules An,

Zn,m = Z ∩ [n,m], N0 = N ∪ {0}

ǫ(n) =
1− (−1)n

2
, n ·m = 1 + ǫ(n+m),

N⊕

n

An =

N⊕

n=ǫ(N),by 2

An

(1.1)

It is noted that n ·m ∈ Z1,2 and that this dot product is commutative and associative.

2 Logarithmic minimal model LM(1, p)

The logarithmic minimal model LM(1, p) is a logarithmic CFT with central charge

c = 1− 6
(p − 1)2

p
, p = 2, 3, . . . (2.1)
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In this section, we review the Virasoro representations associated with the boundary conditions ap-
pearing in the lattice approach to LM(1, p) as described in [24, 56, 60]. We also recall the associated
contragredient modules introduced in [56] and review the corresponding fusion algebras.

2.1 Kac representations

There is a so-called Kac representation (r, s) for each pair of positive Kac labels r, s ∈ N. It is associated
with a Yang-Baxter integrable boundary condition in the lattice approach to LM(1, p) [24, 60] and
arises in the continuum scaling limit. A classification of these Kac representations as modules over the
Virasoro algebra was recently proposed in [56]. It was thus conjectured that they can be viewed as
finitely-generated submodules of Feigin-Fuchs modules [57].

To describe these finitely-generated Feigin-Fuchs modules, we first consider the quotient module

Qr,s = Vr,s/Vr,−s, r, s ∈ N (2.2)

where Vr,s is the Verma module of conformal weight

∆r,s =
(rp− s)2 − (p− 1)2

4p
, r, s ∈ Z (2.3)

The corresponding irreducible highest-weight module is denoted by Mr,s, where we set Mr,0 = M0,s = 0.
Parameterizing the second Kac label as

s = s0 + kp, s0 ∈ Z1,p−1, k ∈ N0 (2.4)

the structure diagram of the quotient module Qr,s is given by

Qr,s : Mk−r+1,p−s0 →Mk−r+2,s0 →Mk−r+3,p−s0 → . . .→Mk+r−1,p−s0 →Mk+r,s0 (2.5)

We can associate a pair of finitely-generated Feigin-Fuchs modules to every quotient module Qr,s.
For 2r − 1 < 2k, the Feigin-Fuchs modules corresponding to Qr,s are characterized by the structure
diagrams

Q→r,s : Mk−r+1,p−s0 →Mk−r+2,s0 ←Mk−r+3,p−s0 → . . .←Mk+r−1,p−s0 →Mk+r,s0

Q←r,s : Mk−r+1,p−s0 ←Mk−r+2,s0 →Mk−r+3,p−s0 ← . . .→Mk+r−1,p−s0 ←Mk+r,s0

(2.6)

For 2r − 1 > 2k, the Feigin-Fuchs modules corresponding to Qr,s are characterized by the structure
diagrams

Q→r,s : Mr−k,s0 →Mr−k+1,p−s0 ←Mr−k+2,s0 → . . .→Mr+k−1,p−s0 ←Mr+k,s0

Q←r,s : Mr−k,s0 ←Mr−k+1,p−s0 →Mr−k+2,s0 ← . . .←Mr+k−1,p−s0 →Mr+k,s0

(2.7)

By construction, the associated Virasoro characters satisfy

χ[Q→r,s](q) = χ[Q←r,s](q) = χ[Qr,s](q) (2.8)

Letting
chr,s(q) = χ[Mr,s](q) (2.9)
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denote the character of the irreducible module Mr,s, we thus have

χ[Qr,s](q) =

min(2r−1,2k)
∑

j=0

chr+k−j,(−1)js0+(1−(−1)j )p/2(q)

=

r+k−1∑

j=|r−k|+1,by 2

chj,p−s0(q) +

r+k∑

j=|r−k−1|+1,by 2

chj,s0(q) (2.10)

The range for s0 in (2.4) can be extended from Z1,p−1 to Z0,p−1 such that s can be any positive
integer s ∈ N (where we exclude s0 = k = 0 for which s = 0). For s0 = 0, the structure diagrams
associated with Q→r,s and Q←r,s are separable (degenerate) and the modules are fully reducible

Q→r,kp = Q←r,kp = Qr,kp =
r+k−1⊕

j=|r−k|+1,by 2

Mj,p (2.11)

It is noted that this decomposition is symmetric in r and k. It is also noted that, for k = 0, the
finitely-generated Feigin-Fuchs modules associated with Qr,s are irreducible as we have

Q→r,s0 = Q←r,s0 = Qr,s0 = Mr,s0 (2.12)

From [60], we know that the Kac representation (r, s) is irreducible for s ≤ p and fully reducible
for s = kp, with the set of irreducible modules denoted by

J Irr = {(r, s); r ∈ N, s ∈ Z1,p} (2.13)

A conjecture for the structure of the remaining Kac representations was presented in [56]. For general
(r, s) with s given in (2.4), it was thus proposed that

(r, s) =







Q→r,s, 2r − 1 < 2k

Q←r,s, 2r − 1 > 2k
(2.14)

Here we adopt this assumption, but will return to it in Section 2.4. The associated Virasoro characters
are denoted by χr,s(q) and by construction given by

χr,s(q) = χ[Qr,s](q) (2.15)

We note that the irreducibility of (r, s) for s ≤ p corresponds to (2.12), while the fully reducibility
of (r, kp) corresponds to (2.11). The symmetry in r and k in (2.11) corresponds to the identification
(k, rp) ≡ (r, kp) which reduces to the identification (1, rp) ≡ (r, p) of irreducible modules. This justifies
the choice of notation in (2.13).

2.2 Contragredient Kac representations

In all cases (2.6) and (2.7), the finitely-generated Feigin-Fuchs modules Q→r,s and Q←r,s are contragredient
to each other where the contragredient module A∗ to a module A is obtained by reversing all structure
arrows between its irreducible subfactors (subquotients). It follows, in particular, that χ[A∗](q) =
χ[A](q) and that A∗∗ = A. Following [56], the contragredient Kac representations are introduced as

(r, s)∗ =







Q←r,s, 2r − 1 < 2k

Q→r,s, 2r − 1 > 2k
(2.16)
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whose Virasoro characters χ∗r,s(q) = χ[(r, s)∗](q) are given by χ∗r,s(q) = χr,s(q). We note that (r, s)∗ =
(r, s) if and only if (r, s) is fully reducible, that is,

(r, s)∗ = (r, s) ⇐⇒ s ∈ Z1,p−1 ∪ pN (2.17)

2.3 Rank-2 and projective modules

The infinite family
{Rb

r ; r ∈ N, b ∈ Z1,p−1} (2.18)

of reducible yet indecomposable modules of rank 2 arises from repeated fusion of irreducible Kac
representations [60]. The rank-2 module Rb

r is characterized by the structure diagram

Rb
1 :

M2,b

M1,p−b M1,p−b←−

տւ

, Rb
r :

Mr+1,b

Mr,p−b Mr,p−b

Mr−1,b

←−

տւ

ւտ

, r ∈ Z≥2 (2.19)

It is noted that the rank-2 modules are all self-contragredient

(Rb
r)
∗ = Rb

r (2.20)

The Virasoro character of the rank-2 module Rb
r follows from the structure diagram (2.19) and is given

by
χ[Rb

r](q) = (1− δr,1)chr−1,b(q) + 2chr,p−b(q) + chr+1,b(q) (2.21)

According to the fusion algebra conjectured in [56] and reviewed in Appendix A, no additional rank-2
modules nor higher-rank modules are generated from repeated fusion of the full set of Kac representa-
tions (r, s) and contragredient Kac representations (r, s)∗.

