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Abstract

We argue supersymmetric generalizations of fuzzy two- and four-spheres based on the

unitary-orthosymplectic algebras, UOSp(N |2) and UOSp(N |4), respectively. Supersymmetric

version of Schwinger construction is applied to derive graded fully symmetric representation

for fuzzy superspheres. As a classical counterpart of fuzzy superspheres, graded versions of 1st

and 2nd Hopf maps are also introduced, and their basic geometrical structures are studied. It is

shown that fuzzy superspheres are represented as a “superposition” of fuzzy superspheres with

lower supersymmetries. We investigate algebraic structures of fuzzy two- and four-superspheres

to identify SU(2|N) and SU(4|N) as their enhanced algebraic structures, respectively. Eval-

uation of correlation functions manifests such enhanced structure as quantum fluctuations of

fuzzy supersphere.

http://arxiv.org/abs/1106.5077v1
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1 Introduction

About two decades ago, fuzzy two-sphere and field theory on it were formulated by Madore [1].

The fuzzy two-sphere is one of the simplest curved fuzzy manifolds whose coordinates satisfy

the SU(2) algebra. Few years after, Grosse et al. introduced four-dimensional fuzzy spheres [2]

and supersymmetric (SUSY) generalizations of fuzzy spheres in sequel works [3, 4]. Field theory

defined on fuzzy manifolds naturally contain a “cut-off”, and such fuzzy field theory was expected

to have weaker infinity than that of the conventional field theory. Furthermore in the developments

of string theory in late 90’s, researchers recognized that the geometry of D-branes is described

by fuzzy geometry [5, 6, 7] (as reviews) and fuzzy manifolds arise as classical solutions of Matrix

theory, e.g. [8, 9]. It is also known that fuzzy superspheres provide a set-up for field theory on

SUSY lattice regularization [3, 10, 11], and realize as a classical solution of supermatrix model

[12, 13]. For such important properties, fuzzy spheres and their variants have attracted a great deal

of attentions [14, 15, ] (as reviews). Fuzzy physics also found its applications to gravity [18] and

even to condensed matter physics [19, 20]. Recently, the mathematics of fuzzy geometry is applied

to construction of topologically non-trivial many-body states on bosonic manifolds [21, 22, 23] and

on supermanifolds [24, 25] as well.

In this paper, we apply close relations between fuzzy spheres and Hopf maps [26] to generalize

fuzzy superspheres in higher dimensions. A useful mathematical tool for the construction is the

Schwinger operator formalism [27, 16]. Specifically, the two-dimensional fuzzy sphere coordinates

are simply obtained by sandwiching the Pauli matrices with two-component Schwinger operators:

Xi = Φ†σiΦ. (1)

With the Schwinger operator, it is quite straightforward to derive fully symmetric representation,

which corresponds to a finite number of states on fuzzy sphere. In general, a finite number of

states on 2k-dimensional fuzzy spheres are given by fully symmetric representation of SO(2k+1)

[28]. The Schwinger operator is regarded as the “square root” of the fuzzy sphere coordinates,

and play fundamental roles rather than the fuzzy sphere coordinates themselves. Meanwhile, with

φ denoting a normalized two-component complex spinor, the (1st) Hopf map is represented as

xi = φ†σiφ. (2)

Comparison between (1) and (2) finds that the (1st) Hopf map can be regarded as the “classical”

counterpart of the (Schwinger) operator construction of fuzzy two-sphere.
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In the construction of fuzzy superspheres [29, 30], nice algebraic structures and relations be-

tween the Hopf map and fuzzy sphere are inherited. The fuzzy two-superspheres1 constructed by

Grosse et al. [3, 4] are based on the UOSp(1|2) algebra that includes SU(2) ≃ USp(2):

SU(2) ⊂ UOSp(1|2). (3)

(The classical counter part of the fuzzy two-supersphere, the graded 1st Hopf map, was first

given in Refs.[31, 32]. See also Refs.[33, 30].) The coordinates of the fuzzy two-supersphere are

introduced by replacing the SU(2) Pauli matrices with the UOSp(1|2) matrices of fundamental

representation. As the UOSp(1|2) contains the SU(2) as its maximal bosonic subalgebra, the

fuzzy two-supersphere “contains” the fuzzy two-sphere as its fuzzy body. The construction is

based on the graded Lie algebra, and fuzzy super-geometry is transparent. We want to maintain

such nice features. To this end, we utilize a graded Lie algebra whose maximal bosonic subalgebra

is SO(5). The minimal graded Lie algebra that suffices for this requirement is UOSp(1|4), since
SO(5) ≃ USp(4):

SO(5) ⊂ UOSp(1|4). (4)

We adopt UOSp(1|4) version of Schwinger operator in the construction of fuzzy four-supersphere

and also introduce the graded 2nd Hopf map as its classical counterpart. We further extend such

formulation to include more supersymmetries with use of UOSp(N |2) and UOSp(N |4). Represen-
tation theory of the graded Lie algebra is rather complicated, however if restricted to graded fully

symmetric representation2, investigations are greatly simplified. By dealing with the Schwinger

operator as fundamental quantity, we observe “enhancement” of symmetry of fuzzy superspheres.

This mechanism is similar to the symmetry enhancement reported in higher dimensional fuzzy

spheres [35, 36]. We also reconsider such enhancement in view of quantum fluctuations of fuzzy

superspheres.

Some comments are added to clarify difference to related works. In Ref.[37], supersymmetric

Hopf maps were introduced in the context of SUSY non-linear sigma models. In the construction,

the fermionic parts are introduced to incorporate N = 4 supersymmetry. Though the bosonic

parts are related to Hopf maps, the fermionic parts themselves are not directly related. In the

present construction, together with bosonic components, the fermionic components themselves

constitute graded Hopf maps. Supersymmetric quantum mechanics in monopole background

related to the Hopf map is well investigated recently [38, 39, 40, 41, 42, 43, 44]. Works about

higher dimensional fuzzy super-manifolds of which the author is aware are Ref.[45, 46, 47]. The

fuzzy complex projective space was constructed in Ref.[45] based on the super unitary algebra.

1In this paper, two-supersphere is referred to as the supersphere whose body is two-dimensional sphere. The

two-supersphere with N supersymmetry is denoted as S2|2N whose bosonic dimension is two and the fermionic

dimension is 2N , and hence the total dimension is 2+ 2N . Similarly, fuzzy four-supersphere consists of four-sphere

body and extra fermionic coordinates.
2 We adopt the terminology, “graded fully symmetric representation” to indicate a representation constructed

by a supersymmetric version of Schwinger operator. The graded fully symmetric representation is totally symmetric

for the bosonic part and totally antisymmetric for the fermionic part. It is also referred to as harmonic oscillator

representation in several literatures. For general representation theory of graded Lie groups, one may for instance

consult Ref.[34] and references therein.
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Such construction is similar to the spirit of the present work, and is indeed closed related as we

shall discuss. In [47], fuzzy superspheres are formulated in any dimensions. However, the fuzzy

two-supersphere provided by the formulation is not same as of Grosse et al. In the present, though

the construction is restricted to two and four-dimensions, the underlying algebraic geometry is

transparent and the fuzzy two-supersphere of Grosse et al. is naturally reproduced.

The paper is organized as follows. In Sec.2, we briefly introduce the unitary-orthosymplectic

algebra UOSp(N |M). In Sec.3, we review the construction of fuzzy two-supersphere as well as 1st

graded Hopf map. N = 2 fuzzy two-supersphere and the corresponding 1st graded Hopf map are

provided, too. In Sec.4, we argue construction of N = 1 and N = 2 fuzzy superspheres and the

graded 2nd Hopf maps. More supersymmetric extensions are explored in Sec.5. In Sec.6, we give

supercoherent states on fuzzy two- and four-superspheres and investigate quantum fluctuations of

fuzzy superspheres. Sec.7 is devoted to summary and discussions.

2 UOSp(N |M)

Generators of the orthosymplectic algebra, OSp(N |M), are defined so as to satisfy

Σst
AB

(

J 0

0 1N

)

+

(

J 0

0 1N

)

ΣAB = 0, (5)

where 1N denotes N × N unit matrix and J represents the invariant matrix of the symplectic

group

J =

(

0 1M/2

−1M/2 0

)

, (6)

and the supertranspose, st, is defined as

(

B F

F ′ B′

)st

≡
(

Bt F ′t

−F t B′t

)

. (7)

Here, t stands for the ordinary transpose, and B and B′ signify bosonic components while F and

F ′ fermionic components. ΣAB can be expressed by a linear combination of

Σαβ =

(

σαβ 0

0 0

)

, Σlm =

(

0 0

0 σlm

)

, Σlα =

(

0 σlα
−(Jσlα)

t 0

)

, (8)

where α, β are the indices of Sp(M) (α, β = 1, 2, · · · ,M) and l,m those of O(N) (l,m =

1, 2, · · · , N). σlα denote arbitrary M × N matrices, while σαβ and σlm signify M × M and

N ×N matrices that respectively satisfy

σlm
t + σlm = 0, (9a)

σαβ
tJ + Jσαβ = 0. (9b)

The OSp(M |N) algebra contains the maximal bosonic subalgebra, Sp(M) ⊕ O(N), whose gen-

erators are Σαβ and Σlm. The off-diagonal block matrices Σlα are called fermionic generators
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that transform as fundamental representation under each of Sp(M) and O(N). Then, the SO(N)

matrix σlm is an antisymmetric real matrix (9a) with real degrees of freedom N(N − 1)/2. The

indices of σlm can be taken to be antisymmetric, σlm = −σml. Meanwhile, from the relation (9b)

σαβ takes the form of

σαβ =

(

k s

s′ −kt

)

, (10)

where k stands for aM/2×M/2 complex matrix, and s and s′ areM/2×M/2 symmetric complex

matrices. If the hermiticity condition instead of the reality condition is imposed, σαβ are reduced

to generators of USp(M) and take the form of

σαβ =

(

h s

s† −h∗

)

, (11)

where h represents hermitian matrix and s symmetric complex matrix. The real independent

degrees of freedom of σαβ is M(M + 1)/2. Then, for USp(M), the indices can be taken to be

symmetric, σαβ = σβα. Meanwhile, the real degrees of freedom of the fermionic generators Σlα is

MN . As a result, th real degrees of freedom of UOSp(N |M) are given by

dim[UOSp(N |M)] =
1

2
(M2 +N2 +M −N)|MN =

1

2
((M +N)2 +M −N). (12)

There are isometries between the unitary-symplectic and orthogonal algebras only for

USp(2) ≃ SO(3), USp(4) ≃ SO(5),

Taking advantage of the isomorphism, we construct fuzzy two- and four-superspheres based on

UOSp(N |2) and UOSp(N |4).

3 Graded 1st Hopf maps and fuzzy two-superspheres

Here, we review relations between fuzzy two-sphere and 1st Hopf map, and their supersymmetric

version. We also explore a construction of N = 2 fuzzy supersphere with use of typical represen-

tation of UOSp(2|2) algebra.

3.1 The 1st Hopf map and fuzzy two-sphere

To begin with, we introduce relations between fuzzy two-sphere and 1st Hopf map

S3 S1

−→ S2. (13)

With a normalized complex two-component spinor φ = (φ1, φ2)
t subject to φ†φ = 1, the 1st Hopf

map is realized as

φ→ xi = φ†σiφ, (14)
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where σi (i = 1, 2, 3) are the Pauli matrices,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (15)

φ is regarded as coordinates on S3 from the normalization condition, and xi denote coordinates

of S2:

xixi = (φ†φ)2 = 1. (16)

Coordinates of fuzzy two-sphere S2
F are constructed as

Xi = Φ†σiΦ, (17)

where Φ = (Φ1,Φ2)
t stands for two-component Schwinger operator that satisfies [Φα,Φ

†
β] = δαβ

and [Φα,Φβ ] = 0 (α, β = 1, 2). Usually, in front of the right-hand side of (17), the non-commutative

parameter of dimension of length is added, however for notational brevity, we omit it throughout

the paper. Xi satisfy

[Xi,Xj ] = 2iǫijkXk, (18)

and square of the radius of fuzzy two-sphere is given by

XiXi = (Φ†Φ)(Φ†Φ+ 2) = n̂(n̂ + 2). (19)

Here, n̂ is the number operator n̂ = Φ†Φ and its eigenvalues are non-negative integers that specify

fully symmetric representation. The fully symmetric representation is simply obtained by acting

the Schwinger operators to the vacuum:

|l1, l2〉 =
1√
l1! l2!

Φ†
1

l1
Φ†
2

l2 |0〉, (20)

where l1 and l2 are non-negative integers satisfying l1+ l2 = n. Physically, |l1, l2〉 represent a finite

number of states on fuzzy two-sphere, and their 3rd-components are

X3 = l1 − l2 = n− 2k, (21)

where k = l2 = 0, 1, 2, · · · , n. The dimension of (20) is

d(n) = n+ 1. (22)

The Hopf map (14) is regarded as a classical counterpart of the Schwinger construction of

fuzzy sphere (17) with the replacement

Φ → φ, Φ† → φ∗, (23)

and (19) is reduced to (16) except for the “zero-point energy”, stemming from the non-commutativity

of two bosonic components of the Schwinger operator.
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3.2 N = 1 fuzzy two-supersphere

Here, we extend the above discussions to the graded 1st Hopf map [31, 32] and N = 1 fuzzy

two-supersphere [3, 4] along Refs.[30, 33].

3.2.1 UOSp(1|2) algebra

The UOSp(1|2) algebra contains the SU(2) algebra as its maximal bosonic subalgebra, and con-

sists of five generators three of which are bosonic Li (i = 1, 2, 3) and two of which are fermionic

Lα (α = θ1, θ2). They satisfy

[Li, Lj ] = iǫijkLk, [Li, Lα] =
1

2
(σi)βαLβ, {Lα, Lβ} =

1

2
(ǫσi)αβLi, (24)

where ǫ = iσ2 is the SU(2) charge conjugation matrix. One may find that Li transform as an

SU(2) vector, while Lα an SU(2) spinor. The UOSp(1|2) Casimir is constructed as

C = LiLi + ǫαβLαLβ, (25)

and its eigenvalues are given by j(j+1/2) with j referred to as superspin that takes non-negative

integers and half-integers, j = 0, 1, 2, 1, 3/2, · · · . The UOSp(1|2) irreducible representation speci-

fied by the superspin index j consists of SU(2) j and j − 1/2 spin representations and hence the

dimension of the UOSp(1|2) representation with superspin j = n/2 is

d(n) + d(n− 1) = 2n + 1, (26)

where d(n) is the dimension of the SU(2) spin n/2 (22). For UOSp(1|M), there exists a “square

root” of the Casimir, the Scasimir [48, 34]. In the present, Scasimir is given by

S = 2ǫαβLαLβ − 1

4
, (27)

which satisfies

S2 = C +
1

16
. (28)

Then, the eigenvalues of Scasimir are ±j(j+1/4). The Scasimir is commutative with the bosonic

generators and anticommutative with the fermionic ones,

[Li,S] = {Lα,S} = 0. (29)

3.2.2 N = 1 graded 1st Hopf map

The graded 1st Hopf map is given by

S3|2 S1

−→ S2|2, (30)

where left index to the slash indicates the number of bosonic coordinates, while the right index

fermionic coordinates. The bosonic part of (30) is exactly equivalent to the 1st Hopf map. The

coordinates on the total manifold S3|2 is represented by a normalized three-component superspinor

7



ψ = (ψ1, ψ2, η)
t whose first two components are Grassmann even and the third component is

Grassmann odd. A normalization condition is imposed as

ψ‡ψ = ψ∗
1ψ1 + ψ∗

2ψ2 − η∗η = 1, (31)

where ψ‡ = (ψ∗
1 , ψ

∗
2 ,−η∗) and ∗ represents the pseudo-conjugation3. The graded 1st Hopf map is

realized as [31, 32]

ψ → xi = 2ψ‡Liψ, θα = 2ψ‡Lαψ, (32)

where Li and Lα are the fundamental representation matrices of UOSp(1|2)

Li =
1

2

(

σi 0

0 0

)

, Lα =
1

2

(

02 τα
−(ǫτα)

t 0

)

, (33)

with ǫ = iσ2, τ1 = (1, 0)t and τ2 = (0, 1)t. They are “hermitian” in the sense

L‡
i = Li, L‡

α = ǫαβLβ, (34)

where ‡ is the super-adjoint defined by

(

A B

C D

)‡

=

(

A† C†

−B† D†

)

. (35)

From (32), we see that xi and θα are coordinates on S2|2:

xixi + ǫαβθαθβ = (ψ‡ψ)2 = 1, (36)

and from (34),

x∗i = xi, θ∗α = ǫαβθβ. (37)

Notice that xi are Grassmann even but not usual c-number, since the square of xi is not c-number

as observed in (36). Instead, we can introduce c-number yi as

yi =
1

√

1− ǫαβθαθβ
xi, (38)

which satisfy yiyi = 1 and denote coordinates on S2, the body of S2|2. The original normalized

SU(2) spinor is “embedded” in ψ as

(

φ1
φ2

)

=
2

2 + η∗η

(

ψ1

ψ2

)

. (39)

With yi, φ can be written as
(

φ1
φ2

)

=
1

√

2(1 + y3)

(

1 + y3
y1 + iy2

)

eiχ, (40)

3The pseudo-conjugation is imposed as (η∗)∗ = −η and (η1η2)
∗ = η∗1η

∗
2 for Grassmann odd quantities. See

Ref.[34] for instance.
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where eiχ denotes arbitrary U(1) phase. Represent the Grassmann odd component η as

η = φ1µ+ φ2ν, (41)

with µ and ν being real and imaginary components of η. They satisfy

µ∗ = ν, ν∗ = −µ. (42)

The map (32) immediately determines the relations between θ1, θ2 and µ, ν:

µ = θ1, ν = θ2. (43)

Consequently, ψ can be expressed as

ψ =
1√

1− η∗η







φ1
φ2
η






=

1√
1 + θ1θ2







φ1
φ2

φ1θ1 + φ2θ2







=
1

√

2(1 + y3)(1 + θ1θ2)







1 + y3
y1 + iy2

(1 + y3)θ1 + (y1 + iy2)θ2






eiχ. (44)

The last expression on the right-hand side manifests the N = 1 graded Hopf fibration, S3|2 ∼
S2|2 ⊗ S1: the S1(≃ U(1))-fibre, eiχ, is canceled in the graded Hopf map (32), and the remaining

quantities, yi and θα, correspond to the coordinates on S2|2.

3.2.3 N = 1 fuzzy two-supersphere

Coordinates on fuzzy supersphere are constructed by the graded version of the Schwinger con-

struction4 [29]:

Xi = 2Ψ†LiΨ, Θα = 2Ψ†LαΨ, (45)

where Ψ stands for a graded Schwinger operator

Ψ = (Ψ1,Ψ2, Ψ̃)t, (46)

with bosonic operators Ψ1 and Ψ2 and fermionic one Ψ̃ satisfying

[Ψα,Ψ
†
β] = δαβ , {Ψ̃, Ψ̃†} = 1, [Ψα, Ψ̃

†] = 0,

[Ψα,Ψβ] = {Ψ̃, Ψ̃} = [Ψα, Ψ̃] = 0. (47)

It is straightforward to see that (45) satisfy the algebra

[Xi,Xj ] = 2iǫijkXk, [Xi,Θα] = (σi)βαΘβ, {Θα,Θβ} = (ǫσi)αβXi. (48)

Radius of the square of fuzzy supersphere is given by the UOSp(1|2) Casimir

XiXi + ǫαβΘαΘβ = (Ψ†Ψ)(Ψ†Ψ+ 1), (49)

4In (45) we adopted the ordinary definition of the Hermitian conjugate †, so Θ†
α 6= ǫαβΘβ unlike θ∗α = ǫαβθβ .
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where we used

XiXi = n̂B(n̂B + 2),

ǫαβΘαΘβ = −n̂B + 2n̂Bn̂F + 2n̂F , (50)

with n̂B = Ψ†
1Ψ1 + Ψ†

2Ψ2, n̂F = Ψ̃†Ψ̃, and n̂2F = n̂F . Ψ†Ψ denotes the total number-operator

n̂ = Ψ†Ψ = n̂B+n̂F . Notice the zero-point energy in (49) reflects the difference between the bosonic

and fermionic degrees of freedom of the Schwinger operator. The Scasimir is also expressed as

S = (n̂F − 1

2
)(n̂ +

1

2
). (51)

From (49) and (51), one may readily show (28).

Graded fully symmetric representation specified by the superspin j = n/2 is given by

|l1, l2〉 =
1√
l1! l2!

Ψ†
1

l1
Ψ†

2

l2 |0〉, (52a)

|m1,m2) =
1√

m1! m2!
Ψ†

1

m1

Ψ†
2

m2

Ψ̃†|0〉, (52b)

where l1 + l2 = m1 +m2 + 1 = n with non-negative integers, l1, l2,m1 and m2. |m1,m2) are the

fermionic counterpart of |l1, l2〉, and thus they exhibit N = 1 SUSY. The bosonic and fermionic

states5 are classified by the sign of Scasimir (51). Scasimir takes the values

S = ±1

4
(2n+ 1), (53)

with + and − for the bosonic (52a) and fermionic (52b) states, respectively. The degrees of

freedom of bosonic and fermionic states are respectively

dB = d(n) = n+ 1, dF = d(n − 1) = n, (54)

and then the total degrees of freedom is

dT = dB + dF = 2n+ 1. (55)

X3-coordinates of these states are

X3 = n− k, (56)

where k = 0, 1, 2, · · · , 2n. For even k, the eigenvalues of X3 correspond to the bosonic states (52a),

while for odd k, the fermionic states (52b). Compare the X3 eigenvalues of fuzzy supersphere (56)

and those of the fuzzy (bosonic) sphere (21): the degrees of freedom of fuzzy supersphere for even

k are accounted for those of fuzzy sphere with radius n, while those for odd k are for those of

fuzzy sphere with radius n − 1. Thus, the bosonic and fermionic degrees of freedom are same

as of the fuzzy spheres with radius n and radius n − 1, respectively. Consequently, the fuzzy

5 In the paper, the bosonic and fermionic states refer to states with even and odd number of fermion operators,

respectively. They are eigenstates of the fermion parity (−1)n̂F with the eigenvalues +1 and −1.
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two-supersphere of radius n is intuitively understood as a “superposition” of two fuzzy spheres

whose radii are n and n− 1. Schematically,

S
2|2
F (n) ≃ S2

F (n)⊕ S2
F (n− 1). (57)

It is noted that though we only utilized the UOSp(1|2) algebra, fuzzy two-supersphere itself

is invariant under the larger SU(2|1) symmetry: indeed, the right-hand side of (49) is invariant

under the SU(2|1) rotation of the Schwinger operator Ψ. In this sense, the symmetry of fuzzy

two-supersphere is SU(2|1) rather than UOSp(1|2). Also notice that the graded fully symmetric

representation (52) is regarded as a (atypical) representation of SU(2|1).

3.3 N = 2 fuzzy two-supersphere

We utilized the UOSp(1|2) algebra to construct N = 1 fuzzy supersphere S
2|2
F . Here, we apply

UOSp(2|2) algebra to construct N = 2 fuzzy supersphere S
2|4
F .

3.3.1 UOSp(2|2) algebra

UOSp(2|2) algebra contains the USp(2) ≃ SU(2) and O(2) ≃ U(1) as bosonic algebras, and the

fermionic generators transform as a SU(2) spinor and carry U(1) charge as well. UOSp(2|2) is

isomorphic to SU(2|1), and its dimension is

dim[UOSp(2|2)] = dim[SU(2|1)] = 4|4 = 8. (58)

We denote the four bosonic generators as Li (i = 1, 2, 3) and Γ, and the four fermionic generators

as Lα and L′
α (α = θ1, θ2). The UOSp(2|2) algebra is given by

[Li, Lj ] = iǫijkLk, [Li, Lασ] =
1

2
(σi)βαLβσ, {Lασ, Lβτ} =

1

2
δστ (ǫσi)αβLi +

1

2
ǫστ ǫαβΓ,

[Γ, Li] = 0, [Γ, Lασ ] =
1

2
ǫτσLατ , (59)

where Lασ = (Lα, L
′
α)

6. Li and Lα form the UOSp(1|2) subalgebra. There are two sets of

fermionic generators, Lα and L′
α, which bring N = 2 SUSY. The fundamental representation is 3

dimensional representation, as expected from UOSp(2|2) ≃ SU(2|1). The UOSp(2|2) algebra has

two Casimirs, quadratic and cubic [49]. The quadratic Casimir is given by

C = LiLi + ǫαβLαLβ + ǫαβL
′
αL

′
β + Γ2. (61)

The irreducible representation is classified into two categories; typical representation and atypical

representation (see Appendix A.1.1 for details). Since the Casimir eigenvalues (61) are identically

6The algebra (59) coincides with the UOSp(2|2) algebra usually found in literature by the following redefinitions,

Li → Li, Lα → Lα, L′
α → iDα, Γ → −iΓ. (60)
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zero for atypical representation, we utilize typical representation to construct N = 2 fuzzy two-

superspheres. The minimal dimensional matrices of typical representation is given by the following

4× 4 matrices:

Li =
1

2

(

σi 02
02 02

)

, Lα =
1

2







02 τα 0

−(ǫτα)
t 0 0

0 0 0






, L′

α =
1

2







02 0 τα
0 0 0

−(ǫτα)
t 0 0






, Γ =

1

2

(

02 02
02 ǫ

)

.

(62)

(These are equivalent to those given in Ref.[49].)

3.3.2 N = 2 fuzzy two-supersphere

Applying the Schwinger construction to (62), we introduce N = 2 fuzzy supersphere coordinates

as

Xi = 2Ψ†LiΨ, Θα = 2Ψ†LαΨ, Θ′
α = 2Ψ†L′

αΨ, G = 2Ψ†ΓΨ, (63)

where Ψ denotes the four-component Schwinger operator

Ψ = (Ψ1,Ψ2, Ψ̃1, Ψ̃2)
t. (64)

Ψα (α = 1, 2) are bosonic operators while Ψ̃σ (σ = 1, 2) are fermionic ones satisfying

[Ψα,Ψ
†
β ] = δαβ , {Ψ̃σ, Ψ̃

†
τ} = δστ ,

[Ψα,Ψβ ] = {Ψ̃σ, Ψ̃τ} = [Ψα, Ψ̃σ] = 0. (65)

Square of the radius of N = 2 fuzzy two-supersphere is evaluated as

XiXi + ǫαβΘαΘβ + ǫαβΘ
′
αΘ

′
β +G2 = (Ψ†Ψ)2. (66)

Here, we used

XiXi = n̂B(n̂B + 2),

ǫαβΘαΘβ + ǫαβΘ
′
αΘ

′
β = −n̂B + 2n̂Bn̂F + 2n̂F ,

G2 = 4n̂F (n̂F − 2), (67)

where n̂B =
∑2

α=1 Ψ
†
αΨα, n̂F =

∑2
σ=1 Ψ̃

†
σΨ̃σ. For Ψ

†Ψ = n, the graded fully symmetric represen-

tation is derived as

|l1, l2〉 =
1√
l1! l2!

Ψ†
1

l1
Ψ†

2

l2 |0〉, (68a)

|m1,m2) =
1√

m1! m2!
Ψ†

1

m1

Ψ†
2

m2

Ψ̃†
1|0〉, (68b)

|m′
1,m

′
2) =

1
√

m′
1! m

′
2!
Ψ†

1

m′
1Ψ†

2

m′
2Ψ̃†

2|0〉, (68c)

|n1, n2〉 =
1√

n1! n2!
Ψ†

1

n1

Ψ†
2

n2

Ψ̃†
1Ψ̃

†
2|0〉, (68d)

12



where l1 + l2 = m1 +m2 +1 = m′
1 +m′

2 +1 = n1 + n2 +2 = n with non-negative integers, l1, l2,

m1, m2, m
′
1, m

′
2, n1, n2. We have two sets of bosonic states, |l1, l2〉 and |n1, n2〉, and two sets of

fermionic states, |m1,m2) and |m′
1,m

′
2) as well. The degrees of freedom of bosonic and fermionic

states are equally given by

dB = d(n) + d(n− 2) = 2n,

dF = 2× d(n− 1) = 2n, (69)

with d(n) = n+ 1, and the total is

dT = dB + dF = 4n. (70)

Square of the radius of N = 2 fuzzy two-supersphere (66) does not have the zero-pint energy since

the bosonic and fermionic degrees of freedom are equal. The first two sets, (68a) and (68b), are

UOSp(1|2) j = n/2 irreducible representations, and the other two, (68c) and (68d), are UOSp(1|2)
j = n/2 − 1/2. In this sense, the N = 2 fuzzy two-supersphere with radius n is regarded as a

“superposition” of two N = 1 fuzzy superspheres whose radii are n and n − 1. Remember that

N = 1 fuzzy two-supersphere can be regarded as a superposition of two bosonic fuzzy spheres.

Consequently, N = 2 fuzzy sphere is realized as a superposition of four fuzzy spheres whose radii

are n, n− 1, n− 1 and n− 2. Schematically,

S
2|4
F (n) ≃ S

2|2
F (n)⊕ S

2|2
F (n− 1)

≃ S2
F (n)⊕ S2

F (n− 1)⊕ S2
F (n− 1)⊕ S2

F (n − 2). (71)

Notice that such particular feature is a consequence of the adoption of graded fully symmetric

representation. The corresponding latitudes of the states (68) are given by

X3 = n− k (72)

with k = 0, 1, 2, · · · , 2n. The even k correspond to the bosonic states, (68a) and (68d), while odd

k the fermionic states, (68b) and (68c). Except for non-degenerate states at the north and south

poles X3 = ±n, the eigenvalues of X3 (72) are doubly-degenerate.

Since the right-hand side of (66) is invariant under the SU(2|2) rotation of Ψ, the symmetry

of N = 2 fuzzy two-supersphere is considered as SU(2|2) rather than UOSp(2|2).