These rank-2 modules are all projective modules, but not the only projective modules in the
model. The Kac representations (1, rp) ≡ (r, p) are both irreducible and projective as modules over
the Virasoro algebra. It is thus convenient to introduce the alternative notation

R0
r ≡ (1, rp) ≡ (r, p) (2.22)

allowing us to write the set of projective modules as

J Proj = {Rb
r ; r ∈ N, b ∈ Z0,p−1} (2.23)

2.4 Fusion algebras

There are infinitely many fusion (sub)algebras associated with LM(1, p). Results on the corresponding
fusion rules can be found in [61,62]. The fundamental fusion algebra [60]

〈
(1, 1), (2, 1), (1, 2)

〉
(2.24)

in particular, is generated from the two fundamental Kac representations (2, 1) and (1, 2) in addition to
the identity (1, 1). This fusion algebra involves all the irreducible Kac representations and all the rank-2
representations (2.18). On the other hand, no reducible yet indecomposable Kac representations arise
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as the result of repeated fusion of the fundamental Kac representations. The set of indecomposable
modules partaking in the fundamental fusion algebra is simply given by

J Fund = J Irr ∪ J Proj (2.25)

This is not written as a disjoint union of sets since the modules (2.22) are both irreducible and projec-
tive.

The Kac fusion algebra
〈
(r, s); r, s ∈ N

〉
(2.26)

is generated by repeated fusion of the full set of Kac representations, where

(r, s) = (r, 1) ⊗ (1, s), Rb
r = (r, 1) ⊗Rb

1 (2.27)

A concrete conjecture for this fusion algebra was presented in [56]. It was subsequently demonstrated
in [56] that this conjectured fusion algebra is generated by repeated fusion of four Kac representations

〈
(r, s); r, s ∈ N

〉
=

〈
(1, 1), (2, 1), (1, 2), (1, p + 1)

〉
(2.28)

The set of distinct, indecomposable modules partaking in this Kac fusion algebra is

J Kac = J Fund ∪ {(r, s); r ∈ N, s ∈ N \
(
Z1,p−1 ∪ pN

)
} (2.29)

here written as a disjoint union of sets. It was also found that the fusion algebra generated by the
contragredient Kac representations is isomorphic to the Kac fusion algebra, that is,

〈
(r, s)∗; r, s ∈ N

〉
=

〈
(1, 1)∗, (2, 1)∗, (1, 2)∗, (1, p + 1)∗

〉
≃

〈
J Kac

〉
(2.30)

where
A∗ = A if A ∈ J Fund, A∗ 6= A if A ∈ J Kac \ J Fund (2.31)

The contragrediently-extended Kac fusion algebra

〈
(r, s), (r, s)∗; r, s ∈ N

〉
=

〈
(1, 1), (2, 1), (1, 2), (1, p + 1), (1, p + 1)∗

〉
(2.32)

is generated by repeated fusion of Kac representations and contragredient Kac representations. As
indicated, it is actually generated by repeated fusion of five modules only. Three of these five modules
are self-contragredient: (1, 1)∗ = (1, 1), (2, 1)∗ = (2, 1) and (1, 2)∗ = (1, 2). The set of distinct,
indecomposable modules partaking in this fusion algebra is

J Cont = J Kac ∪ {(r, s)∗; r ∈ N, s ∈ N \
(
Z1,p−1 ∪ pN

)
} (2.33)

here written as a disjoint union of sets. The corresponding fusion rules are reviewed in Appendix A.
The set of projective modules J Proj generates an ideal of the contragrediently-extended Kac fusion

algebra and hence of the Kac fusion algebra itself as well as of the fundamental fusion algebra. We
furthermore observe that, as a factor in a fusion product, a projective module is insensitive to the
decomposability properties of the other fusion factor. That is,

Rb
r ⊗A = Rb

r ⊗
(⊕

n

Mn

)
, Rb

r ∈ J
Proj (2.34)

where
⊕

nMn is the direct sum of the irreducible subfactors (subquotients) of the module A. By
construction, we thus have

χ[A](q) =
∑

n

χ[Mn](q) (2.35)
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It follows from (2.34) that fusion by the projective module Rb
r is an exact functor for all Rb

r ∈ J
Proj.

As discussed in [56], the lattice approach to the logarithmic minimal models seems incapable
of distinguishing between the family of Kac representations and the family of contragredient Kac
representations. The two families generate isomorphic fusion algebras (2.30) and the corresponding
characters are identical χr,s(q) = χ∗r,s(q). It was simply asserted in [56] that the Yang-Baxter integrable
boundary conditions likewise denoted by (r, s) in the lattice approach [24, 60] are associated with the
Kac representations, even though they, a priori, could be associated with the contragredient Kac
representations. We will return to this issue in Section 3.5 when discussing fusion in the W-extended
picture.

3 W-extended logarithmic minimal model WLM(1, p)

3.1 Integrable boundary conditions and W-extended modules

It was found in [27] that the W-extended vacuum boundary condition can be constructed by fusing
three r-type integrable seams to the boundary

(1, 1)W := lim
n→∞

(2n− 1, 1) ⊗ (2n − 1, 1) ⊗ (2n − 1, 1) =

∞⊕

n=1

(2n − 1) (2n − 1, 1) (3.1)

thereby ensuring that the W-extended vacuum boundary condition is a solution to the boundary
Yang-Baxter equation. The corresponding W-extended module (1, 1)W is indecomposable (in fact,
irreducible) with respect to the W -algebra W(p), but decomposable with respect to the Virasoro
algebra. Its decomposition in terms of indecomposable Virasoro modules appears as the last expression
in (3.1). These Virasoro modules are all irreducible.

Using the stability properties [27]

(2m− 1, s)⊗ (1, 1)W = (2m− 1)
( ∞⊕

n=1

(2n − 1) (2n − 1, s)
)

(2m, s)⊗ (1, 1)W = 2m
( ∞⊕

n=1

2n (2n, s)
)

Rb
2m−1 ⊗ (1, 1)W = (2m− 1)

( ∞⊕

n=1

(2n − 1)Rb
2n−1

)

Rb
2m ⊗ (1, 1)W = 2m

( ∞⊕

n=1

2nRb
2n

)

(3.2)

for s ∈ Z1,p, b ∈ Z1,p−1 and m ∈ N, one can identify integrable boundary conditions corresponding to
the 2p W-irreducible modules

(1, s)W := (1, s)⊗ (1, 1)W =
∞⊕

n=1

(2n − 1) (2n − 1, s)

(2, s)W := 1
2(2, s)⊗ (1, 1)W =

∞⊕

n=1

2n (2n, s) (3.3)
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and the 2p − 2 W-reducible yet W-indecomposable rank-2 modules

R̂b
1 := Rb

1 ⊗ (1, 1)W =

∞⊕

n=1

(2n− 1)Rb
2n−1

R̂b
2 := 1

2R
b
2 ⊗ (1, 1)W =

∞⊕

n=1

2nRb
2n (3.4)

The set J Irr
W of W-irreducible modules is given by

J Irr
W = {(r, s)W ; r ∈ Z1,2, s ∈ Z1,p} = {M̂r,s; r ∈ Z1,2, s ∈ Z1,p} (3.5)

where we have introduced the notation M̂r,s to denote a W-irreducible module:

M̂r,s = (r, s)W if r ∈ Z1,2, s ∈ Z1,p (3.6)

The structure diagrams of the rank-2 modules are of the form

R̂b
r :

M̂2·r,b

M̂r,p−b M̂r,p−b

M̂2·r,b

←−

տւ

ւտ
(3.7)

Introducing
R̂0

r ≡ (r, p)W = M̂r,p, r ∈ Z1,2 (3.8)

the set of W-projective modules is

J Proj
W = {R̂b

r; r ∈ Z1,2, b ∈ Z0,p−1} (3.9)

It is noted that the two modules in (3.8) are both W-irreducible and W-projective, and that they are
the only such modules. The Virasoro characters of the W-indecomposable modules (3.3) and (3.4)
follow readily from the indicated decompositions in terms of Virasoro modules.