3.3.3 N = 2 graded 1st Hopf map

Based on the Schwinger construction of N = 2 fuzzy two-supersphere, we introduce N = 2 version

of the graded 1st Hopf map. With (62), we define

xi = 2ψ‡Liψ, θα = 2ψ‡Lαψ, θ′α = 2ψ‡L′
αψ, g = ψ‡Γψ. (73)

Here, ψ denotes a four-component spinor ψ = (ψ1, ψ2, η1, η2)
t normalized as

ψ‡ψ = ψ∗
1ψ1 + ψ∗

2ψ2 − η∗1η1 − η∗2η2 = 1, (74)
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and then is regarded as coordinates on S3|4. The coordinates (73) satisfy the relation

xixi + ǫαβθαθβ + ǫαβθ
′
αθ

′
β + g2 = (ψ‡ψ) = 1. (75)

Notice all of the quantities (73) are not independent7. This can typically be seen from θ1θ2θ
′
1θ

′
2g =

0. (If θα, θ
′
α and g were independent, their product would not be zero.) Rewrite ψ as

ψ =











ψ1

ψ2

η1
η2











=
√

1 + η∗1η1 + η∗2η2











φ1
φ2

√

1− η∗2η2 η1
√

1− η∗1η1 η2











, (76)

where (φ1, φ2) denotes the normalized SU(2) spinor (40). Also, we express η1 and η2 as

η1 = φ1µ1 + φ2ν1,

η2 = φ1µ2 + φ2ν2, (77)

where µ1 µ2 represent the real parts of the Grassmann odd quantities and ν1 ν2 represent the

imaginary parts. The map (73) determines the relations between µ1,2, ν1,2 and θ1,2, θ
′
1,2 as

θ1 =
√

1 + η∗1η1 + η∗2η2 µ1, θ2 =
√

1 + η∗1η1 + η∗2η2 ν1,

θ′1 =
√

1 + η∗1η1 + η∗2η2 µ2, θ′2 =
√

1 + η∗1η1 + η∗2η2 ν2. (78)

Then,

θ1θ2 + θ′1θ
′
2 = −(η∗1η1 + η∗2η2)(1 + η∗1η1 + η∗2η2) = − η∗1η1 + η∗2η2

1− η∗1η1 − η∗2η2
, (79)

or inversely,

η∗1η1 + η∗2η2 = − θ1θ2 + θ′1θ
′
2

1− θ1θ2 − θ′1θ
′
2

= −θ1θ2 − θ′1θ
′
2 − 2θ1θ2θ

′
1θ

′
2. (80)

Therefore, from (78) and (80), µ1, ν1, µ2 and ν2 are represented as

µ1 =
1

√

1− θ′1θ
′
2

θ1, ν1 =
1

√

1− θ′1θ
′
2

θ2,

µ2 =
1√

1− θ1θ2
θ′1, ν2 =

1√
1− θ1θ2

θ′2. (81)

Consequently, ψ is given by

ψ =
1

√

2(1 + y3)(1 + θ1θ2 + θ′1θ
′
2 + 4θ1θ2θ′1θ

′
2)











1 + y3
y1 + iy2

(1 + θ′1θ
′
2)(θ1(1 + y3) + θ2(y1 + iy2))

(1 + θ1θ2)(θ
′
1(1 + y3) + θ′2(y1 + iy2))











eiχ, (82)

7 This situation is similar to Schwinger construction of fuzzy complex projective space. The coordinates on fuzzy

CPN−1 are represented by the SU(N) generators sandwiched by Schwinger operators. Though the real dimension

of CPN−1 is 2N − 2, the dimension of SU(N) generator is N2 − 1. This “discrepancy” is resolved by noticing all of

the SU(N) generators in the Schwinger construction are not independent and satisfy a set of constraints. See [50]

for more details.
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where eiχ denotes arbitrary U(1) phase factor. xi and yi are related as

yi =
1

1 + η∗1η1 + η∗2η2
xi =

1

1− θ1θ2 − θ′1θ
′
2 − 2θ1θ2θ′1θ

′
2

xi. (83)

Thus, ψ can be expressed by xi, θα, θ
′
α, the coordinates on S2|4, and arbitrary U(1) phase factor.

Obviously, the U(1)(≃ S1) phase is canceled in (73). Then, the bilinear map (73) represents

S3|4 S1

−→ S2|4, (84)

which we call theN = 2 graded 1st Hopf map. We have four bosonic and four fermionic coordinates

in (73), but g = −η∗1η2 + η∗2η1 is a redundant coordinate. Indeed, with (82), g is expressed by yi,

θα and θ′α as

g = y1(θ1θ
′
1 − θ2θ

′
2)− iy2(θ1θ

′
1 + θ2θ

′
2)− y3(θ1θ

′
2 + θ2θ

′
1). (85)

It can also be shown that the following “renormalization”,

xi →
√

1− g2 xi = (1− 1

2
g2)xi, θα →

√

1− g2 θα = θα,

θ′α →
√

1− g2 θ′α = θ′α, (86)

eliminates g: the renormalized coordinates satisfy the ordinary condition of S2|4,

xixi + ǫαβθαθβ + ǫαβθ
′
αθ

′
β = 1. (87)

One might attempt to introduce more supersymmetry. In principle, it is probable to do so

by utilizing UOSp(N |2) algebras for N ≥ 3. However, the radius of the N = 2 fuzzy two-

supersphere (66) already saturates the “classical bound” (75). In general, square of the radius

of fuzzy supersphere with N -SUSY is proportional to n(n + 2 − N) and becomes negative for

“sufficiently small” n that satisfies n < N − 2. Hence we stop at N = 2.

4 Graded 2nd Hopf maps and fuzzy four-superspheres

In this section, we extend the previous formulation to fuzzy four-supersphere.

4.1 The 2nd Hopf map and fuzzy four-sphere

The 2nd Hopf map

S7 S3

−→ S4 (88)

is represented as

φ → xa = φ†γaφ, (89)

where φ = (φ1, φ2, φ3, φ4)
t is a normalized four-component complex spinor φ†φ = 1, representing

coordinates on S7. γa (a = 1, 2, 3, 4, 5) are SO(5) gamma matrices that satisfy {γa, γb} = 2δab
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with Kronecker delta δab. γa can be taken as

γ1 =

(

0 iσ1
−iσ1 0

)

, γ2 =

(

0 iσ2
−iσ2 0

)

, γ3 =

(

0 iσ3
−iσ3 0

)

,

γ4 =

(

0 12
12 0

)

, γ5 =

(

12 0

0 −12

)

, (90)

where 12 denotes 2× 2 unit matrix. From (89), we have

xaxa = (φ†φ)2 = 1. (91)

Thus, xa (89) are coordinates on four-sphere.

Coordinates on fuzzy four-sphere S4
F are constructed as [2]

Xa = Φ†γaΦ, (92)

where Φ = (Φ1,Φ2,Φ3,Φ4)
t represents a four-component Schwinger operator satisfying [Φα,Φ

†
β] =

δαβ and [Φα,Φβ ] = 0 (α, β = 1, 2, 3, 4). Square of the radius of fuzzy four-sphere is derived as

XaXa = (Φ†Φ)(Φ†Φ+ 4). (93)

The zero-point energy corresponds to the number of the four-components of the Schwinger oper-

ator. Let n be the eigenvalues of the number operator n̂ = Φ†Φ. The corresponding eigenstates

are fully symmetric representation:

|l1, l2, l3, l4〉 =
1√

l1! l2! l3! l4!
Φ†
1

l1
Φ†
2

l2
Φ†
3

l3
Φ†
4

l4 |0〉, (94)

with l1 + l2 + l3 + l4 = n for non-negative integers l1, l2, l3, l4. The degeneracy is

D(n) =
1

3!
(n+ 1)(n + 2)(n + 3). (95)

Notice, for the fully symmetric representation, square of the radius (93) is equal to the SO(5)

Casimir:

XaXa = (Φ†Φ)(Φ†Φ+ 4) = 2XabXab, (96)

where Xab are the SO(5) generators given by

[Xa,Xb] = 4iXab, (97)

with

γab = −i1
4
[γa, γb]. (98)
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γab are explicitly

γ12 =
1

2

(

σ3 0

0 σ3

)

, γ13 =
1

2

(

−σ2 0

0 −σ2

)

, γ14 =
1

2

(

σ1 0

0 −σ1

)

,

γ15 =
1

2

(

0 −σ1
−σ1 0

)

, γ23 =
1

2

(

σ1 0

0 σ1

)

, γ24 =
1

2

(

σ2 0

0 −σ2

)

,

γ25 =
1

2

(

0 −σ2
−σ2 0

)

, γ34 =
1

2

(

σ3 0

0 −σ3

)

, γ35 =
1

2

(

0 −σ3
−σ3 0

)

,

γ45 =
1

2

(

0 i12
−i12 0

)

. (99)

Inversely, the sum of SO(5) generators can be “converted” to that of gamma matrices as long as

the fully symmetric representation is adopted. Such conversion is crucial in constructing fuzzy

four-superspheres as we shall see.

In total, the fifteen operators, Xa and Xab, satisfy a closed algebra:

[Xa,Xb] = 4iXab, [Xa,Xbc] = −i(δabXc − δacXb),

[Xab,Xcd] = i(δacXbd − δadXbc + δbcXad − δbdXac). (100)

By identifyingXa6 =
1
2Xa andXab = Xab, one may find that (100) is equivalent to SO(6) ≃ SU(4)

algebra,

[XAB ,XCD] = i(δACXBD − δADXBC + δBCXAD − δBDXAC), (101)

where A,B = 1, 2, . . . , 6. Thus, the underlying algebra of fuzzy foursphere is considered as SU(4).

The SU(4) structure of the fuzzy four-sphere can also be deduced from the SU(4) invariance of

the right-hand side of (93). The states |l1, l2, l3, l4〉 (94) ring the four-sphere at latitudes

X5 = n− 2k, (102)

where k = 0, 1, 2, · · · , n, and is related to l1, l2, l3, l4 as

k = l3 + l4 = n− l1 − l2 (103)

or

l1 + l2 = n− k, l3 + l4 = k. (104)

From (104), one may find, unlike the fuzzy two-sphere case, at X5 = n− 2k, there is degeneracy

Dk(n) = d(n− k) · d(k) = (n− k + 1)(k + 1), (105)

where d(k) is the number of the states on fuzzy two-sphere (22). (95) is reproduced as

D(n) =
n
∑

k=0

Dk(n) =
n
∑

k=0

d(n− k) · d(k). (106)
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With increase of k, Dk(n) monotonically increases from the north-pole to the equator k = n/2, and

monotonically decreases from the equator to the south-pole. Dk(n) is symmetric under k ↔ n−k,
which corresponds to the inversion symmetry of sphere with respect to the equator. Since d(n−k)
and d(k) represent the degrees of freedom of fuzzy two-spheres with radii n−k and k, respectively,

(105) and (106) imply the “internal” degrees of freedom of fuzzy four-sphere: fuzzy four-sphere is

constituted of four-sphere and fibre consisting of two fuzzy two-spheres (whose radii are (n+X5)/2

and (n−X5)/2 at the latitude X5). Schematically,

S4
F (n)|X5=n−2k ≃ S2

F (n− k)⊗ S2
F (k). (107)

In particular, at the north-pole, i.e. X5 = n, we have only one fuzzy two-sphere fibre with radius

n: S4
F (n)|X5=n ≃ S2

F (n). Coordinates of the two “internal” fuzzy two-spheres are respectively

given by

Ri =
1

2
ǫijkXjk +Xi4, R′

i =
1

2
ǫijkXjk −Xi4. (108)

They satisfy

[Ri, Rj ] = −2iǫijkRk, [R′
i, R

′
j ] = 2iǫijkR

′
k, [Ri, R

′
j ] = 0. (109)

Then, naturally, |l1, l2, l3, l4〉 are regarded as the states on the fuzzy manifold spanned by Xa and

Xab. The three independent quantities of l1, l2, l3, l4, specify three latitudes of the four-sphere

and two “internal” fuzzy two-spheres:

X5 = l1 + l2 − l3 − l4,

R3 = l1 − l2,

R′
3 = l3 − l4. (110)

Inversely, |l1, l2, l3, l4〉 is uniquely specified by the eigenvalues of X5, X12 and X34:

l1 =
1

4
n+

1

4
X5 +

1

2
R3, l2 =

1

4
n+

1

4
X5 −

1

2
R3,

l3 =
1

4
n− 1

4
X5 +

1

2
R′

3, l4 =
1

4
n− 1

4
X5 −

1

2
R′

3. (111)

Thus, as emphasized in Refs.[35, 36], the fuzzy four-sphere has such “extra-fuzzy space” that does

not have counterpart in the original four-sphere8. The existence of th fuzzy fibre S2
F can naturally

be understood in the context of the 2nd Hopf map. The SO(5) spinor φ denotes coordinates on

S7 ∼ S4 ⊗S3, and the U(1) phase of φ is factored out to obtain CP 3 ≃ S7/S1 ∼ S4 ⊗S2 [52]: we

have S2-fibred S4 as the classical counterpart of S4
F , not just S

4. Such enhancement mechanism

is inherited to the supersymmetric cases.

4.2 N = 1 fuzzy four-supersphere

Here, we utilize UOSp(1|4) algebra to construct fuzzy four-superspheres with N = 1 SUSY.

8One could truncate the extra fuzzy spaces, however in such a case, non-associative product has to be implemented

[51].
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4.2.1 UOSp(1|4) algebra

The UOSp(1|4) algebra is constituted of fourteen generators, ten of which are bosonic Γab = −Γba

(a, b = 1, 2, · · · , 5), and the remaining four are fermionic Γα (α = 1, 2, 3, 4),

dim[UOSp(1|4)] = 10|4 = 14. (112)

The UOSp(1|4) algebra is given by

[Γab,Γcd] = i(δacΓbd − δadΓbc − δbcΓad + δbdΓac),

[Γab,Γα] = (γab)βαΓβ,

{Γα,Γβ} =
∑

a<b

(Cγab)αβΓab, (113)

where C is the SO(5) charge conjugation matrix

C =

(

ǫ 0

0 ǫ

)

(114)

with ǫ = iσ2 (see Appendix B for detail properties of C). Γab act as SO(5) generators and Γα as

a SO(5) spinor. The UOSp(1|4) quadratic Casimir is given by

C =
∑

a<b

ΓabΓab + CαβΓαΓβ, (115)

and Scasimir is

S =
1√
2
(CαβΓαΓβ − 3

4
). (116)

Similar to the UOSp(1|2) case, the Scasimir satisfies

[Γab,S] = {Γα,S} = 0, (117)

and

S2 = C +
9

8
. (118)

The fundamental representation matrices are constructed as follows. First, we introduce

Γa =

(

γa 0

0 0

)

(119)

with γa (90), to yield SO(5) generators

Γab = −i1
4
[Γa,Γb], (120)

or

Γab =

(

γab 0

0 0

)

, (121)
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with γab (99). The fermionic generators are

Γα =
1√
2

(

04 τα
−(Cτα)

t 0

)

, (122)

where

τ1 =











1

0

0

0











, τ2 =











0

1

0

0











, τ3 =











0

0

1

0











, τ4 =











0

0

0

1











. (123)

More explicitly,

Γθ1 =
1√
2















0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0















, Γθ2 =
1√
2















0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0















,

Γθ3 =
1√
2















0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 1 0















, Γθ4 =
1√
2















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 −1 0 0















. (124)

They satisfy the “hermiticity” condition

Γ‡
a = Γa, Γ‡

ab = Γab, Γ‡
α = CαβΓβ. (125)

4.2.2 N = 1 graded 2nd Hopf map

Generalizing the procedure in Sec.3.2.2, we construct N = 1 graded version of the 2nd Hopf map.

We first introduce an UOSp(1|4) spinor

ψ = (ψ1, ψ2, ψ3, ψ4, η)
t, (126)

where ψ1, ψ2, ψ3, ψ4, are Grassmann even while η is Grassmann odd. ψ is normalized as

ψ‡ψ = 1, (127)

where

ψ‡ = (ψ∗
1 , ψ

∗
2 , ψ

∗
3 , ψ

∗
4 ,−η∗) (128)

with pseudo-complex conjugation ∗. From (127), we find that ψ denotes coordinates on S7|2. We

give N = 1 graded 2nd Hopf map as

ψ −→ xa = ψ‡Γaψ, θα = ψ‡Γαψ, (129)

20



where Γa and Γα are (119) and (124), respectively. In detail,

x1 = iψ∗
1ψ4 + iψ∗

2ψ3 − iψ∗
3ψ2 − iψ∗

4ψ1,

x2 = ψ∗
1ψ4 − ψ∗

2ψ3 − ψ∗
3ψ2 + ψ∗

4ψ1,

x3 = iψ∗
1ψ3 − iψ∗

2ψ4 − iψ∗
3ψ1 + iψ∗

4ψ2,

x4 = ψ∗
1ψ3 + ψ∗

2ψ4 + ψ∗
3ψ1 + ψ∗

4ψ2,

x5 = ψ∗
1ψ1 + ψ∗

2ψ2 − ψ∗
3ψ3 − ψ∗

4ψ4,

θ1 =
1√
2
(ψ∗

1η − η∗ψ2),

θ2 =
1√
2
(ψ∗

2η + η∗ψ1),

θ3 =
1√
2
(ψ∗

3η − η∗ψ4),

θ4 =
1√
2
(ψ∗

4η + η∗ψ3). (130)

From (η∗)∗ = −η, we have x∗a = xa and θ∗α = Cαβθβ. It is straightforward to see

xaxa + 2Cαβθαθβ = (ψ‡ψ)2 = 1. (131)

If xa and θα were independent, (131) was the definition of four-supersphere with four (pseudo-real)

fermionic coordinates, S4|4. However, θ1, θ2, θ3 and θ4 are not independent to each other, since

they are constructed from only one Grassmann odd quantity η that carries two real (Grassmann

odd) degrees of freedom. Indeed,

θ1θ2 = −1

2
η∗η(ψ∗

1ψ1 + ψ∗
2ψ2),

θ3θ4 = −1

2
η∗η(ψ∗

3ψ3 + ψ∗
4ψ4), (132)

and then, for instance, θ1θ2θ3 = 0. Also we find

Cαβθαθβ = −η∗η(ψ∗
1ψ1 + ψ∗

2ψ2 + ψ∗
3ψ3 + ψ∗

4ψ4) = −η∗η, (133)

and the relation (131) can be rewritten as

xaxa − 2η∗η = 1, (134)

which corresponds to S4|2. Thus, xa and θα are regarded as coordinates on S4|2 rather than S4|4.

As a consequence, (129) represents

S7|2 S3

−→ S4|2 ⊂ S4|4. (135)

The cancellation of S3 can be understood by the following arguments. The original normalized

SO(5) spinor is embedded in the UOSp(1|4) spinor as

φ =











φ1
φ2
φ3
φ4











=
1√

1 + η∗η











ψ1

ψ2

ψ3

ψ4











. (136)
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From (127), the normalization of φ follows

φ†φ = 1. (137)

Then, the map

φ → ya = φ†γaφ, (138)

signifies the 2nd Hopf map (88). ya are coordinates of S
4; the body of S4|2. With ya, φ is expressed

as

φ =
1

√

2(1 + y5)













(1 + y5)

(

u

v

)

(y4 − iyiσi)

(

u

v

)













, (139)

where (u, v)t is an arbitrary two-component spinor subject to the normalization u∗u + v∗v = 1

representing S3-fibre. Such S3-fibre is canceled in (138) to yield the coordinates on S4. In the

graded 2nd Hopf map (130), the cancellation of S3 can also be shown. Write the Grassmann odd

component η as

η = uµ+ vν, (140)

with µ and ν being real and imaginary Grassmann odd quantities that satisfy

µ∗ = ν, ν∗ = −µ. (141)

By inserting (139) and (140) to (130), one may show

xa = (1− µν) ya,
(

θ1
θ2

)

=

√
1 + y5
2

(

µ

ν

)

,

(

θ3
θ4

)

=
1

2
√
1 + y5

(y4 + iyiσi
t)

(

µ

ν

)

, (142)

where η∗η = −µν was utilized. Notice that S3-fibre denoted by (u, v) vanish in the expression of

xa and θα (142). Furthermore, θα=3,4 are not independent with θα=1,2, but related as

(

θ3
θ4

)

=
1

1 + y5
(y4 + iyiσi

t)

(

θ1
θ2

)

. (143)

The N = 1 graded Hopf fibration, S7|2 ∼ S4|2 ⊗ S3, is obvious from the expression

ψ =
1√

1− η∗η















φ1
φ2
φ3
φ4
η















=
1

√

2(1 + y5)

















√
1− µν (1 + y5)

(

u

v

)

√
1− µν (y4 − iyiσi)

(

u

v

)

√

2(1 + y5) (uµ+ vν)

















, (144)
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where S3-fibre, (u, v)t, is canceled in (130), and ya and µ, ν, respectively account for bosonic and

fermionic coordinates on S4|2. With θ1 and θ2, ψ is rewritten as

ψ =
1

√

2(1 + y5)

















√

1− 4
1+y5

θ1θ2 (1 + y5)

(

u

v

)

√

1− 4
1+y5

θ1θ2 (y4 − iyiσi)

(

u

v

)

2
√
2 (uθ1 + vθ2)

















, (145)

where ya are related to xa as

ya =

(

1− 4

1 + x5
θ1θ2

)

xa. (146)

The relations between xa and ya are “singular” with θ1,2, but not with µ, ν (see the first equation

in (142)).

4.2.3 N = 1 fuzzy four-supersphere

The target manifold of the graded Hopf map is S4|2, and we denote the corresponding fuzzy

four-supersphere as S
4|2
F . Coordinates of S

4|2
F , Xa and Θα, are constructed as

Xa = Ψ†ΓaΨ, Θα = Ψ†ΓαΨ, (147)

where Ψ is a five-component graded Schwinger operator

Ψ = (Ψ1,Ψ2,Ψ3,Ψ4, Ψ̃)t, (148)

with Ψα (α = 1, 2, 3, 4) being bosonic operators and Ψ̃ a fermionic operator:

[Ψα,Ψ
†
β] = δαβ , {Ψ̃, Ψ̃†} = 1, [Ψ†

α, Ψ̃] = [Ψα, Ψ̃] = {Ψ̃, Ψ̃} = 0. (149)

Square of the radius of fuzzy four-supersphere is derived as

XaXa + 2CαβΘαΘβ = (Ψ†Ψ)(Ψ†Ψ+ 3). (150)

With the Schwinger construction, the Casimir (115) is represented as

C =
∑

a<b

XabXab + CαβΘαΘβ =
1

2
(Ψ†Ψ)(Ψ†Ψ+ 3), (151)

where

Xab = Ψ†ΓabΨ. (152)

We used

XaXa = 2
∑

a<b

XabXab = n̂B(n̂B + 4),

CαβΘαΘβ = −1

2
n̂B + n̂Bn̂F + 2n̂F , (153)

23



with n̂B =
∑

α=1,2,3,4 Ψ
†
αΨα and n̂F = Ψ̃†Ψ̃. The Casimir (151) is identical to (150) up to the

proportional factor. The graded fully symmetric representation is given by

|l1, l2, l3, l4〉 =
1√

l1! l2! l3! l4!
Ψ†

1

l1
Ψ†

2

l2
Ψ†

3

l3
Ψ†

4

l4 |0〉, (154a)

|m1,m2,m3,m4) =
1√

m1! m2! m3! m4!
Ψ†

1

m1

Ψ†
2

m2

Ψ†
3

m3

Ψ†
4

m4

Ψ̃†|0〉, (154b)

where l1 + l2 + l3 + l4 = m1 +m2 +m3 +m4 + 1 = n. The Scasimir (116) is given by

S =
1

2
√
2
(2n̂+ 3)(2n̂F − 1), (155)

and the bosonic (154a) and fermionic (154b) states are classified by the sign of Scasimir eigenvalues,

S = ± 1

2
√
2
(2n + 3). (156)

The dimensions of bosonic and fermionic states are respectively given by

DB = D(n) ≡ 1

3!
(n+ 1)(n + 2)(n + 3), (157a)

DF = D(n− 1) =
1

3!
n(n+ 1)(n + 2), (157b)

and the total dimension is

DT = DB +DF =
1

6
(n+ 1)(n + 2)(2n + 3). (158)

Similar to the case of N = 1 fuzzy two-supersphere, the bosonic degrees of freedom (157a) are

accounted for the fuzzy four-sphere with radius n and the fermionic degrees of freedom (157b) are

for the one with radius n− 1. Thus, the N = 1 fuzzy four-supersphere is a “superposition” of two

fuzzy four-spheres with radii n and n− 1. Schematically,

S
4|2
F (n) ≃ S4

F (n)⊕ S4
F (n − 1). (159)

X5 eigenvalues for the states (154) are

X5 = n− k, (160)

with k = 0, 1, 2, · · · , 2n. The degeneracies for even k = 2l and for odd k = 2l + 1 are respectively

given by

Dk=2l(n) = d(n − l) · d(l) = (n− l + 1)(l + 1),

Dk=2l+1(n) = d(n− l − 1) · d(l) = (n− l)(l + 1), (161)

which give rise to
l
∑

l=0

Dk=2l(n) = DB ,

n−1
∑

l=0

Dk=2l+1(n) = DF . (162)

Therefore, at latitude X5 = n − 2l, we have fuzzy fibre consisting of two fuzzy two-spheres with

radii n− l and l, while at latitude X5 = n−2l−1 two fuzzy two-spheres with radii n− l−1 and l.

In other words, as fuzzy fibre at X5 = n−2l, we have two fuzzy two-spheres with radii (n+X5)/2

and (n−X5)/2, while at X5 = n− 2l− 1, two fuzzy two-spheres with radii (n+X5)/2− 1/2 and

(n−X5)/2− 1/2.
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4.2.4 Algebraic structure

The N = 1 fuzzy four-supersphere (150) is invariant under the SU(4|1) rotation of the Schwinger

operator Ψ. This implies hidden SU(4|1) structure of N = 1 fuzzy four-supersphere. Here, we

demonstrate the SU(4|1) structure of fuzzy four-supersphere based on algebraic approach. Notice

that the fuzzy four-supersphere coordinates Xa, Θα do not satisfy a closed algebra by themselves,

[Xa,Xb] = 4iXab, [Xa,Θα] = (γa)βαΘβ, {Θα,Θβ} =
∑

a<b

(Cγab)αβXab. (163)

The “new” operators that appear on the right-hand sides of (163) are

Xab = Ψ†ΓabΨ, Θα = Ψ†DαΨ, (164)

with Γab (121) and Dα
9

Dα =
1√
2

(

04 τα
(Cτα)

t 0

)

. (167)

Xab and Θα respectively act as SO(5) generators and spinor. Commutation relations including

them are

[Xa,Θα] = (γa)βαΘβ, [Xa, Θα] = (γa)βαΘβ,

[Xab,Θα] = (γab)βαΘβ, [Xab, Θα] = (γab)βαΘβ ,

{Θα,Θβ} =
∑

a<b

(Cγab)αβXab, {Θα, Θβ} = −
∑

a<b

(Cγab)αβXab,

{Θα, Θβ} =
1

4
(Cγa)αβXa +

1

4
CαβZ. (168)

The last equation further yield a new operator

Z = Ψ†HΨ, (169)

with10

H =

(

14 0

0 4

)

. (171)

The commutation relations concerned with Z are given by

[Z,Xa] = [Z,Xab] = 0, [Z,Θα] = −3Θα, [Z,Θα] = −3Θα. (172)

9 Dα have the properties

D‡
α = −CαβDβ , Dα = −CαβΓ

†
β . (165)

Dα can be constructed by

Dα =
2

5

∑

a<b

(γab)βα{Γab,Γβ}, (166)

similarly to the UOSp(1|2) case (see Appendix A.1.1).
10H is constructed as

H =
6

5

(

CαβΓαΓβ +
4

3

)

. (170)
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(172) does not yield further new operators. After all, for the closure of the algebra of the fuzzy

coordinates Xa and Θα, we have to introduce new fuzzy coordinates Xab, Θα and Z,11 and such

twenty four operators amount to the SU(4|1) algebra (see Appendix A.2.1). The basic concept

of the non-commutative geometry is “algebraic construction of geometry”. Thus, the algebraic

geometry of fuzzy four-supersphere is considered as SU(4|1) rather than UOSp(1|4). We revisit

the SU(4|1) structure in Sec.6.

4.3 N = 2 fuzzy four-supersphere

We proceed to the construction of N = 2 version of fuzzy four-sphere, S
4|8
F based on the UOSp(2|4)

algebra.

4.3.1 UOSp(2|4) algebra

The dimension of UOSp(2|4) is

dim[UOSp(2|4)] = 11|8 = 19. (174)

We denote the eleven bosonic generators as Γab = −Γba (a, b = 1, 2, 3, 4, 5) and Γ, and the eight

fermionic generators as Γα and Γ′
α (α = θ1, θ2, θ3, θ4). The UOSp(2|4) algebra is given by

[Γab,Γcd] = i(δacΓbd − δadΓbc + δbcΓad − δbdΓac),

[Γab,Γα] = (γab)βαΓβ, [Γab,Γ
′
α] = (γab)βαΓ

′
β,

{Γα,Γβ} = {Γ′
α,Γ

′
β} =

∑

a<b

(Cγab)αβΓab,

{Γα,Γ
′
β} =

1

2
CαβΓ, [Γab,Γ] = 0,

[Γα,Γ] = −Γ′
α, [Γ′

α,Γ] = Γα. (175)

The UOSp(2|4) quadratic Casimir is

C =
∑

a<b

ΓabΓab + CαβΓαΓβ + CαβΓ
′
αΓ

′
β +

1

2
Γ2. (176)

The fundamental representation of the UOSp(2|4) generators is expressed by the following 6× 6

matrices

Γab =

(

γab 0

0 02

)

, Γ =







04 0 0

0 0 1

0 −1 0






,

Γα =
1√
2







04 τα 0

−(Cτα)
t 0 0

0 0 0






, Γ′

α =
1√
2







04 0 τα
0 0 0

−(Cτα)
t 0 0






, (177)

11With use of Θα and Z, the UOSp(1|4) invariant quantity is given by

CαβΘαΘβ +
1

6
Z2 =

1

6
(Ψ†Ψ)(Ψ†Ψ+ 3). (173)
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with γab (99) and τα (123). The corresponding gamma matrices are also

Γa =

(

γa 0

0 02

)

, (178)

with γa (90).