The work [27], in which the lattice construction of the W-extended modules (3.3) and (3.4) first
appeared, was focused on the construction of W-irreducible and W-projective modules and on their
fusion properties. The ensuing fusion algebra thus corresponds to a lift of the fundamental fusion
algebra 〈J Fund〉 to the W-extended fundamental fusion algebra

〈
J Fund
W

〉
=

〈
(1, 1)W , (2, 1)W , (1, 2)W

〉
=

〈
M̂1,1, M̂2,1, M̂1,2

〉
(3.10)

The set of W-modules partaking in this fusion algebra is

J Fund
W = J Irr

W ∪ J
Proj
W (3.11)

This is not a disjoint union of sets since the modules in (3.8) are bothW-irreducible andW-projective.
For later convenience, we introduce the redundant notation

(0, s)W ≡ (r, 0)W ≡ R̂
b
0 ≡ 0 (3.12)
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3.2 W-extended Kac representations

With the recent advances [56] in the understanding of the general structure and fusion of Kac rep-
resentations reviewed in Section 2, we now turn to the construction of the corresponding lift to the
W-extended picture.

Since
(r, s) = (r, 1) ⊗ (1, s) (3.13)

it is readily seen that the validity of the stability properties (3.2) extends from s ∈ Z1,p to s ∈ N. For
every pair of positive Kac labels r, s ∈ N, we can therefore define the W-extended Kac representation
(r, s)W by

(r, s)W := 1
r (r, s) ⊗ (1, 1)W (3.14)

Occasionally, we will refer to these W-extended Kac representations simply as W-Kac representations.
It follows from (3.2) that

(r, s)W = (1 · r, s)W (3.15)

and since 1 · r ∈ Z1,2, it thus suffices to define (r, s)W for r ∈ Z1,2. Likewise, it is also sufficient to

define the W-extended rank-2 modules R̂b
r for r ∈ Z1,2 only, since

R̂b
r :=

1
rR

b
r ⊗ (1, 1)W = R̂b

1·r, r ∈ N, b ∈ Z1,p−1 (3.16)

In the following, we therefore let r ∈ Z1,2.
Recalling (1, kp) ≡ (k, p), we immediately obtain the identifications

(r, kp)W ≡ k(r · k, p)W = kM̂r·k,p (3.17)

of W-extended modules. It follows that the modules (r, kp)W are fully reducible.
Based on the conjecture (2.14) for the structure of the Kac representations, we find that the

W-Kac representation (r, s)W is the finitely-generated W-extended Feigin-Fuchs module

(r, s0 + kp)W = Q̂←r,s0+kp, s0 ∈ Z0,p−1, k ∈ N0 (3.18)

whose structure diagram is given by

Q̂←r,s0+kp : M̂2·r·k,s0 ← M̂r·k,p−s0 → M̂2·r·k,s0 ← . . .← M̂r·k,p−s0 → M̂2·r·k,s0
︸ ︷︷ ︸

#=2k+1

(3.19)

Before justifying this claim, we note that for k = 0, it correctly reduces to

(r, s0)W = Q̂←r,s0 = M̂r,s0 (3.20)

while for s0 = 0, it correctly reduces to (r, kp)W = kM̂r·k,p. The W-extended Kac characters following
from (3.18) and (3.19) are given by

χ̂r,s0+kp(q) = χ[(r, s0 + kp)W ](q) = k χ̂r·k,p−s0(q) + (k + 1)χ̂2·r·k,s0(q)

=







k
∑

n∈N

(2n − 1)ch2n−1,p−s0(q) + (k + 1)
∑

n∈N

2n ch2n,s0(q), r · k = 1

k
∑

n∈N

2n ch2n,p−s0(q) + (k + 1)
∑

n∈N

(2n− 1)ch2n−1,s0(q), r · k = 2

(3.21)

Our argument for the structure (3.18) of the W-Kac representation (r, s)W is based on
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(i) the conjectured structure diagrams (2.14) of the Kac representations appearing in the decompo-
sition of (r, s)W in terms of indecomposable Virasoro modules;

(ii) the assertion that theW-indecomposable module (r, s)W can be described by a structure diagram
linking W-irreducible modules only.

To determine the structure diagram of (r, s)W , we thus have to ‘add’ or ‘glue together’ the infinite
sequence of structure diagrams associated with the participating Kac representations to form a single
structure diagram involving W-irreducible modules only.

First, for
s = s0 + kp, s0 ∈ Z0,p−1, k ∈ N0 (3.22)

we see that the W-Kac representation (r, s)W as defined in (3.14) decomposes as

(1, s)W =
(
⌈k
2
⌉

⊕

n=1

(2n − 1)Q→2n−1,s

)

⊕
( ∞⊕

n=⌊k+3

2
⌋

(2n − 1)Q←2n−1,s

)

(2, s)W =
(
⌈k−1

2
⌉

⊕

n=1

2nQ→2n,s

)

⊕
( ∞⊕

n=⌊k+2

2
⌋

2nQ←2n,s

)

(3.23)

in terms of indecomposable Virasoro modules. Here we have used the conjectured structure of the Kac
representations discussed in Section 2.1. Using (2.10) and the sum formula

n+n′−1∑

j=|n−n′|+1,by 2

j = nn′ (3.24)

it is verified that the Virasoro characters of (3.23) agree with the Virasoro characters (3.21) of the
proposed Feigin-Fuchs structures (3.18). The appearance of the indecomposable Virasoro modules
Q←2n−1,s or Q←2n,s in (3.23) requires that similar indecomposable structures are present in the ambient
W-Kac representation as well. Following assertion (ii) above, we are thus led to the conjecture (3.18).

For WLM(1, p), p ∈ Z2,5, Kac tables of the conformal weights ∆r,s of the W-irreducible modules
M̂r,s (3.6) over the triplet W -algebra W(p) appear in Figure 1.

3.3 W-extended Kac representations in WLM(1, 2)

Here we illustrate the structure diagrams of the W-indecomposable modules given in (3.19) for the
logarithmic minimal model WLM(1, 2). In the following, we let k denote a non-negative integer. The
structure diagrams are

(1, 4k − 1)W :
1
տ

0
ր

1
տ

0
ր

. . .
տ

0
ր

1 #=2k

#=2k − 1
(3.25)

(2, 4k − 1)W :
0
ւ

1
ց

0
ւ

1
ց

. . .
ւ

1
ց

0

#=2k − 1

#=2k

11



WLM(1, 2)

−1
8

3
8

0 1

1 2

1

2

WLM(1, 3)

−1
3

5
12

−1
4 1

0 7
4

1 2

1

2

3

WLM(1, 4)

− 9
16

7
16

−1
2 1

− 5
16

27
16

0 5
2

1 2

1

2

3

4

WLM(1, 5)

−4
5

9
20

−3
4 1

−3
5

33
20

− 7
20

12
5

0 13
4

1 2

1

2

3

4

5

Figure 1: Kac tables of conformal weights ∆r,s of the W-irreducible W-Kac representations in
WLM(1, p) where p ∈ Z2,5. The corresponding central charges are c = −2, c = −7, c = −25/2
and c = −91/5, respectively. In a given table, the column index is r ∈ Z1,2, while the row index
is s ∈ Z1,p. The pair of W-Kac representations which are both W-irreducible and W-projective are
indicated by darker shadings.

and

(1, 4k + 1)W :
0
ւ

1
ց

0
ւ

1
ց

. . .
ւ

1
ց

0

#=2k

#=2k + 1
(3.26)

(2, 4k + 1)W :
1
տ

0
ր

1
տ

0
ր

. . .
տ

0
ր

1 #=2k + 1

#=2k

where the W-irreducible module M̂r,s (3.6) is represented by its conformal weight ∆r,s. For k = 1, we
thus have

(1, 3)W :
1
տ

0
ր

1
(2, 3)W :

0
ւ

1
ց

0
(3.27)

and

(1, 5)W :
0
ւ

1
ց

0
ւ

1
ց

0
(2, 5)W :

1
տ

0
ր

1
տ

0
ր

1
(3.28)

3.4 W-extended Kac fusion algebra

The fusion rules in the W-extended picture are inferred from the fusion rules in the Virasoro picture.
Letting ⊗̂ denote the fusion multiplication in the W-extended picture, it is interpreted [27] as a limit
of a rescaled fusion

(1, 1)W ⊗̂ (1, 1)W := lim
n→∞

( 1

(2n− 1)3
(2n− 1, 1)⊗ (2n− 1, 1)⊗ (2n− 1, 1)⊗ (1, 1)W

)

= (1, 1)W (3.29)

in the Virasoro picture of the logarithmic minimal model LM(1, p). This ensures that fusion in the
extended picture has a natural implementation on the lattice.