4.3.2 N = 2 fuzzy four-supersphere

With a Schwinger operator Ψ = (Ψ1,Ψ2,Ψ3,Ψ4, Ψ̃1, Ψ̃2)
t, we introduce N = 2 fuzzy four-

supersphere coordinates

Xa = Ψ†ΓaΨ, Θα = Ψ†ΓαΨ, Θ′
α = Ψ†Γ′

αΨ, G = Ψ†ΓΨ. (179)

As emphasized in Sec.4.1, in Schwinger construction, the SO(5) Casimir can be replaced with the

inner product of SO(5) gamma matrices,

∑

a<b

XabXab =
1

2
XaXa, (180)

and from (176), square of the radius of N = 2 fuzzy four-supersphere is obtained as

XaXa + 2CαβΘαΘβ + 2CαβΘ
′
αΘ

′
β +G2 = (Ψ†Ψ)(Ψ†Ψ+ 2). (181)

For Ψ†Ψ = n, the graded fully symmetric representation is constructed as

|l1, l2, l3, l4〉 =
1√

l1! l2! l3! l4!
Ψ†

1

l1
Ψ†

2

l2
Ψ†

3

l3
Ψ†

4

l4 |0〉, (182a)

|m1,m2,m3,m4)=
1√

m1! m2! m3! m4!
Ψ†

1

m1

Ψ†
2

m2

Ψ†
3

m3

Ψ†
4

m4

Ψ̃†
1|0〉, (182b)

|m′
1,m

′
2,m

′
3,m

′
4)=

1
√

m′
1! m

′
2! m

′
3! m

′
4!
Ψ†

1

m′
1Ψ†

2

m′
2Ψ†

3

m′
3Ψ†

4

m′
4Ψ̃†

2|0〉, (182c)

|n1, n2, n3, n4〉 =
1√

n1! n2! n3! n4!
Ψ†

1

n1

Ψ†
2

n2

Ψ†
3

n3

Ψ†
4

n4

Ψ̃†
1Ψ̃

†
2|0〉, (182d)

where l1+l2+l3+l4 = m1+m2+m3+m4+1 = m′
1+m

′
2+m

′
3+m

′
4+1 = n1+n2+n3+n4+2 = n. The

first two are UOSp(1|4) representation of the index n (154) while the other two are that of n− 1.

In passing from |l1, l2, l3, l4〉 to |n1, n2, n3, n4〉 via either |m1,m2,m3,m4) or |m′
1,m

′
2,m

′
3,m

′
4), we

perform supersymmetric transformations twice, and hence we have N = 2 SUSY. Dimensions of

bosonic and fermionic states are respectively

DB = d(n) + d(n− 2) =
1

3
(n+ 1)(n2 + 2n+ 3),

DF = 2d(n − 1) =
1

3
(n + 2)(n + 1)n. (183)

The total dimension is

DT = DB +DF =
1

3
(2n2 + 4n+ 3)(n + 1). (184)
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As in the case of fuzzy two-supersphere, N = 2 fuzzy four-supersphere is a “superposition” of two

N = 1 fuzzy four-superspheres. Schematically,

S
4|4
F (n) ≃ S

4|2
F (n)⊕ S

4|2
F (n− 1)

≃ S4
F (n)⊕ S4

F (n− 1)⊕ S4
F (n− 1)⊕ S4

F (n − 2). (185)

The last expression corresponds to the degrees of freedom of (182). The states (182) are eigenstates

of X5 with eigenvalues

X5 = n− k, (186)

where k = 0, 1, 2, · · · , 2n. The degeneracy at X5 = n− 2l (l = 0, 1, 2, · · · , n) is accounted for the

bosonic states (182a) and (182d):

Dk=2l
B = Dl(n) +Dl−1(n− 2) = 2l(n − l) + n+ 1 (187)

with Dl(n) (105), while that at X5 = n−2l−1 (l = 0, 1, 2, · · · , n−1) is accounted for the fermionic

states (182b) and (182c):

Dk=2l+1
F = 2Dl(n− 1) = 2(l + 1)(n − l). (188)

4.3.3 N = 2 graded 2nd Hopf map

The derivation of the corresponding Hopf map is straightforward. With a normalized UOSp(2|4)
spinor ψ

ψ = (ψ1, ψ2, ψ3, ψ4, η1, η2)
t, (189)

subject to ψ‡ψ = 1, N = 2 graded 2nd Hopf map is given by

xa = ψ‡Γaψ, θα = ψ‡Γαψ, θ′α = ψ‡Γ′
αψ, g = ψ‡Γψ. (190)

The normalization indicates that ψ is coordinates on S7|4. (190) satisfy

xaxa + 2Cαβθαθβ + 2Cαβθ
′
αθ

′
β + g2 = (ψ‡ψ)2 = 1. (191)

Then, we have eight (pseudo-)Majorana fermionic coordinates, θα and θ′α. However they are not

independent, since they contain only four real Grassmann odd degrees of freedom coming from η1
and η2. With the renormalization,

xa →
√

1− g2 xa = (1− 1

2
g2)xa, θ →

√

1− g2 θα = θα,

θ′α →
√

1− g2 θ′α = θ′α, g →
√

1− g2 g = g, (192)

(191) is restated as

xaxa + 2Cαβθαθβ + 2Cαβθ
′
αθ

′
β = 1. (193)
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This would represent S4|8 provided θα and θ′α were independent. The original SO(5) normalized

spinor φ (139) is embedded as

φ =











φ1
φ2
φ3
φ4











=
1

√

1 + η∗1η1 + η∗2η2











ψ1

ψ2

ψ3

ψ4











. (194)

One may demonstrate the cancellation of S3-fibre in the map (190) by following similar arguments

in Sec.4.2.2. Write the two Grassmann odd components as

η1 = uµ1 + vν1,

η2 = uµ2 + vν2, (195)

where u and v denote the coordinates on S3 (u∗u + v∗v = 1), and µ1,2 and ν1,2 are respectively

real and imaginary components of η1,2. From (190), we have

xa = (1− µ1ν1 − µ2ν2) ya,
(

θ1
θ2

)

=
1

2

√

(1 + y5)(1 − µ1ν1 − µ2ν2)

(

µ1
ν1

)

,

(

θ3
θ4

)

=
1

2

√

1− µ1ν1 − µ2ν2
1 + y5

(y4 + iyiσi
t)

(

µ1
ν1

)

,

(

θ′1
θ′2

)

=
1

2

√

(1 + y5)(1 − µ1ν1 − µ2ν2)

(

µ2
ν2

)

,

(

θ′3
θ′4

)

=
1

2

√

1− µ1ν1 − µ2ν2
1 + y5

(y4 + iyiσi
t)

(

µ2
ν2

)

,

(196)

where η∗1η1 = −µ1ν1 and η∗2η2 = −µ2ν2 were utilized. Notice that (u, v) does not appear in (196).

Besides, θ3,4 and θ′3,4 are respectively related to θ1,2 and θ′1,2 as

(

θ3
θ4

)

=
1

1 + y5
(y4 + iyiσi

t)

(

θ1
θ2

)

,

(

θ′3
θ′4

)

=
1

1 + y5
(y4 + iyiσi

t)

(

θ′1
θ′2

)

. (197)

Thus, with the representation

ψ =
√

1 + η∗1η1 + η∗2η2



















φ1
φ2
φ3
φ4

√

1− η∗2η2 η1
√

1− η∗1η1 η2



















=

√

1− µ1ν1 − µ2ν2
2(1 + y5)





















(1 + y5)

(

u

v

)

(y4 − iyiσi)

(

u

v

)

√

2(1 + y5)(1 + µ2ν2) (uµ1 + vν1)
√

2(1 + y5)(1 + µ1ν1) (uµ2 + vν2)





















,

(198)

the S3-fibre denoted by (u, v) is canceled in xa, θα and θ′α (190). From (196), we have

θ1θ2 = − 1 + y5
4(1 + µ2ν2)

µ1ν1, θ′1θ
′
2 = − 1 + y5

4(1 + µ1ν1)
µ2ν2, (199)
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and hence

θ1θ2 + θ′1θ
′
2 = − 1 + y5

4(1 + µ1ν1 + µ2ν2)
(µ1ν1 + µ2ν2), (200)

or inversely,

µ1ν1 + µ2ν2 =
4

1 + y5 − 4(θ1θ2 + θ′1θ
′
2)
(θ1θ2 + θ′1θ

′
2). (201)

Then,

(

µ1
ν1

)

=
2

√

1 + y5 − 4(θ1θ2 + θ′1θ
′
2)

(

θ1
θ2

)

,

(

µ2
ν2

)

=
2

√

1 + y5 − 4(θ1θ2 + θ′1θ
′
2)

(

θ′1
θ′2

)

, (202)

Therefore, with the coordinates on S4|4, ya. θ1,2 and θ′1,2, (198) is rewritten as

ψ =
1

√

2(1 + y5 − 4(θ1θ2 + θ′1θ
′
2))





















√

1− 8
1+y5

(θ1θ2 + θ′1θ
′
2) (1 + y5)

(

u

v

)

√

1− 8
1+y5

(θ1θ2 + θ′1θ
′
2) (y4 − iyiσi)

(

u

v

)

2
√
2 (uθ1 + vθ2)

2
√
2 (uθ′1 + vθ′2)





















, (203)

where ya are related to xa as

ya =

(

1− 4

1 + y5 − 4(θ1θ2 + θ′1θ
′
2)
(θ1θ2 + θ′1θ

′
2)

)

xa

=

(

1− 4

1 + x5
(θ1θ2 + θ′1θ

′
2)−

16

(1 + x5)3
(1 + 2x5)(θ1θ2 + θ′1θ

′
2)

2

)

xa. (204)

Meanwhile, g(= −η∗1η2 + η∗1η2) is given by

g = 2µ1µ2uv
∗ − (µ1ν2 + ν1µ2)(u

∗u− v∗v)− 2ν1ν2u
∗v, (205)

which depends on the S3-fibre, (u, v). S3-fibre is canceled in g2:

g2 = 2µ1ν1µ2ν2 =
32

(1 + y5)2
θ1θ2θ

′
1θ

′
2. (206)

Thus, though the S3 cancellation is not “complete” in (190) (because of g), with the renormal-

ization (192) in which only g2 is concerned, S3 is completely projected out to yield coordinates

on S4|4. Consequently, the map (190) with (192) represents

S7|4 S3

−→ S4|4 ⊂ S4|8. (207)

The basemanifold is S4|4, and then the corresponding fuzzy manifold is S
4|4
F .
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5 More supersymmetries

One may incorporate more supersymmetries based on UOSp(N |4) algebra with N ≥ 3. The

dimension of UOSp(N |4) is

dim[UOSp(N |4)] = 10 +
1

2
N(N − 1)|4N = 10 +

1

2
N(N + 7). (208)

We denote bosonic generators as Γab = −Γba (a, b = 1, 2, 3, 4, 5), Γ̃lm = −Γ̃ml (l,m = 1, 2, · · · , N)

and fermionic generators as Γlα (α = 1, 2, 3, 4). They satisfy

[Γab,Γcd] = i(δacΓbd − δadΓbc + δbcΓad − δbdΓac),

[Γab,Γlα] = (γab)βαΓlβ,

[Γab, Γ̃lm] = 0, ,

{Γlα,Γmβ} =
∑

a<b

(Cγab)αβΓabδlm +
1

4
CαβΓ̃lm,

[Γlα, Γ̃mn] = (γmn)plΓpα,

[Γ̃lm, Γ̃np] = −δlnΓ̃mp + δlpΓ̃mn − δmpΓ̃ln + δmnΓ̃lp, (209)

where C is the SO(5) charge conjugation matrix (114) and γlm = −γml (l < m) are SO(N)

generators given by

(γlm)np = δlnδmp − δlpδmn. (210)

The UOSp(N |4) quadratic Casimir is

C =
∑

a<b

ΓabΓab + Cαβ

N
∑

l=1

ΓlαΓlβ +
1

2

N
∑

l<m=1

Γ̃lmΓ̃lm. (211)

The fundamental representation generators are given by

Γab =

(

γab 0

0 0N

)

, Γlα =







03+l τα 0

−(Cτα)
t 0 0

0 0 0N−l






, Γ̃lm =

(

04 0

0 γlm

)

, (212)

where 0k signify k × k zero-matrices, and τα = (0, · · · , 0,
α

1̌, 0, · · · , 0)t. Notice that Γ̃lm are taken

as anti-hermitian, Γ̃†
lm = −Γ̃lm. We apply the Schwinger construction to (212) and define

Xa = Ψ†ΓaΨ, Xab = Ψ†ΓabΨ, Θ(l)
α = Ψ†ΓlαΨ, Ylm = Ψ†Γ̃lmΨ, (213)

where Ψ = (Ψ1,Ψ2,Ψ3,Ψ4, Ψ̃1, Ψ̃2, · · · , Ψ̃N )t in which Ψα (α = 1, 2, 3, 4) are bosonic Schwinger

operators while Ψ̃l (l = 1, 2, · · · , N) are fermionic ones. Square of the radius of N -SUSY fuzzy

four-supersphere is derived as

XaXa + 2
N
∑

l=1

CαβΘ
(l)
α Θ

(l)
β +

N
∑

l<m=1

YlmYlm = n̂(n̂+ 4−N), (214)
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with n̂ = Ψ†Ψ. Here, we utilized

5
∑

a=1

XaXa = 2
5
∑

a<b=1

XabXab = n̂B(n̂B + 4),

N
∑

l=1

CαβΘ
(l)
α Θ

(l)
β = −N

2
n̂B + n̂Bn̂F + 2n̂F ,

N
∑

l<m=1

YlmYlm = n̂F (n̂F −N), (215)

with n̂B =
∑4

α=1 Ψ
†
αΨα and n̂F =

∑N
σ=1 Ψ̃

†
σΨ̃σ. Xa, Θ

(l)
α , Ylm do not satisfy a closed algebra by

themselves. As a similar manner to Sec.4.2.4, one may readily show that the minimally extended

algebra that includes Xa, Θ
(l)
α and Ylm is SU(4|N).

For UOSp(N |4) with Ψ†Ψ = n, the graded fully symmetric representation is given by

|l1, l2, l3, l4〉 =
1√

l1! l2! l3! l4!
Ψ†

1

l1
Ψ†

2

l2
Ψ†

3

l3
Ψ†

4

l4 |0〉,

|m1,m2,m3,m4)i1 =
1√

m1! m2! m3! m4!
Ψ†

1

m1

Ψ†
2

m2

Ψ†
3

m3

Ψ†
4

m4

Ψ̃†
i1
|0〉

|n1, n2, n3, n4〉i1<i2 =
1√

n1! n2! n3! n4!
Ψ†

1

n1

Ψ†
2

n2

Ψ†
3

n3

Ψ†
4

n4

Ψ̃†
i1
Ψ̃†

i2
|0〉

...

|q1, q2, q3, q4〉i1<i2<···<iN−1
=

1√
q1!q2!q3!q4!

Ψ†
1

q1
Ψ†

2

q2
Ψ†

3

q3
Ψ†

4

q4
Ψ̃†

i1
Ψ̃†

i2
Ψ̃†

i3
· · · Ψ̃†

iN−1
|0〉,

|r1, r2, r3, r4) =
1√

r1!r2!r3!r4!
Ψ†

1

r1
Ψ†

2

r2
Ψ†

3

r3
Ψ†

4

r4
Ψ̃†

1Ψ̃
†
2Ψ̃3 · · · Ψ̃†

N−1Ψ̃
†
N |0〉, (216)

wherem1+m2+m3+m4 = n1+n2+n3+n4+1 = l1+l2+l3+l4+2 = · · · = q1+q2+q3+q4+N−1 =

r1 + r2 + r3 + r4 +N = n. Therefore, with D(n) (95), the dimension of (216) is derived as

DT =

N
∑

l=0

NCl ·D(n− l) =
1

3
(2n+ 4−N)

(

(2n + 4−N)2 − 4 + 3N

)

2N−4, (217)

for n ≥ N − 3. (One may readily confirm that (217) reproduces the previous results (158), (184)

for N = 1, 2.) For odd N , N = 2l + 1, the degeneracies of bosonic and fermionic states are

respectively given by DB =
∑l

k=0 2l+1C2k ·D(n− 2k) and DF =
∑l

k=0 2l+1C2k+1 ·D(n− 2k − 1).