Now, a representation Â in the W-extended picture is constructed as the integrable boundary
condition A ⊗ (1, 1)W where A is some Virasoro representation in the logarithmic minimal model.
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Fusion in the extended picture is then computed as

Â ⊗̂ B̂ =
(
A⊗ (1, 1)W

)
⊗̂
(
B ⊗ (1, 1)W

)
=

(
A⊗B

)
⊗

(
(1, 1)W ⊗̂ (1, 1)W

)

=
(⊕

j

Cj

)
⊗ (1, 1)W =

⊕

j

Ĉj (3.30)

where A ⊗ B =
⊕

j Cj is the fusion of the representations A and B in the Virasoro picture. This
W-extended fusion prescription is readily seen to be both associative and commutative. It is also
immediately verified that (1, 1)W is the identity of the ensuing fusion algebra

(1, 1)W ⊗̂ Â =
(
(1, 1) ⊗ (1, 1)W

)
⊗̂
(
A⊗ (1, 1)W

)
=

(
(1, 1) ⊗A

)
⊗ (1, 1)W = Â (3.31)

With this W-extended fusion prescription, it follows that the W-Kac representation (r, s)W ‘sep-
arates’ in much the same way (3.13) as the original Kac representations, that is,

(r, s)W =
1

r
(r, s) ⊗ (1, 1)W = [

1

r
(r, 1) ⊗ (1, s)] ⊗ [(1, 1)W ⊗̂ (1, 1)W ]

= [
1

r
(r, 1) ⊗ (1, 1)W ] ⊗̂ [(1, s)⊗ (1, 1)W ]

= (r, 1)W ⊗̂ (1, s)W (3.32)

Using (3.24), we also find that

(r, 1)W ⊗̂ (r′, 1)W = (r · r′, 1)W , (r, 1)W ⊗̂ R̂
b
r′ = R̂

b
r·r′ (3.33)

and hence
(r, s)W ⊗̂ (r′, s′)W = (r · r′, 1)W ⊗̂

[
(1, s)W ⊗̂ (1, s′)W

]
(3.34)

and

R̂b
r ⊗̂ (r′, s′)W = (r · r′, 1)W ⊗̂

[
R̂b

1 ⊗̂ (1, s′)W
]
, R̂b

r ⊗̂ R̂
b′

r′ = (r · r′, 1)W ⊗̂
[
R̂b

1 ⊗̂ R̂
b′
1

]
(3.35)

Based on the fusion rules [56] in the Virasoro picture, summarized in Appendix A, we work out
the W-extended Kac fusion algebra

〈
(r, s)W ; r ∈ Z1,2, s ∈ N

〉
(3.36)

generated by repeated fusion of theW-Kac representations. Written as a disjoint union of sets, the set
of distinct, W-indecomposable modules partaking in this fusion algebra is

J Kac
W = {(r, s)W ; r ∈ Z1,2, s ∈ N \ pN} ∪ J Proj

W (3.37)

For r, r′ ∈ Z1,2, b, b
′ ∈ Z0,p−1 and k, k′ ∈ N0, we find the underlying fusion rules to be given by

(r, b+ kp)W ⊗̂ (r′, b′ + k′p)W = kk′
( p−|b−b′|−1

⊕

β

R̂β
r·r′·k·k′

)

⊕ (k + k′ + 1)
( b+b′−p−1

⊕

β

R̂β
r·r′·k·k′

)

⊕ (k + 1)k′
( b−b′−1⊕

β

R̂β
2·r·r′·k·k′

)

⊕ k(k′ + 1)
( b′−b−1⊕

β

R̂β
2·r·r′·k·k′

)

⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1, by 2

(r · r′, β + (k + k′)p)W (3.38)
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and

R̂b
r ⊗̂ (r′, b′ + k′p)W =

{

k′
( p−|b−b′|−1

⊕

β

R̂β
r·r′·k′

)

⊕ k′
( |p−b−b

′|−1
⊕

β

R̂β
r·r′·k′

)

⊕ 2
( b+b′−p−1

⊕

β

R̂β
r·r′·k′

)

⊕ (k′ + 1)
( p−|p−b−b′|−1

⊕

β=|b−b′|+1, by 2

R̂β
2·r·r′·k′

)

⊕ 2k′
( |b−b

′|−1
⊕

β

R̂β
2·r·r′·k′

)

⊕ 2
( b′−b−1⊕

β

R̂β
2·r·r′·k′

)}

/(1 + δb,0) (3.39)

as well as the known fusion rules

R̂b
r ⊗̂ R̂

b′

r′ = 2
( p−|b−b′|−1

⊕

β

R̂β
r·r′ ⊕

|p−b−b′|−1
⊕

β

R̂β
r·r′

⊕

p−|p−b−b′|−1
⊕

β

R̂β
2·r·r′ ⊕

|b−b′|−1
⊕

β

R̂β
2·r·r′

)

/{(1 + δb,0)(1 + δb′,0)} (3.40)

for the subalgebra generated by the projective modules R̂b
r. This subalgebra is actually an ideal, in

accordance with the modules R̂b
r being projective. The divisions in (3.39) and (3.40) by (1 + δb,0) and

(1 + δb′,0) ensure that the fusion rules for R̂0
r match those for (r, p)W .

We observe that, as a factor in a fusion product, the W-projective module R̂b
r is insensitive to the

indecomposable structure of the other W-extended fusion factor, that is,

R̂b
r ⊗̂ R̂

b′

r′ = R̂b
r ⊗̂

[
2(r′, p− b′)W ⊕ 2(2 · r′, b′)W

]

R̂b
r ⊗̂ (r′, b′ + k′p)W = R̂b

r ⊗̂
[
k′(r′ · k′, p− b′)W ⊕ (k′ + 1)(2 · r′ · k′, b′)W

]
(3.41)

Here we have b ∈ Z0,p−1, while we set b′ ∈ Z1,p−1 for R̂b′

r′ and (r′, b′ + k′p)W to be reducible yet
indecomposable. Similar to the situation in the Virasoro case, the insensitivity properties (3.41) imply
that fusion by R̂b

r in 〈J Kac
W 〉 is an exact functor for all R̂b

r ∈ J
Proj
W .