Meanwhile, for even N , N = 2l, the degeneracies are respectively DB =
∑l

k=0 2lC2k ·D(n − 2k)

and DF =
∑l−1

k=0 2lC2k+1 ·D(n− 2k − 1). Schematically, S
4|2N
F (n) is expressed as a superposition

of fuzzy four-superspheres with lower supersymmetries, S
4|2N−2l
F , with different radii, n, n − 1,
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n− 2, · · · , n− l:

S
4|2N
F (n) ≃

l
∑

m=0

lCm · S4|2N−2l
F (n−m)

≃ S
4|2N−2l
F (n)⊕ l · S4|2N−2l

F (n− 1)⊕ l(l − 1)

2!
· S4|2N−2l

F (n− 2)⊕ · · · ⊕ S
4|2N−2l
F (n− l).

(218)

Explicitly,

S
4|2N
F (n) ≃ S

4|2N−2
F (n)⊕ S

4|2N−2
F (n− 1)

≃ S
4|2N−4
F (n)⊕ 2S

4|2N−4
F (n− 1)⊕ S

4|2N−4
F (n− 2),

≃ S
4|2N−6
F (n)⊕ 3S

4|2N−6
F (n− 1)⊕ 3S

4|2N−6
F (n− 2)⊕ S

4|2N−6
F (n− 3),

≃ · · · . (219)

Replacing the Schwinger operator with a normalized UOSp(4|N) spinor, i.e., Ψ → ψ and

Ψ† → ψ‡ (ψ‡ψ = 1) in (213), we introduce xa, θ
(l)
α and ylm that satisfy

xaxa + 2
N
∑

l=1

Cαβθ
(l)
α θ

(l)
β +

N
∑

l<m=1

ylmylm = (ψ‡ψ)2 = 1. (220)

The original SO(5) normalized spinor is embedded as

φ =











φ1
φ2
φ3
φ4











=
1

√

1 + η∗1η1 + η∗2η2 + · · ·+ η∗kηk











ψ1

ψ2

ψ3

ψ4











. (221)

The normalized UOSp(4|N) spinor ψ has the dimension (7|2N). One may readily demonstrate the

cancellation of the S3-fibre in the graded Hopf map by following the similar arguments presented

in the previous sections (especially Sec.4.3.3), and hence the present graded Hopf map signifies

S7|2N S3

−→ S4|2N . (222)

Compare (220) with (214). Due to the existence of fermionic degrees of freedom, the zero-point

energy in (214) decreases with increase of the number of supersymmetry. For N = 4, the square of

the radius of fuzzy supersphere (214) “saturates” the classical bound (220). In this sense, N = 4

is the “maximum”, otherwise the square of the radius takes negative value for sufficiently small n

that satisfies n < N−4. We have already discussed N = 0, 1, 2 cases. In the following subsections,

we argue the remaining cases, N = 3 and 4.

5.1 N = 3 graded 2nd Hopf map and fuzzy four-supersphere

The dimension of the UOSp(3|4) algebra is

dim[UOSp(3|4)] = 13|12 = 25. (223)

33



From (210), we derive the SO(3) generators γij (i, j = 1, 2, 3) as

γ12 =







0 1 0

−1 0 0

0 0 0






, γ23 =







0 0 0

0 0 1

0 −1 0






, γ31 =







0 0 −1

0 0 0

1 0 0






. (224)

With the identification Γ̃i = −1
2ǫijkΓ̃jk, Γi satisfy the SU(2) algebra

[Γ̃i, Γ̃j ] = ǫijkΓ̃k. (225)

Then, with

Yi = Ψ†Γ̃iΨ, (226)

square of the radius of N = 3 fuzzy four-supersphere is obtained as

XaXa + 2

3
∑

i=1

CαβΘ
(i)
α Θ

(i)
β +

3
∑

i=1

YiYi = (Ψ†Ψ)(Ψ†Ψ+ 1). (227)

The corresponding classical relation is

xaxa + 2

3
∑

i=1

Cαβθ
(i)
α θ

(i)
β +

3
∑

i=1

yiyi = (ψ‡ψ)2 = 1. (228)

For Ψ†Ψ = n, the dimensions of the bosonic and fermionic states in (216) with N = 3 are

respectively given by

DB = D(n) + 3D(n − 2) =
1

3
(2n2 + n+ 3)(n+ 1),

DF = 3D(n− 1) +D(n− 3) =
1

3
(2n2 + 3n + 4)n, (229)

and the total dimension is

DT = DB +DF =
1

3
(2n + 1)(2n2 + 2n+ 3). (230)

5.2 N = 4 graded 2nd Hopf map and fuzzy four-supersphere

The dimension of the UOSp(4|4) algebra is

dim[UOSp(4|4)] = 16|16 = 32. (231)

From (210), the SO(4) generators are obtained as

γ12 =











0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0











, γ13 =











0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0











, γ14 =











0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0











,

γ23 =











0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0











, γ24 =











0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0











, γ34 =











0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0











. (232)
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Since SO(4) ≃ SU(2)⊕SU(2), two independent sets of SU(2) generators can be constructed with

the SO(4) generators Γ̃ij (i, j, k = 1, 2, 3):

Γ̃i = −1

4
ǫijkΓ̃jk +

1

2
Γ̃i4, Γ̃

′

i = −1

4
ǫijkΓ̃jk −

1

2
Γ̃i4, (233)

which satisfy

[Γ̃i, Γ̃j ] = ǫijkΓ̃k, [Γ̃
′

i, Γ̃
′

j ] = ǫijkΓ̃
′

k, [Γ̃i, Γ̃
′

j] = 0. (234)

Then, square of the radius of N = 4 fuzzy four-supersphere is written as

XaXa + Cαβ

4
∑

l=1

Θ(l)
α Θ

(l)
β +

3
∑

i=1

YiYi +

3
∑

i=1

Y ′
i Y

′
i = (Ψ†Ψ)2, (235)

and the corresponding classical relation is

xaxa + Cαβ

4
∑

l=1

θ(l)α θ
(l)
β +

3
∑

i=1

yiyi +

3
∑

i=1

y′iy
′
i = (ψ‡ψ)2 = 1. (236)

The cancellation of the zero-point energy in (235) suggests equal numbers of bosonic and the

fermionic states. Indeed,

DB = D(n) + 6D(n− 2) +D(n− 4) =
4

3
n(n2 + 2),

DF = 4D(n− 1) + 4D(n− 3) =
4

3
n(n2 + 2). (237)

The total dimension is

DT = DB +DF =
8

3
n(n2 + 2). (238)

6 Symmetry enhancement as quantum fluctuations

As discussed in Sec.4.2.4, the algebraic structure of N = 1 fuzzy four-supersphere is given by

SU(4|1). In this section, we provide a physical interpretation of the SU(4|1) structure by evaluat-

ing quantum fluctuations of fuzzy two- and four-superspheres exemplified by correlation functions.

The method is taken from Balachandran et al.[53, 27]. We only discuss N = 1 fuzzy two- and

four-superspheres, but generalizations to more SUSY cases are straightforward.

6.1 N = 1 fuzzy two-supersphere

We first define the supercoherent state on N = 1 fuzzy two-supersphere. With the coordinates

Xi (45) and xi (32), the super-coherent state, |ω〉, is defined so as to satisfy

(xiXi + ǫαβθαΘβ)|ω〉 = n|ω〉. (239)

|ω〉 is derived as

|ω〉 = 1√
n!
(Ψ†ψ)n|0〉 = 1√

n!
(ψ1Ψ

†
1 + ψ2Ψ

†
2 − ηΨ̃†)n|0〉, (240)
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where Ψ is the graded Schwinger operator and ψ the normalized spinor related to Xi, Θα and xi,

θα by (45) and (32) respectively12. |ω〉 is nth order polynomials expanded by the graded fully

symmetric representation (52). |ω〉 is normalized as

〈〈ω|ω〉 = 1, (242)

with dual state 〈〈ω| given by

〈〈ω| = 1√
n!
〈0|(ψ‡Ψ)n. (243)

The expectation values of Xi and Θα are calculated as

〈〈ω|Xi|ω〉 = nxi, 〈〈ω|Θα|ω〉 = nθα. (244)

Meanwhile, the correlation functions are

〈〈ω|XiXj |ω〉 = n2xixj + 4nψ‡LiP−Ljψ,

〈〈ω|XiΘα|ω〉 = n2xiθα + 4nψ‡LiP−Lαψ,

〈〈ω|ΘαΘβ|ω〉 = n2θαθβ + 4nψ‡LαP−Lβψ, (245)

where P− denotes a projection operator 13

P− = 1− ψψ‡. (247)

In the classical limit n → ∞, the first terms of the order n2 are dominant and the fuzzy two-

supersphere is reduced to the ordinary commutative supersphere. The second terms of the order

n exhibit quantum fluctuations particular to fuzzy geometry. The second terms are evaluated as

4ψ‡LiP−Ljψ = −xixj + iǫijkxk + δij,

4ψ‡LiP−Lαψ = −xiθα +
1

2
(σi)βα(θβ + ϑβ),

4ψ‡LαP−Lβψ = −θαθβ +
1

2
(ǫσi)αβxi +

3

2
ǫαβg − 2ǫαβ . (248)

Here, ϑα and g are defined by

ϑα = 2ψ‡Dαψ, z = ψ‡Hψ, (249)

12 Ψ and ψ respectively satisfy

LiΨ ·Xi + ǫαβLαΨ ·Θβ =
1

2
Ψ(Ψ†Ψ+ 1),

Liψ · xi + ǫαβLαψ · θβ =
1

2
ψ. (241)

13 With P+ = ψψ‡, P− (247) satisfies the following relations,

P+ψ = ψ, P−ψ = 0,

P+ + P− = 1, P±
2 = P±, P+P− = P−P+ = 0. (246)
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where Dα and H are

Dα =
1

2

(

0 −τα
−(ǫτα)

t 0

)

, H =







1 0 0

0 1 0

0 0 2






, (250)

with τ1 = (1, 0)t, τ2 = (0, 1)t and ǫ = iσ2. They are considered as “new emerging coordinates”

by quantum fluctuation. The corresponding fuzzy coordinates of xi, θα, ϑα and z are Xi, Θα, Θα

and Z defined in (297) (see Appendix A.1.1), and they amount to the SU(2, 2) algebra. Thus,

the hidden SU(2|1) structure appears as quantum fluctuation of fuzzy two-supersphere.

6.2 N = 1 fuzzy four-supersphere

With similar manner to Sec.6.1, the supercoherent state on N = 1 fuzzy four-supersphere, |ω〉, is
introduced as

(xaXa + 2CαβθαΘβ)|ω〉 = n|ω〉, (251)

where Xa,Θα (147) and xa, θα (129) are coordinates on S
4|2
F and S4|2, respectively. Explicitly, |ω〉

is given by

|ω〉 = 1√
n!
(Ψ†ψ)n|0〉 = 1√

n!
(ψ1Ψ

†
1 + ψ2Ψ

†
2 + ψ3Ψ

†
3 + ψ4Ψ

†
4 − ηΨ̃†)n|0〉, (252)

where Ψ and ψ are respectively the graded Schwinger operator (148) and normalized spinor

(126)14. |ω〉 can be expanded by the graded fully symmetric representation (154). The dual state

〈〈ω| satisfying
〈〈ω|ω〉 = 1, (254)

is given by

〈〈ω| = 1√
n!
〈0|(ψ‡Ψ)n. (255)

The expectation values of Xa and Θα are

〈〈ω|Xa|ω〉 = nxa, 〈〈ω|Θα|ω〉 = nθα. (256)

The correlation functions are

〈〈ω|XaXb|ω〉 = n2xaxb + nψ‡ΓaP−Γbψ,

〈〈ω|XaΘα|ω〉 = n2xaθα + nψ‡ΓaP−Lαψ,

〈〈ω|ΘαΘβ|ω〉 = n2θαθβ + nψ‡ΓαP−Γβψ, (257)

14Ψ and ψ satisfy

ΓaΨ ·Xa + 2CαβΓαΨ ·Θβ = Ψ(Ψ†Ψ+ 3),

Γaψ · xa + 2CαβΓαψ · θβ = ψ. (253)
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where

P− = 1− ψψ‡. (258)

The second terms of the right-hand side of (257) are calculated as

ψ‡ΓaP−Γbψ = −xaxb + 2ixab + δabg +
4

3
δab,

ψ‡ΓaP−Γαψ = −xaθα +
1

2
(γa)βα(θβ + ϑβ),

ψ‡ΓαP−Γβψ = −θαθβ − 1

2

∑

a<b

(Cγab)αβxab −
1

8
(Cγa)αβxa +

5

24
Cαβg −

1

3
Cαβ . (259)

Thus, for fuzzy four-supersphere, we have new coordinates, xab, ϑα, z, defined by

xab = ψ‡Γabψ, ϑα = ψ‡Dαψ, z = ψ‡Hψ. (260)

Here, Γab, Dα and H are respectively (121), (167) and (171). The fuzzy coordinates corresponding

to twenty four coordinates, xa, θα, xab, ϑα, z, are, Xa, Θα, Xab, Θα, Z, defined in Sec.4.2.4, which

satisfy the SU(4|1) algebra (see also Appendix A.2.1). Thus, we confirmed, similar to the fuzzy

two-supersphere case, the enhanced SU(4|1) structure is brought by quantum fluctuation of fuzzy

four-supersphere.

7 Summary

We performed a systematic study of fuzzy superspheres and graded Hopf maps based on UOSp(N |2)
and UOSp(N |4), respectively. For the positive definiteness of square of radius, the construction

of fuzzy two-superspheres is restricted to N = 1, 2, and fuzzy four-superspheres to N = 1, 2, 3, 4

(see Table 1 and 2). The graded Hopf maps were introduced as the classical counterpart of the

fuzzy superspheres. We derived the explicit realizations of the 1st and 2nd graded Hopf maps:

S3|2N S1

−→ S2|2N , S7|2N S3

−→ S4|2N . (261)

The particular feature of the present construction is based on the super Lie algebraic structures.

With use of the graded Schwinger operators, super Lie group symmetries are naturally incorpo-

rated and the graded fully symmetric representation is readily derived. Adoption of the graded

fully symmetric representation brings a particular feature to fuzzy superspheres: fuzzy super-

spheres are represented as a “superposition” of fuzzy superspheres with lower supersymmetries.

The algebras of the fuzzy two- and four-superspheres are enhanced from the original algebras,

UOSp(N |2) and UOSp(N |4), to the larger algebras, SU(2|N) and SU(4|N), respectively. We

also argued such enhancement in view of quantum fluctuation of fuzzy spheres by evaluating

correlation functions.

Since the present work is a natural generalization of precedent low dimensional fuzzy super-

spheres, one could pursue similar applications performed in low dimensions, such as realization in

string theory, construction of supersymmetric gauge theories on fuzzy superspheres. Applications

to topologically nontrivial many-body models would be interesting, too. The Hopf maps have
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Fuzzy manifold S2
F S

2|2
F S

2|4
F

Number of supersymmetry N = 0 N = 1 N = 2

Original symmetry SO(3) UOSp(1|2) UOSp(2|2)
Enhanced symmetry SU(2) SU(2|1) SU(2|2)
Square of the radius n(n+ 2) n(n+ 1) n2

Table 1: Fuzzy two-superspheres and symmetries.