3.5 Contragredient modules and their fusion properties

As in the Virasoro picture, we introduce the contragredient module to each W-Kac representation
(r, s)W by reversing the arrows in the corresponding structure diagram (3.18) and (3.19). For r ∈ N,
s0 ∈ Z0,p−1 and k ∈ N0, we thus have

(r, s0 + kp)∗W = Q̂→r,s0+kp (3.42)

whose structure diagram is given by

Q̂→r,s0+kp : M̂2·r·k,s0 → M̂r·k,p−s0 ← M̂2·r·k,s0 → . . .→ M̂r·k,p−s0 ← M̂2·r·k,s0
︸ ︷︷ ︸

#=2k+1

(3.43)

The corresponding character is denoted by χ̂∗r,s(q) = χ[(r, s)∗W ](q), and it follows that (r, s)∗W = (r, s)W
if and only if (r, s)W is fully reducible, that is,

(r, s)∗W = (r, s)W ⇐⇒ s ∈ Z1,p−1 ∪ pN (3.44)
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As in the case of theW-Kac representations themselves, we may restrict our considerations of (r, s)∗W to
r ∈ Z1,2 since (r, s)∗W = (r · 1, s)∗W . For WLM(1, 2), the contragredient modules to the ones described
explicitly in (3.27) and (3.28) are

(1, 3)∗W :
1
ց

0
ւ

1
(2, 3)∗W :

0
ր

1
տ

0
(3.45)

and

(1, 5)∗W :
0
ր

1
տ

0
ր

1
տ

0
(2, 5)∗W :

1
ց

0
ւ

1
ց

0
ւ

1
(3.46)

By construction, the W-extended rank-2 modules are all self-contragredient:

(R̂b
r)
∗ = R̂b

r (3.47)

To describe the fusion algebra
〈
(r, s)W , (r, s)∗W ; r ∈ Z1,2, s ∈ N

〉
(3.48)

generated by repeated fusion of the W-Kac representations and their contragredient counterparts, we
mimic (A.3) and introduce

Ĉn[(r, s)W ] =







(r, s)W , n > 0

(r, s)∗W , n < 0
(3.49)

In our applications, Ĉ0[(r, s)W ] only appears if (r, s)W is fully reducible in which case

Ĉ0[(r, s)W ] = (r, s)W = (r, s)∗W , s ∈ Z1,p−1 ∪ pN (3.50)

The fusion rules involving the contragredient modules (r, s)∗W are inferred from the corresponding fusion
rules in the Virasoro picture [56]. We thus find that the decomposition of the fusion products

(r, s)∗W ⊗̂ (r′, s′)∗W =
(
(r, s)W ⊗̂ (r′, s′)W

)∗
, R̂b

r ⊗̂ (r′, s′)∗W = R̂b
r ⊗̂ (r′, s′)W (3.51)

follow readily from the fusion rules underlying the W-Kac fusion algebra discussed above, while

(r, b + kp)W ⊗̂ (r′, b′ + k′p)∗W = kk′
( p−b−b′−1

⊕

β

R̂β
r·r′·k·k′

)

⊕ (k + 1)(k′ + 1)
( b+b′−p−1

⊕

β

R̂β
r·r′·k·k′

)

⊕
(
kk′ +min(k, k′)

)(
p−|p−b−b′|−1

⊕

β

R̂β
2·r·r′·k·k′

)

⊕ |k − k′|
( (b−b′)sg(k′−k)−1

⊕

β

R̂β
2·r·r′·k·k′

)

⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

Ĉk−k′[(r · r
′, β + |k − k′|p)W ] (3.52)

The set of distinct, W-indecomposable representations partaking in this contragrediently-extended
W-Kac fusion algebra is

J Cont
W = J Kac

W ∪ {(r, s)∗W ; r ∈ Z1,2, s ∈ N \
(
Z1,p−1 ∪ pN

)
} (3.53)
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here written as a disjoint union of sets. It is noted that the fusion subalgebras generated by theW-Kac
representations and their contragredient counterparts, respectively, are isomorphic

〈
(r, s)W ; r ∈ Z1,2, s ∈ N

〉
≃

〈
(r, s)∗W ; r ∈ Z1,2, s ∈ N

〉
(3.54)

This resembles the situation (2.30) in the Virasoro picture.
Combining the second fusion property in (3.51) with the fact that the W-projective modules form

an ideal of the W-Kac fusion algebra, we see that the W-projective modules also form an ideal of the
larger contragrediently-extended W-Kac fusion algebra 〈J Cont

W 〉. It also follows that the insensitivity
properties (3.41) of the W-projective modules are supplemented by

R̂b
r ⊗̂ (r′, b′ + k′p)∗W = R̂b

r ⊗̂
[
k′(r′ · k′, p− b′)W ⊕ (k′ + 1)(2 · r′ · k′, b′)W

]
(3.55)

implying that fusion by R̂b
r is an exact functor in 〈J Cont

W 〉 for all R̂b
r ∈ J

Proj
W .

Following up on the discussion at the end of Section 2.4, the lattice issue with Kac representa-
tions versus contragredient Kac representations carries over to the W-extended picture. Here we have
merely reiterated the assertion [56] that it is the Kac representations (r, s) and not (in general) the
contragredient Kac representations (r, s)∗ which are associated with Yang-Baxter integrable boundary
conditions in the lattice approach. As a consequence of the way we have introduced the corresponding
Yang-Baxter integrable boundary conditions in the W-extended picture, it is the W-Kac representa-
tions (r, s)W and not (in general) their contragredient counterparts (r, s)∗W which are associated with
W-extended boundary conditions. The two families generate isomorphic fusion algebras (3.54) and the
corresponding characters are identical χ̂r,s(q) = χ̂∗r,s(q).

4 Polynomial fusion rings

Our last objectives are to determine polynomial fusion rings isomorphic with theW-Kac fusion algebra
〈J Kac
W 〉 and its contragredient extension 〈J Cont

W 〉, and to identify the corresponding Grothendieck ring of
characters. This is a continuation of our recent work [63–65] on polynomial fusion rings inWLM(p, p′).
The corresponding constructions in the Virasoro picture were obtained in [66].

4.1 W-extended Kac fusion algebra

Together with the fact that theW-extended fundamental fusion algebra 〈J Fund
W 〉 is a subalgebra of the

W-Kac fusion algebra, the fusion rules

(1, 2)W ⊗̂ (1, b+ kp)W = (1, b− 1 + kp)W ⊕ (1, b+ 1 + kp)W

(1, p + 1)W ⊗̂ (1, b+ kp)W = k
( p−b
⊕

β

R̂β
1·k

)

⊕ (k + 1)
( b−2⊕

β

R̂β
2·k

)

⊕ (1, b + (k + 1)p)W (4.1)

where b ∈ Z1,p−1, demonstrate that the W-Kac fusion algebra is generated from repeated fusion of the
four modules (1, 1)W , (2, 1)W , (1, 2)W and (1, p + 1)W , that is,

〈
J Kac
W

〉
=

〈
(1, 1)W , (2, 1)W , (1, 2)W , (1, p + 1)W

〉
(4.2)

Since (1, 1)W = M̂1,1 is the algebra identity, it is therefore natural to expect that this fusion algebra

is isomorphic to a polynomial ring in the three entities X ↔ (2, 1)W = M̂2,1, Y ↔ (1, 2)W = M̂1,2 and
Z ↔ (1, p + 1)W . This is indeed what we find and it is the content of Proposition 1 below. In the
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following, Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind, respectively, where
we set U−1(x) = 0.

Proposition 1. The W-Kac fusion algebra is isomorphic to the polynomial ring generated by X, Y
and Z modulo the ideal

IKac
W = (X2 − 1, Pp(X,Y ), Qp(Y,Z)) (4.3)

that is,
〈
J Kac
W

〉
≃ C[X,Y,Z]/IKac

W (4.4)

where
Pp(X,Y ) =

[
X − Tp(

Y
2 )
]
Up−1(

Y
2 ), Qp(Y,Z) =

[
Z − Up(

Y
2 )
]
Up−1(

Y
2 ) (4.5)

For r ∈ Z1,2, b ∈ Z0,p−1 and k ∈ N0, the isomorphism reads

(r, b+ kp)W ↔ Xr−1
(

Ukp+b−1(
Y
2 ) +

[
Zk − Uk

p (
Y
2 )

]
Ub−1(

Y
2 )

)

R̂b
r ↔ (2− δb,0)X

r−1Tb(
Y
2 )Up−1(

Y
2 ) (4.6)

Proof. The relation Pp(X,Y ) = 0 corresponds to the identification (1, 2p)W ≡ 2(2, p)W , while the
relation Qp(Y,Z) = 0 corresponds to the fusion rule