Fuzzy manifold S4
F S

4|2
F S

4|4
F S

4|6
F S

4|8
F

Number of supersymmetry N = 0 N = 1 N = 2 N = 3 N = 4

Original symmetry SO(5) UOSp(1|4) UOSp(2|4) UOSp(3|4) UOSp(4|4)
Enhanced symmetry SU(4) SU(4|1) SU(4|2) SU(4|3) SU(4|4)
Square of the radius n(n+ 4) n(n+ 3) n(n+ 2) n(n+ 1) n2

Table 2: Fuzzy four-superspheres and symmetries.

applications in physics widely [54] and also in quantum computation [55]. It may be intriguing to

see the roles of the graded Hopf maps in the context of superqubits [56].

In this work, we focused on the construction of fuzzy supersphere whose bosonic dimension

is two or four. This is because of the restriction of isomorphism between unitary-symplectic and

orthogonal groups, USp(2) ≃ SO(3), USp(4) ≃ SO(5). At the present, we do not know how to

generalize the present construction to even higher dimensions. Another remaining mathematical

issue we have not fully discussed is the bundle structure of the graded Hopf maps. At least, these

may deserve further investigations.

Acknowledgment

The author would like to thank Professor Harald Grosse for helpful email correspondences and

Professor Christian Fronsdal for useful discussions at Miami 2010 conference. This research was

partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,

Science, Sports and Culture of Japan (Grant No.23740212).

Appendix

A SU(M |N) and fuzzy complex projective superspace

We summarize formulae about SU(M |N) algebra. The dimension is

dim[SU(M |N)] =M2 +N2 − 1|2MN =M2 + 2MN +N2 − 1. (262)
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The maximal bosonic subalgebra of SU(M |N) is SU(M) ⊕ SU(N) ⊕ U(1), and its fundamental

representation matrices are given by

SA =

(

sA 0

0 0

)

, TP =

(

0 0

0 tP

)

, H =
1

N

(

N · 1M 0

0 M · 1N

)

, (263)

with A = 1, 2, · · · ,M2 − 1 and P = 1, 2, · · · , N2 − 1. sA and tP in (263) satisfy

[sA, sB] = ifABCsC , [tP , tQ] = if ′PQRtR, (264)

with SU(M) and SU(N) structure constants, fABC and f ′PQR. The fermion generators are

Qασ =







0M+σ−1 τα 0

0 0 0

0 0 0N−σ






, Q̃σα =







0M+σ−1 0 0

τ tα 0 0

0 0 0N−σ






, (265)

where α stands for the SU(M) spinor index (α = 1, 2, · · · ,M), and σ does the SU(N) index

(σ = 1, 2, · · · , N), and

τα = (0, · · · , 0,
α

1̌, 0, · · · , 0)t. (266)

Therefore, the only non-zero components of Qασ and Q̃σα (265) are, (α,M + σ) and (M + σ, α),

respectively:

(Qασ)βτ = δαβδM+σ,τ , (Q̃σα)βτ = δβ,M+σδτα. (267)

Then,

(Qασ)
t = Q̃σα. (268)

The SU(M |N) algebra is given by

[SA, SB ] = ifABCSC , [SA, Qασ ] = (sA)βαQβσ, [SA, Q̃σα] = −(sA)αβQ̃σβ ,

[SA, TP ] = 0, {Qασ , Qβτ} = {Q̃σα, Q̃τβ} = 0,

{Qασ , Q̃τβ} = 2δστ (sA)βαSA + 2δαβ(tP )στTP +
1

M
δστ δαβH,

[Qασ , TP ] = (tP )στQατ , [Q̃σα, TP ] = −(tP )τσQ̃τα,

[TP , TQ] = if ′PQRTR, [SA,Γ] = [TP ,H] = 0,

[Qασ ,H] =
M −N

N
Qασ, [Q̃σα,H] = −M −N

N
Q̃σα, (269)

and the Casimir is

C = 2

M2−1
∑

A=1

SASA −
M
∑

α=1

N
∑

σ=1

(QασQ̃σα − Q̃σαQασ)− 2

N2−1
∑

P=1

TPTP − N

M(M −N)
H2. (270)

We apply the Schwinger construction to X = SA, Qασ , Q̃σα, TP , H:

X̂ = Ψ†XΨ, (271)
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where

Ψ = (Ψ1,Ψ2, · · · ,ΨM , Ψ̃1, Ψ̃2, · · · , Ψ̃N )t, (272)

satisfying

[Ψα,Ψ
†
β] = δαβ , {Ψ̃σ, Ψ̃

†
τ} = δστ . (273)

Inserting (271) to (270), the Casimir is expressed as

C =
M −N − 1

M −N
n̂(n̂+M −N), (274)

with n̂ = Ψ†Ψ. Here, we used

M2−1
∑

A=1

ŜAŜA =
M − 1

2M
n̂B(n̂B +M),

N2−1
∑

P=1

T̂P T̂P = −N + 1

2N
n̂F (n̂F −N),

M
∑

α=1

N
∑

σ=1

(Q̂ασ
ˆ̃Qσα − ˆ̃QσαQ̂ασ) = Nn̂B − 2n̂Bn̂F −Mn̂F ,

Ĥ2 =
1

N2
(Nn̂B +Mn̂F )

2, (275)

with n̂B = ΣM
α=1Ψ

†
αΨα, n̂F =

∑N
σ=1 Ψ̃

†
σΨ̃σ. The Casimir eigenvalues are regarded as the square of

the radius of fuzzy complex projective superspaces, CP
M−1|N
F . Notice that the coefficient of the

right-hand side of (274) vanishes for M = N + 1, and is not well defined for M = N . However,

the ratio of the two different fuzzy complex projective superspaces are well defined even in such

cases, and then square of the radius of CP
M−1|N
F may be considered as

n(n+M −N), (276)

up to a proportional factor.

The classical counterpart of (271) reads as

x = ψ†Xψ, (277)

where ψ is a normalized SU(M |N) spinor ψ = (ψ1, ψ2, · · · , ψM , ψ̃1, ψ̃2, · · · , ψ̃N )t with ψ†ψ = 1

regarded as coordinates on S2M−1|2N . U(1) phase of ψ is canceled in (277), and thus (277) signifies

a generalized graded 1st Hopf map,

S2M−1|2N S1

−→ CPM−1|N . (278)

See Ref.[45] for more details about CP
M−1|N
F .
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A.1 SU(2|N) and CP
1|N
F

The dimension of SU(2|N) algebra is

dim[SU(2|N)] = N2 + 3|4N = N2 + 4N + 3. (279)

The bosonic generators (263) are given by

Li =
1

2

(

σi 0

0 0

)

, TP =

(

0 0

0 tP

)

, H =
1

N

(

N · 12 0

0 2 · 1N

)

, (280)

which respectively correspond to SU(2), SU(N) and U(1) generators. To clarify relations to the

subalgebra UOSp(N |2), we separate the SU(N) generators into symmetric and antisymmetric

matrices:

TS
t = TS , TI

t = −TI , (281)

with S = 1, 2, · · · , N(N + 1)/2 − 1 and I = 1, 2, · · · , N(N − 1)/2. Note TI are pure imaginary

antisymmetric matrices that satisfy the SO(N) algebra by themselves. Instead of Qασ and Q̃σα

(265), we introduce the following fermionic generators

Lασ =
1

2







01+σ τα 0

−(ǫτα)
t 0 0

0 0 0N−σ






, Dασ =

1

2







01+σ −τα 0

−(ǫτα)
t 0 0

0 0 0N−σ






, (282)

related to Qασ and Q̃σα as

Qασ = Lασ −Dασ , Q̃σα = −ǫαβ(Lβσ +Dβσ), (283)

or

Lασ =
1

2
(Qασ + ǫαβQ̃σβ), Dασ = −1

2
(Qασ − ǫαβQ̃σβ). (284)

Therefore,

QασQ̃σα − Q̃σαQασ = −2ǫαβ(LασLβσ −DασDβσ). (285)

(282) are naturally regarded as UOSp(N |2) spinors as we shall see below. With such matrices,

SU(2|N) algebra is written as

[Li, Lj ] = iǫijkLk,

[Li, Lασ ] =
1

2
(σi)βαLβσ, [Li,Dασ ] =

1

2
(σi)βαDβσ,

{Lασ, Lβτ} = −{Dασ ,Dβτ} =
1

2
δστ (ǫσi)αβLi − ǫαβ(tI)στTI ,

{Lασ,Dβτ} = −ǫαβ(tS)στTS − 1

4
ǫαβδστH,

[Lασ, TS ] = −(tS)στDατ , [Lασ , TI ] = (tI)στLατ ,

[Dασ , TS ] = −(tS)στLατ , [Dασ , TI ] = (tI)στDατ ,

[Lασ,H] = −2−N

N
Dασ , [Dασ ,H] = −2−N

N
Lασ,

[TP , TQ] = if ′PQRTR. (286)
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From (286), one may see that Li, Lασ, TI satisfy a closed subalgebra, the UOSp(N |2).
We introduce the fuzzy coordinates of CP

1|N
F as

Xi = 2Ψ†LiΨ, Θ(σ)
α = 2Ψ†LασΨ, Θ(σ)

α = 2Ψ†DασΨ,

YP = 2Ψ†TPΨ, Z = Ψ†HΨ, (287)

with the Schwinger operator Ψ = (Ψ1,Ψ2, Ψ̃1, · · · , Ψ̃N )t. Square of the radius of CP
1|N
F is derived

as

3
∑

i=1

XiXi +
2
∑

α,β=1

N
∑

σ=1

ǫαβ(Θ
(σ)
α Θ

(σ)
β −Θ(σ)

α Θ
(σ)
β )−

N2−1
∑

P=1

YPYP − N

2−N
Z2

=
2(1 −N)

2−N
n̂(n̂+ 2−N), (288)

where n̂ = Ψ†Ψ. Here, we used

XiXi = n̂B(n̂B + 2),

ǫαβ(Θ
(σ)
α Θ

(σ)
β −Θ(σ)

α Θ
(σ)
β ) = −2Nn̂B + 4n̂Bn̂F + 4n̂F ,

YPYP = −2(N + 1)

N
n̂F (n̂F −N),

Z2 = (n̂B +
2

N
n̂F )

2, (289)

with n̂B = Ψ†
1Ψ1 +Ψ†

2Ψ2 and n̂F =
∑N

σ=1 Ψ̃
†
σΨ̃σ. For CP

1|N
F , square of the radius is proportional

to

n(n+ 2−N). (290)

Notice that, for n < N − 2, (290) becomes negative. This situation is similar to S
2|2N
F (see the

discussions below (87)).

A.1.1 SU(2|1)

The dimension of SU(2|1) is
dim[SU(2|1)] = 4|4 = 8. (291)

From (286), the SU(2|1) algebra reads as

[Li, Lj ] = iǫijkLk, [Li, Lα] =
1

2
(σi)βαLβ, [Li,Dα] =

1

2
(σi)βαDβ,

{Lα, Lβ} = −{Dα,Dβ} =
1

2
δστ (ǫσi)αβLi, {Lα,Dβ} = −1

4
H,

[Lα,H] = −Dα, [Dα,H] = −Lα. (292)

The SU(2|1) algebra (292) is isomorphic to UOSp(2|2) (59) with the identification (Lα, iDα) =

Lασ and H = 2iΓ. The maximal bosonic subalgebra of SU(2|1) is SU(2)⊕U(1). The UOSp(1|2)
is realized as the subalgebra by Li and Lα in (292). The SU(2|1) irreducible representation is
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specified by “superspin” indices j (integers or half-integers) and g (complex value). For details,

see Refs.[49, 57]. SU(2|1) has two Casimirs, quadratic and cubic. The quadratic Casimir are

C = LiLi + ǫαβLαLβ − ǫαβDαDβ − 1

4
H2, (293)

and the eigenvalues of quadratic Casimir are

C = j2 − g2. (294)

• Atypical Representation

When g = ±j, the irreducible representation is called atypical representation. Since there

is automorphism, Dα → −Dα and H → −H in (292), we discuss only the case g = +j. The

dimension of the atypical representation is 4j + 1, which is already irreducible for the subalgebra

UOSp(1|2). In the present case, the quadratic Casimir eigenvalues (294) vanish identically. (Also,

the cubic Casimir eigenvalues vanish since the eigenvalues are proportional to g(j2 − g2) [49].)

Thus, the two Casimirs do not specify atypical representation. The fundamental representation

of SU(2|1) is the simplest atypical representation given by the following 3× 3 matrices15:

Li =
1

2

(

σi 0

0 0

)

, Lα =
1

2

(

02 τα
−(ǫτα)

t 0

)

, Dα =
1

2

(

02 −τα
−(ǫτα)

t 0

)

, H =







1 0 0

0 1 0

0 0 2






,

(296)

where ǫ = iσ2, τ1 = (1, 0)t and τ2 = (0, 1)t. For the matrices (296), one may readily check that C
(293) vanishes. The Schwinger construction

Xi = 2Ψ†LiΨ, Θα = 2Ψ†LαΨ, Θα = 2Ψ†DαΨ, Z = Ψ†HΨ, (297)

corresponds to atypical representation. The UOSp(1|2) invariant quantity is given by

XiXi + ǫαβΘαΘβ = ǫαβΘαΘβ + Z2 = n̂(n̂+ 1), (298)

where n̂ = Ψ†Ψ. The SU(2|1) Casimir for the Schwinger construction identically vanishes:

XiXi + ǫαβΘαΘβ − ǫαβΘαΘβ − Z2 = 0, (299)

which implies that the Schwinger construction corresponds to atypical representation with g =

j = n/2.

• Typical Representation

15Dα and H in (296) are constructed as

Dα = −
1

2(j + 1

4
)
(σi)βα{Li, Lβ}, H =

1

j + 1

4

(

ǫαβLαLβ + 2j

(

j +
1

2

))

, (295)

with j = 1/2.
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The typical representation refers to g 6= ±j. The simplest matrices of the typical representation

are the following 4× 4 matrices16

Li =
1

2

(

σi 0

0 02

)

, Lα =
1

2







02 τα 0

−(ǫτα)
t 0 0

0 0 0






, L′

α =
1

2







02 0 τα
0 0 0

−(ǫτα)
t 0 0






, Γ =

1

2

(

02 0

0 ǫ

)

.

(302)

In the Schwinger construction with Ψ = (Ψ1,Ψ2, Ψ̃1, Ψ̃2)
t,

L̂i = Ψ†LiΨ, L̂α = Ψ†LαΨ, L̂′
α = Ψ†L′

αΨ, Γ̂ = Ψ†ΓΨ, (303)

the quadratic Casimir is derived as

C = L̂iL̂i + ǫαβL̂αL̂β + ǫαβL̂
′
αL̂

′
β + Γ̂2 =

1

4
(Ψ†Ψ)2. (304)

The eigenvalue is n2/4 and the corresponding eigenstates are given by (68). The SU(2|1)
typical representation for (j, g) consists of |j, j3, g〉, |j − 1/2, j3, g+1/2〉, |j − 1/2, j3, g− 1/2〉 and
|j−1, j3, g〉 [49] with the Casimir eigenvalue (294). It is straightforward to see that the Schwinger

construction corresponds to (j, g) = (n/2, 0).