(1, p)W ⊗̂ (1, p + 1)W = 2(2, p)W ⊕

p−2
⊕

β

R̂β
1 (4.7)

when employing the identity
p

∑

β=ǫ(p), by 2

(
2− δβ,0

)
Tβ(x) = Up(x) (4.8)

The remaining fusion rules are then verified straightforwardly in the polynomial ring. Here we only
demonstrate explicitly the two fusion rules in (4.1). The first of these follows immediately from the
recursion relation for the Chebyshev polynomials. To show the second of the fusion rules, we follow [56]
on the similar fusion rule in the Virasoro picture and note the basic decomposition rules

Um(x)Un(x) =
m+n∑

j=|m−n|,by 2

Uj(x), 2Tm(x)Un−1(x) = Un+m−1(x) + sg(n−m)U|n−m|−1(x) (4.9)

As a consequence, we have

Up−1(x)

k−1∑

j=0

Uk−j−1
p (x)Ujp+b−2(x) = Ub−1(x)U

k
p (x)− Ukp+b−1(x) (4.10)

which is established by induction in k and shows that the expression on the right side is divisible by
Up−1(x). This is of importance when multiplied by Z due to the form of Qp(Y,Z). With the additional
observation that

Ur−1(
X
2 )Up−1(

Y
2 ) ≡ Urp−1(

Y
2 ) (mod Pp(X,Y )) (4.11)

which follows by induction in r, the second fusion rule readily follows. �

In [56], we demonstrated that the conjectured Kac fusion algebra 〈J Kac〉 in the Virasoro picture is
isomorphic to the polynomial ring

〈
J Kac

〉
≃ C[X,Y,Z]/(Pp(X,Y ), Qp(Y,Z)) (4.12)
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In somewhat sloppy notation, we thus have the relation
〈
J Kac
W

〉
≃

〈
J Kac

〉
/(X2 − 1) (4.13)

between the W-Kac fusion algebra and the Kac fusion algebra itself.

4.2 Contragredient extension

Extending the arguments presented above for the W-Kac fusion algebra, one finds that its contragre-
dient extension 〈J Cont

W 〉 is also generated from repeated fusion of a small number of modules, namely

〈
J Cont
W

〉
=

〈
M̂1,1, M̂2,1, M̂1,2, (1, p + 1)W , (1, p + 1)∗W

〉
(4.14)

where it is recalled that

M̂1,1 = (1, 1)W = (1, 1)∗W , M̂2,1 = (2, 1)W = (2, 1)∗W , M̂1,2 = (1, 2)W = (1, 2)∗W (4.15)

Using

(1, p + 1)W ⊗̂ (1, p + 1)∗W = M̂1,1 ⊕ 2R̂1
2 ⊕

p−3
⊕

β

R̂β
1 (4.16)

in particular, one also finds that 〈J Cont
W 〉 is isomorphic to a polynomial ring in the four entities X ↔

M̂2,1, Y ↔ M̂1,2, Z ↔ (1, p + 1)W and Z∗ ↔ (1, p + 1)∗W as demonstrated in Proposition 2 below.

Proposition 2. The contragrediently-extendedW-Kac fusion algebra is isomorphic to the polynomial
ring generated by X, Y , Z and Z∗ modulo the ideal

ICont
W = (X2 − 1, Pp(X,Y ), Qp(Y,Z), Qp(Y,Z

∗), Rp(Y,Z,Z
∗)) (4.17)

that is,
〈
J Cont
W

〉
≃ C[X,Y,Z,Z∗]/ICont

W (4.18)

where the polynomials Pp and Qp are defined in (4.5) while

Rp(Y,Z,Z
∗) = ZZ∗ − U2

p (
Y
2 ) (4.19)

For r ∈ Z1,2, b ∈ Z0,p−1 and k ∈ N0, the isomorphism reads

(r, b+ kp)W ↔ Xr−1
(

Ukp+b−1(
Y
2 ) +

[
Zk − Uk

p (
Y
2 )

]
Ub−1(

Y
2 )

)

(r, b+ kp)∗W ↔ Xr−1
(

Ukp+b−1(
Y
2 ) +

[
(Z∗)k − Uk

p (
Y
2 )
]
Ub−1(

Y
2 )

)

R̂b
r ↔ (2− δb,0)X

r−1Tb(
Y
2 )Up−1(

Y
2 ) (4.20)

Proof. This proof is almost identical to the proof in [56] of the similar proposition in the Virasoro
picture, but is included for completeness. Compared to the proof of Proposition 1, the essential new
feature is the appearance of Z∗. The relation Qp(Y,Z

∗) = 0 plays the same role for the contragredient
W-Kac representations and Z∗ as Qp(Y,Z) = 0 does for theW-Kac representations and Z. This yields
the part of the polynomial ring corresponding to (3.54). The relation Rp(Y,Z,Z

∗) = 0 corresponds
to the fusion rule (4.16). To establish the general fusion rule (3.52) in the ring picture, we first use
induction in n to establish

U2n
p (Y2 )Z

m ≡ Zm +
n−1∑

j=0

Um+2j
p (Y2 )Up−1(

Y
2 )Up+1(

Y
2 ) (mod Qp(Y,Z)), n ∈ N (4.21)
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and similarly for Z replaced by Z∗. This is needed when reducing

Zk(Z∗)k
′

≡ U2min(k,k′)
p (Y2 )

{

Zk−k′, k ≥ k′

(Z∗)k
′−k, k < k′

(mod Rp(Y,Z,Z
∗)) (4.22)

For simplicity, we let k ≥ k′ in which case we find

(1, b+ kp)W ⊗̂ (1, b′ + k′p)∗W ↔
[
Zk−k′ − Uk−k′

p (Y2 )
]
Ub−1(

Y
2 )Ub′−1(

Y
2 ) + Ukp+b−1(

Y
2 )Uk′p+b′−1(

Y
2 )
(4.23)

This polynomial expression is recognized as corresponding to the right side of (3.52). �

In [56], we demonstrated that the conjectured contragrediently-extended Kac fusion algebra 〈J Cont〉
in the Virasoro picture is isomorphic to the polynomial ring

〈
J Cont

〉
≃ C[X,Y,Z,Z∗]/(Pp(X,Y ), Qp(Y,Z), Qp(Y,Z

∗), Rp(Y,Z,Z
∗)) (4.24)

In somewhat sloppy notation, we thus have the relation

〈
J Cont
W

〉
≃

〈
J Cont

〉
/(X2 − 1) (4.25)

between the contragrediently-extended W-Kac fusion algebra and the contragrediently-extended Kac
fusion algebra itself. With this and (4.13) in mind, the proofs of Proposition 1 and 2 could have been
reduced to an analysis of the consequences of X2 = 1 since (4.12) and (4.24) were established in [56].
However, we found it more instructive to include direct and independent proofs of the two propositions
above.

4.3 Grothendieck ring

The set of Virasoro characters in a CFT naturally forms a Grothendieck group whose generators are
equivalence classes [R] formed by the characters: [R] = χ[R](q). Its group operation is addition and is
defined via direct summation of the representations of the equivalence classes

[R1] + [R2] = [R1 ⊕R2] (4.26)

that is, by addition of characters. For rational CFTs, this Grothendieck group admits a ring structure
whose multiplication follows from the fusion product of representations

[R1] ∗ [R2] = [R1 ⊗R2] (4.27)

For logarithmic models, on the other hand, the fusion of representations does not, in general, induce
a product on the Grothendieck group in this way, see [67] for example. However, on the Grothendieck
group associated with the fundamental fusion algebra of WLM(1, p), the fusion rules do induce a
well-defined multiplication (4.27) thereby turning the group into a ring, as described in [68].

The Grothendieck group associated with the fundamental fusion algebra of WLM(1, p) is gener-
ated by the 2p generators

Gr,s = [M̂r,s], r ∈ Z1,2, s ∈ Z1,p (4.28)

corresponding to the set of irreducible modules. Following from (3.7), the equivalence class of a rank-2
module thus decomposes as

[R̂b
r] = 2G2·r,b + 2G1·r.p−b, b ∈ Z1,p−1 (4.29)
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The corresponding multiplication rules follow from the fusion rules and are given by

Gr,s ∗Gr′,s′ =

p−|p−s−s′|−1
∑

j=|s−s′|+1, by 2

Gr·r′,j +

s+s′−p−1
∑

β=ǫ(s+s′−p−1), by 2

(2− δβ,0)
(
Gr·r′,p−β +G2·r·r′,β

)
(4.30)

where Gr,0 ≡ 0.
Let

〈
J Grot
W

〉
, J Grot

W = {Gr,s; r ∈ Z1,2, s ∈ Z1,p} (4.31)

denote the Grothendieck ring associated with WLM(1, p), and let ∼ denote the equivalence relation
between modules in J Cont

W with identical characters such that

R̂b
r ∼ 2M̂2·r,b ⊕ 2M̂1·r,p−b, (r, s0 + kp)W ∼ (r, s0 + kp)∗W ∼ kM̂r·k,p−s0 ⊕ (k + 1)M̂2·r·k,s0 (4.32)

Proposition 3. The Grothendieck ring associated with WLM(1, p) is isomorphic with the contra-
gredient, the W-Kac and the fundamental fusion algebra modulo the equivalence relation ∼, that
is,

〈
JGrot
W

〉
≃

(〈
J Cont
W

〉/
∼

)

≃
(〈
J Kac
W

〉/
∼

)

≃
(〈
J Fund
W

〉/
∼

)

(4.33)

It is also isomorphic with the following polynomial rings
〈
J Grot
W

〉
≃ C[X,Y ]/

(
X2 − 1,X − Tp(

Y
2 )

)
,

〈
JGrot
W

〉
≃ C[Y ]/

(
(Y 2 − 4)U2

p−1(
Y
2 )

)
(4.34)

The isomorphisms in (4.34) are given by

Gr,s ↔ Xr−1Us−1(
Y
2 ), Gr,s ↔ T r−1

p (Y2 )Us−1(
Y
2 ), r ∈ Z1,2, s ∈ Z1,p (4.35)

respectively.

Proof. That the Grothendieck ring is isomorphic with 〈J Fund
W 〉/∼ was established in [68]. The other

two isomorphisms in (4.33) correspond to an elevation of this result to the W-Kac fusion algebra and
further to the contragredient extension thereof. These elevations are established by applying

[(r, s0 + kp)W ] = [(r, s0 + kp)∗W ] = kGr·k,p−s0 + (k + 1)G2·r·k,s0 (4.36)

and the multiplication rule (4.30) to the fusion rules (3.38), (3.39) and (3.52) involving (r, s0 + kp)W
or (r, s0 + kp)∗W , where (4.36) itself is a consequence of (4.32).

To establish the first isomorphism in (4.34), we note that R̂1
1 ∼ 2M̂2,1 ⊕ 2M̂1,p−1 implies the

equivalence relation
X ∼ T1(

Y
2 )Up−1(

Y
2 )− Up−2(

Y
2 ) = Tp(

Y
2 ) (4.37)

As a consequence, (1, p + 1)W ∼ M̂1,p−1 ⊕ M̂2,1 implies the equivalence relation

Z ∼ Up−2(
Y
2 ) + 2X ∼ Up−2(

Y
2 ) + 2Tp(

Y
2 ) = Up(

Y
2 ) (4.38)

We likewise have Z∗ ∼ Up(
Y
2 ). The polynomialsX−Tp(

Y
2 ), Z−Up(

Y
2 ) and Z∗−Up(

Y
2 ) are divisors of the

polynomials Pp(X,Y ), Qp(Y,Z) and Qp(Y,Z
∗), respectively, as defined in (4.5), and since Rp(Y,Z,Z

∗)
is trivial modulo Z−Up(

Y
2 ), Z

∗−Up(
Y
2 ), they eliminate the dependence on Z and Z∗ in the polynomial

ring in Proposition 2. They also simplify the polynomials associated with the (contragredient) W-Kac
representations as we have

(r, b+ kp)W ∼ (r, b+ kp)∗W ∼ Xr−1Ukp+b−1(
Y
2 )

≡ kXr·k−1Up−b−1(
Y
2 ) + (k + 1)X2·r·k−1Ub−1(

Y
2 ) (mod X2 − 1,X − Tp(

Y
2 ))

∼ kM̂r·k,p−b ⊕ (k + 1)M̂2·r·k,b (4.39)
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∗ G1,1 G2,1 G1,2 G2,2

G1,1 G1,1 G2,1 G1,2 G2,2

G2,1 G2,1 G1,1 G2,2 G1,2

G1,2 G1,2 G2,2 2G1,1 + 2G2,1 2G1,1 + 2G2,1

G2,2 G2,2 G1,2 2G1,1 + 2G2,1 2G1,1 + 2G2,1

∗ 0 1 −1
8

3
8

0 0 1 −1
8

3
8

1 1 0 3
8 −1

8

−1
8 −1

8
3
8 2(0) + 2(1) 2(0) + 2(1)

3
8

3
8 −1

8 2(0) + 2(1) 2(0) + 2(1)

Figure 2: Cayley tables of the multiplication rules for 〈J Grot
W 〉 in WLM(1, 2). In the second table, the

generators Gr,s are represented by the conformal weights of the corresponding W-irreducible modules.

where the polynomial equivalence follows by induction in k. Likewise, the polynomial realizations of
the rank-2 modules simplify as

R̂b
r ∼ 2Xr−1Tb(

Y
2 )Up−1(

Y
2 ) ≡ 2X2·r−1Ub−1(

Y
2 ) + 2Xr−1Up−b−1(

Y
2 ) (mod X − Tp(

Y
2 ))

∼ 2M̂2·r,b ⊕ 2M̂1·r,p−b (4.40)

This completes the proof of the first isomorphism in (4.34). The reduction of the polynomial ring in
the two variables X and Y in (4.34) to the polynomial ring in the single variable Y follows from

X2 − 1 ≡ T 2
p (

Y
2 )− 1 = 1

4(Y
2 − 4)U2

p−1(
Y
2 ) (mod X − Tp(

Y
2 )) (4.41)

�

As illustration of the structure of the Grothendieck rings, we follow [68] and considerWLM(1, 2) whose
four-dimensional Grothendieck ring

〈
J Grot
W

〉
≃ C[Y ]/(Y 4 − 4Y 2) (4.42)

is generated by

G1,1 ↔ 1, G1,2 ↔ Y, G2,1 ↔
1
2Y

2 − 1, G2,2 ↔
1
2Y

3 − Y (4.43)

The multiplication rules are given in the Cayley tables in Figure 2.

5 Discussion

We have constructed new Yang-Baxter integrable boundary conditions giving rise to reducible yet
indecomposable rank-1 representations in the W-extended logarithmic minimal model WLM(1, p)
where p = 2, 3, . . .. These W-Kac representations (r, s)W correspond to finitely-generated W-extended
Feigin-Fuchs modules over the W -algebra W(p), and their fusion properties were inferred from the
fusion rules in the Virasoro picture LM(1, p) of the logarithmic minimal model. The contragredient
modules (r, s)∗W to theW-Kac representations were also introduced, and the correspondingly-extended
fusion algebra was derived. Polynomial fusion rings isomorphic with the various fusion algebras were
subsequently determined, and the corresponding Grothendieck ring of characters was identified.
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The results presented here pertain to the W-extended logarithmic minimal models WLM(1, p)
and are based on the work [56] on the same models in the Virasoro picture LM(1, p). The methods
used to obtain the various results, on the other hand, are expected to be applicable also in the gen-
eral cases LM(p, p′) and WLM(p, p′), at least after implementation of the disentangling procedure
employed in [55] when extending the work [27] on WLM(1, p) to WLM(p, p′). We hope to discuss
these generalizations elsewhere, in particular for critical percolation as described by LM(2, 3) and
WLM(2, 3).