A.1.2 SU(2|2)

The dimension of SU(2|2) is
dim[SU(2|2)] = 7|8 = 15. (305)

The fundamental representation matrices are

Li =
1

2

(

σi 0

0 02

)

, Lα =
1

2







02 τα 0

−(ǫτα)
t 0 0

0 0 0






, Dα = −1

2







02 τα 0

(ǫτα)
t 0 0

0 0 0






,

L′
α =

1

2







02 0 τα
0 0 0

−(ǫτα)
t 0 0






, D′

α = −1

2







02 0 τα
0 0 0

(ǫτα)
t 0 0






, Ti =

1

2

(

02 0

0 σi

)

,

H = 14. (306)

16The typical representation matrices (302) are superficially different from those in Ref.[49]:

Li =
1

2

(

σi 0

0 02

)

, Lα =
1

2







02 τα 0

−(ǫτα)
t 0 0

0 0 0






, D′

α =
1

2







02 0 −τα
0 0 0

−(ǫτα)
t 0 0






, Γ =

1

2

(

02 0

0 σ1

)

. (300)

In the case, the corresponding quadratic Casimir is given by

C = LiLi + ǫαβLαLβ − ǫαβD
′
αD

′
β − Γ2. (301)
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With these, the SU(2|2) algebra is expressed as17

[Li, Lj] = iǫijkLk, [Li, Lασ] =
1

2
(σi)βαLβσ, [Li,Dασ ] =

1

2
(σi)βαDβσ,

{Lασ , Lβτ} = −{Dασ ,Dβτ} =
1

2
δστ (ǫσi)αβLi + i

1

2
ǫστ ǫαβT2,

{Lασ ,Dβτ} = −1

2
(σ1)στ ǫαβT1 −

1

2
(σ3)στ ǫαβT3 −

1

4
δστ ǫαβH,

[Lασ , T1] = −1

2
(σ1)τσDατ , [Dασ , T1] = −1

2
(σ1)τσLατ ,

[Lασ , T2] = −1

2
(σ2)τσLατ , [Dασ , T2] = −1

2
(σ2)τσDατ ,

[Lασ , T3] = −1

2
(σ3)τσDατ , [Dασ , T3] = −1

2
(σ3)τσLατ ,

[Li, Tj ] = [Lασ,H] = [Dασ ,H] = 0, (308)

where Lασ = (Lα, L
′
α) and Dασ = (Dα,D

′
α). The UOSp(2|2) algebra (292) is a subalgebra of

(308) realized by Li, Lασ and Γ = iT2.

A.2 SU(4|N) and CP
3|N
F

The dimension of the SU(4|N) is given by

dim[SU(4|N)] = 15 +N2|8N = N2 + 8N + 15. (309)

For instance,

dim[SU(4|1)] = 16|8 = 24, dim[SU(4|2)] = 19|16 = 35,

dim[SU(4|3)] = 24|24 = 48, dim[SU(4|4)] = 31|32 = 63. (310)

To clarify relations to UOSp(N |4), we adopt the following “decomposition”. We separate the

SU(4) generators into SO(5) vector and antisymmetric 2 rank tensor:

SA =
1

2
√
2
Γa =

1√
2

(

γa 0

0 0N

)

,
1√
2
Γab =

1√
2

(

γab 0

0 0N

)

, (311)

with γa (90) and γab (99). Notice that γa and γab have different properties under transpose

(Cγa)
t = −Cγa, (Cγab)

t = Cγab, (312)

17Since H = 14 commutes with all of the other fourteen generators, H is the center of the SU(2|2) algebra. The

pSU(2|2) algebra is defined by quenching H , and then

dim [pSU(2|2)] = 6|8. (307)

There do not exit 4 × 4 dimensional matrices that satisfy pSU(2|2) algebra. The minimum dimension matrices of

pSU(2|2) are 14 × 14 matrices, i.e. the adjoint representation. With 4 × 4 fundamental representation matrices

(306), one may nevertheless discuss pSU(2|2) by identifying matrices modulo H .

46



with C being an SO(5) charge conjugation matrix (114). We also separate the SU(N) generators

TP (P = 1, 2, · · · , N2 − 1) into symmetric and antisymmetric matrices:

TS
t = TS , TI

t = −TI , (313)

with S = 1, 2, · · · , N(N + 1)/2 − 1 and I = 1, 2, · · · , N(N − 1)/2. TI satisfy the SO(N) algebra

by themselves. Also, the U(1) generator is given by

H =
1

N

(

N · 14 0

0 4 · 1N

)

. (314)

The SU(4|N) fermionic generators are

Γασ =
1√
2







03+σ τα 0

−(Cτα)
t 0 0

0 0 0k−σ






, Dασ =

1√
2







03+σ τα 0

(Cτα)
t 0 0

0 0 0k−σ






, (315)

which are related to (265) as

Qασ =
1√
2
(Γασ +Dασ), Q̃σα = − 1√

2
Cαβ(Γβσ −Dβσ), (316)

or

Γασ =
1√
2
(Qασ + CαβQ̃σβ), Dασ =

1√
2
(Qασ − CαβQ̃σβ). (317)

Therefore,

QασQ̃σα − Q̃σαQασ = −Cαβ(ΓασΓβσ −DασDβσ). (318)

The SU(4|N) commutation relations (269) concerned with the fermionic generators read as

[Γa,Γασ] = (γa)βαDβσ, [Γab,Γασ] = (γab)βαΓβσ,

[Γa,Dασ] = (γa)βαΓβσ, [Γab,Dασ ] = (γab)βαDβσ,

{Γασ,Γβτ} = −{Dασ ,Dβτ} = δστ (Cγab)αβΓab − 2Cαβ(tI)στTI ,

{Γασ,Dβτ} =
1

4
δστ (Cγa)αβΓa + 2Cαβ(tS)στTS +

1

4
CαβδστH,

[Γασ, TS ] = (tS)στDατ , [Γασ, TI ] = (tI)στΓατ ,

[Dασ , TS ] = (tS)στΓατ , [Dασ , TI ] = (tI)στDατ ,

[Γασ,H] =
4−N

N
Dασ , [Dασ ,H] =

4−N

N
Γασ. (319)

Thus, one may find that Γab, Γασ, TI satisfy a closed algebra, the UOSp(N |4).
Square of the radius of CP

3|N
F is derived as

15
∑

A=1

ŜAŜA − 1

2

4
∑

α=1

k
∑

σ=1

(Q̂ασ
ˆ̃Qσα − ˆ̃QσαQ̂ασ)−

N2−1
∑

P=1

T̂P T̂P − N

8(4−N)
Ẑ2

=
1

8

5
∑

a=1

XaXa +
1

2

5
∑

a<b=1

XabXab +
1

2

4
∑

α,β=1

N
∑

σ=1

Cαβ(Θ
(σ)
α Θ

(σ)
β −Θ(σ)

α Θ
(σ)
β )− 1

4

N2−1
∑

P=1

YPYP − N

8(4 −N)
Z2

=
3−N

2(4−N)
n̂(n̂+ 4−N), (320)
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where n̂ = Ψ†Ψ,

Xa = Ψ†ΓaΨ, Xab = Ψ†ΓabΨ, Θσ
α = Ψ†ΓασΨ,

Θ
(σ)
i = Ψ†DασΨ, YP = 2Ψ†TPΨ, Z = Ψ†HΨ. (321)

We utilized

15
∑

A=1

ŜAŜA =
1

8

∑

a

XaXa +
1

2

∑

a<b

XabXab =
3

8
n̂B(n̂B + 4),

4
∑

α=1

N
∑

σ=1

(Q̂ασ
ˆ̃Qσα − ˆ̃QσαQ̂ασ) = −Cαβ(Θ

(σ)
α Θ

(σ)
β −Θ(σ)

α Θ
(σ)
β ) = Nn̂B − 2n̂Bn̂F − 4n̂F ,

N2−1
∑

P=1

T̂P T̂P =
1

4
YPYP = −N + 1

2N
n̂F (n̂F −N),

Z2 = (n̂B +
4

N
n̂F )

2. (322)

Thus, for CP
3|N
F , square of the radius is proportional to

n(n+ 4−N). (323)

A.2.1 SU(4|1)

The 24(= 16|8) generators of SU(4|1) are represented as

Γa =

(

γa 0

0 0

)

, Γab =

(

γab 0

0 0

)

, H =

(

14 0

0 4

)

,

Γα =
1√
2

(

04 τα
−(Cτα)

t 0

)

, Dα =
1√
2

(

04 τα
(Cτα)

t 0

)

, (324)

which satisfy

[Γa,Γb] = 4iΓab, [Γa,Γbc] = −i(δabΓc − δacΓb), [Γab,Γcd] = i(δacΓbd − δadΓbc + δbcΓad − δbdΓac),

[Γa,Γα] = (γa)βαDβ, [Γa,Dα] = (γa)βαΓβ,

[Γab,Γα] = (γab)βαΓβ, [Γab,Dα] = (γab)βαDβ,

{Γα,Γβ} =
∑

a<b

(Cγab)αβΓab, {Dα,Dβ} = −
∑

a<b

(Cγab)αβΓab, {Γα,Dβ} =
1

4
(Cγa)αβΓa +

1

4
CαβH,

[Γα,H] = 3Dα, [Dα,H] = 3Γα. (325)

Γab and Γα satisfy a closed algebra, the UOSp(1|4).
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A.2.2 SU(4|2)

The SU(4|2) contain 35(= 19|16) generators. The bosonic and fermionic generators are given by

Γa, Γab, Ti, H,

Γα, Dα, Γ′
α, D′

α, (326)

where Γa, Γab, Γα and Γ′
α are (178) and (177), Ti and H are U(2) generators

Ti =
1

2

(

04 0

0 σi

)

, H =

(

14 0

0 2 · 12

)

, (327)

and Dα and D′
α are

Dα =
1√
2







04 τα 0

(Cτα)
t 0 0

0 0 0






, D′

α =
1√
2







04 0 τα
0 0 0

(Cτα)
t 0 0






. (328)

The SU(4|2) generators (326) satisfy

{Γασ ,Γβτ} = −{Dασ,Dβτ} = δστ
∑

a<b

(Cγab)αβΓab + i
1

2
ǫστCαβT2,

{Γασ ,Dβτ} =
1

4
δστ (Cγa)αβΓa + (σ1)στCαβT1 + (σ3)στCαβT3 +

1

4
δστCαβH,

[Γασ , T1] =
1

2
(σ1)τσDατ , [Dασ, T1] =

1

2
(σ1)τσΓατ ,

[Γασ , T2] = −1

2
(σ2)τσΓατ , [Dασ , T2] = −1

2
(σ2)τσDατ ,

[Γασ , T3] =
1

2
(σ3)τσDατ , [Dασ, T3] =

1

2
(σ3)τσΓατ ,

[Γασ ,H] = Dασ , [Dασ,H] = Γασ,

[Ti, Tj ] = iǫijkTk, [Γa,H] = [Γab,H] = [Ti,H] = 0,

[Γa, Ti] = [Γab, Ti] = 0, (329)

where Γασ = (Γα,Γ
′
α) and Dασ = (Dα,D

′
α). The UOSp(2|4) (175) is realized as a subalgebra of

SU(4|2) (329) with Γab,Γασ and Γ = 2iT2.

B Charge conjugation matrices of SO(5) and UOSp(1|4)
The complex representation of SO(5), γa (90) and γab (99), is given by

γ̃a = γ∗ = γta, γ̃ab = −i1
4
[γ̃a, γ̃b] = −γ∗ab = −γtab. (330)

The SO(5) charge conjugation matrix (114) acts as

CtγaC = γ̃a, CtγabC = γ̃ab. (331)
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Cγab and γabC are symmetric matrices, while Cγa and γaC are anti-symmetric matrices. C has

the following properties

C† = Ct = C−1 = −C, C2 = −1, (332)

and is related to the USp(4) invariant matrix (see Sec.2)

J =

(

0 12
−12 0

)

, (333)

by unitary transformation, J = V †CV , with

V =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











. (334)

The unitary matrix (334) relates the SO(5) matrices (99) to the bases of USp(4) matrix (11),

also.

The complex representation of UOSp(1|4), Γa, Γab and Γα defined in Sec.4.2.1, is given by

Γ̃a = Γt
a = Γ∗

a, Γ̃ab = −Γ∗
ab = −Γt

ab, Γ̃α = CαβΓβ. (335)

The complex representation is related to the original representation as

RtΓaR = Γ̃a, RtΓabR = Γ̃ab, RtΓαR = Γ̃α, (336)

with the charge conjugation matrix

R =

(

C 0

0 1

)

. (337)

C Relations for matrix products

C.1 SU(2|1)
With 3×3 unit matrix 13, the SU(2|1) fundamental representation generators (296) span arbitrary

3× 3 matrix, and hence their products can be given by their linear combination. For UOSp(1|2)
matrices, Li and Lα, their products are represented as

LiLj =
1

4
δij + i

1

2
ǫijkLk,

LiLα =
1

4
(σi)βα(Lβ −Dβ),

LαLβ =
1

4
(ǫσi)αβLi −

1

2
ǫαβ(1−

3

4
H). (338)
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For the other SU(2|1) fundamental representation matrices,

LiDα = −1

4
(σi)βα(Lβ −Dβ),

LiH = Li,

LαDβ =
1

4
(ǫσi)αβLi −

1

8
ǫαβH,

LαH = −1

2
Dα +

3

2
Lα,

DαDβ = −1

4
(ǫσi)αβLi +

1

2
ǫαβ(1−

3

4
H),

DαH = −1

2
Lα +

3

2
Dα,

H2 = 3H − 2. (339)

C.2 SU(4|1)
Similar to the SU(2|1) case, with 5 × 5 unit matrix 15, the SU(4|1) fundamental representation

matrices (324) span arbitrary 5× 5 matrix. Then, their products can be expressed by their linear

combination: for the products of Γa and Γα,

ΓaΓb = 2iΓab −
1

3
δab(H − 4),

ΓaΓα =
1

2
(γa)βα(Γβ +Dβ),

ΓαΓβ = −1

2

∑

a<b

(Cγab)αβΓab −
1

8
(Cγa)αβΓa −

1

3
Cαβ(1−

5

8
H), (340)
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and for the other SU(4|1) matrices,

ΓaΓbc =
1

2
(ǫabcdeΓde + iΓbδac − iΓcδab),

ΓaDα =
1

2
(γa)βα(Γβ +Dβ),

ΓaΓ = Γa,

ΓabΓcd = 2i(δabΓcd − δacΓbd + δadΓbc − δbcΓda + δbdΓca − δcdΓba)− ǫabcdeΓe

+
1

3
(δabδcd − δacδbd + δadδbc)(4 −H),

ΓabΓα =
1

2
(γab)βα(Γβ +Dβ),

ΓabDα =
1

2
(γab)βα(Γβ +Dβ),

ΓabH = Γab,

ΓαDβ = −1

2

∑

a<b

(Cγab)αβΓab +
1

8
(Cγa)αβΓa +

1

8
CαβH,

ΓαH = −3

2
Dα − 5

2
Γα,

DαDβ = −1

2

∑

a<b

(Cγab)αβΓab +
1

8
(Cγa)αβΓa +

1

3
Cαβ(1−

5

8
H),

DαH = −5

2
Dα − 3

2
Γα,

H2 = 5H − 4. (341)
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