As already mentioned, the category of W(p)-modules and the category of finite-dimensional
Ūq(sl2)-modules at q = eπi/p are equivalent as abelian categories for all p ≥ 2 [45–48, 53]. For
p ≥ 3, however, it was found [54] that they are not equivalent as braided tensor categories due to
complications arising from the presence of the modules E±s (n;λ). These ‘circular’ modules were de-
noted by O±s (n, z) in [46] where they first appeared. We note that the subcategory of Ūq(sl2)-modules
obtained by excluding these circular modules closes under tensor products. Likewise, we can define
the ‘contragrediently-extended boundary W(p)-category’ as the subcategory of W(p)-modules associ-
ated with the WLM(1, p) boundary conditions constructed in [27] and in Section 3, supplemented by
the W-reducible yet W-indecomposable contragredient W-Kac representations (thus counting the W-
irreducible representations only once, cf. (3.44)). Our results then suggest that this contragrediently-
extended boundary W(p)-category and the above subcategory of Ūq(sl2)-modules are equivalent as
tensor categories. That is, these proposed subcategories are not only equivalent as abelian categories,
but we have verified that their tensor structures are compatible. To facilitate this verification, we refer
to the dictionary in Appendix B. Without extending the category of boundary W(p)-modules by the
contragredient W-Kac representations, the boundary category itself is equivalent to the corresponding
subcategory of Ūq(sl2)-modules as tensor categories. These affirmative observations provide substantial
evidence for the conjectured Kac fusion algebra of [56] and its elevation to the W-extended picture
discussed in the present work. They also support the Kazhdan-Lusztig dualities of [45–48] and [58,59].

The recent works [69,70] on the structure of bulk logarithmic CFTs and their relation with bound-
ary logarithmic CFTs have greatly advanced our understanding of logarithmic CFT. However, these
results are based on the ‘rational’ part of the W-extended picture formed by the finitely many W-
irreducible and W-projective modules on the boundary side. The present work suggests a much richer
boundary model, even in the logarithmic minimal model WLM(1, p), and it would be interesting to
readdress the relation with the bulk model in light of these new findings.
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A Fusion rules in LM(1, p)

A.1 Kac fusion rules

From [56,60], for b, b′ ∈ Z0,p−1 and k, k′ ∈ N0, we have the fusion rules

(1, b + kp)⊗ (1, b′ + k′p) =
k+k′−1⊕

j=|k−k′|+1,by 2

p−|b−b′|−1
⊕

β

Rβ
j ⊕

k+k′⊕

j=|k−k′+sg(b−b′)|+1,by 2

|b−b′|−1
⊕

β

Rβ
j

⊕

b+b′−p−1
⊕

β

Rβ
k+k′+1 ⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

(1, β + (k + k′)p)

Rb
1 ⊗ (1, b′ + k′p) =

( p−|b−b′|−1
⊕

β

Rβ
k′ ⊕

p−b−b′−1
⊕

β

Rβ
k′ ⊕ (1− δk′,0)

b−b′−1⊕

β

(Rβ
k′−1 ⊕R

β
k′+1)

⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

Rβ
k′+1 ⊕ 2

( b′−b−1⊕

β

Rβ
k′+1

)

⊕

b+b′−p−1
⊕

β

Rβ
k′+2

)

/(1 + δb,0)

Rb
1 ⊗R

b′
1 =

( p−|b−b′|−1
⊕

β=|p−b−b′|+1, by 2

Rβ
1 ⊕

p−|b−b′|−1
⊕

β

Rβ
1 ⊕ 3

( p−b−b′−1
⊕

β

Rβ
1

)

⊕

|b−b′|−1
⊕

β

Rβ
2

⊕

p−|p−b−b′|−1
⊕

β

Rβ
2 ⊕

b+b′−p−1
⊕

β

Rβ
3

)

/{(1 + δb,0)(1 + δb′,0)} (A.1)

where Rb
0 ≡ 0. The divisions by (1+ δb,0), for example, ensure that the fusion rules for R0

1 match those
for (1, p). Due to (2.27), and using

(r, 1) ⊗ (r′, 1) =
r+r′−1⊕

j=|r−r′|+1, by 2

(j, 1) (A.2)

the complete set of fusion rules underlying the Kac fusion algebra is obtained straightforwardly. It can
be found in [56].

A.2 Contragredient Kac fusion rules

Following [56], we introduce

Cn[(r, s)] =







(r, s), n > 0

(r, s)∗, n < 0
(A.3)

In our applications, C0[(r, s)] only appears if (r, s) is fully reducible in which case

C0[(r, s)] = (r, s) = (r, s)∗, s ∈ Z1,p−1 ∪ pN (A.4)

The fusion rules involving contragredient Kac representations are given by or follow readily from

(r, s)∗ ⊗ (r′, s′)∗ =
(
(r, s)⊗ (r′, s′)

)∗
, Rb

r ⊗ (r′, s′)∗ = Rb
r ⊗ (r′, s′) (A.5)
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and

(1, b + kp)⊗ (1, b′ + k′p)∗ =

k+k′⊕

j=|k−k′|+2,by 2

p−|p−b−b′|−1
⊕

β

Rβ
j ⊕

k+k′−sg(p−b−b′)
⊕

j=|k−k′|+1,by 2

|p−b−b′|−1
⊕

β

Rβ
j

⊕

(b−b′)sg(k′−k)−1
⊕

β

Rβ
|k−k′| ⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

Ck−k′ [(1, β + |k − k′|p)] (A.6)

where b, b′ ∈ Z0,p−1 and k, k′ ∈ N0. Since (r, 1) is irreducible, we thus have

(r, s)∗ = (r, 1)∗ ⊗ (1, s)∗ = (r, 1) ⊗ (1, s)∗ (A.7)

from which it follows that the general fusion product (r, s) ⊗ (r′, s′)∗ can be computed as

(r, s) ⊗ (r′, s′)∗ =
(
(r, 1) ⊗ (r′, 1)

)
⊗

(
(1, s)⊗ (1, s′)∗

)
(A.8)

The complete set of fusion rules underlying the contragrediently-extended Kac fusion algebra can be
found in [56].

B Dictionary

Here we present a dictionary for translating the notation used in [54] (and similarly in [45–49, 53])
for indecomposable quantum-group modules to the one employed here for W-extended modules. For
s, s′ ∈ Z1,p, a ∈ Z1,p−1 and n ∈ N, we have

X+
s ↔ (1, s)W , X−s ↔ (2, s)W

P+
a ↔ R̂

p−a
1 , P−a ↔ R̂

p−a
2

M+
a (n) ↔ (2 · n, p− a+ (n− 1)p)W , M−a (n) ↔ (1 · n, p− a+ (n − 1)p)W

W+
a (n) ↔ (1 · n, a+ (n− 1)p)∗W , W−a (n) ↔ (2 · n, a+ (n− 1)p)∗W

(B.1)

where
M∓p−s(1) =W

±
s (1) = X±s (B.2)

Direct sums over of the index sets Is,s′ and Js,s′ in [54] correspond to

⊕

t∈Is,s′

At =

p−|p−s−s′|−1
⊕

t=|s−s′|+1,by 2

At,
⊕

t∈Js,s′

At =

s+s′−p−1
⊕

t

Ap−t (B.3)

that is,

⊕

t∈Is,s′

Xα
t ↔

p−|p−s−s′|−1
⊕

j=|s−s′|+1,by 2

(α, j)W

⊕

t∈Is,s′

Pα
t ↔

p−|s−s′|−1
⊕

β=|p−s−s′|+1,by 2

R̂β
α

⊕

t∈Js,s′

Pα
t ↔

s+s′−p−1
⊕

β

R̂β
α (B.4)

Here α = + (α = −) on the quantum-group side corresponds to α = 1 (α = 2) on the logarithmic CFT
side.
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