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Abstract

We argue supersymmetric generalizations of fuzzy two- and four-spheres based on the
unitary-orthosymplectic algebras, UOSp(N|2) and UOSp(N|4), respectively. Supersymmetric
version of Schwinger construction is applied to derive graded fully symmetric representation
for fuzzy superspheres. As a classical counterpart of fuzzy superspheres, graded versions of 1st
and 2nd Hopf maps are also introduced, and their basic geometrical structures are studied. It is
shown that fuzzy superspheres are represented as a “superposition” of fuzzy superspheres with
lower supersymmetries. We investigate algebraic structures of fuzzy two- and four-superspheres
to identify SU(2|N) and SU(4|N) as their enhanced algebraic structures, respectively. Eval-
uation of correlation functions manifests such enhanced structure as quantum fluctuations of

fuzzy supersphere.
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1 Introduction

About two decades ago, fuzzy two-sphere and field theory on it were formulated by Madore [1J.
The fuzzy two-sphere is one of the simplest curved fuzzy manifolds whose coordinates satisfy
the SU(2) algebra. Few years after, Grosse et al. introduced four-dimensional fuzzy spheres [2]
and supersymmetric (SUSY) generalizations of fuzzy spheres in sequel works [3, [4]. Field theory
defined on fuzzy manifolds naturally contain a “cut-off”, and such fuzzy field theory was expected
to have weaker infinity than that of the conventional field theory. Furthermore in the developments
of string theory in late 90’s, researchers recognized that the geometry of D-branes is described
by fuzzy geometry [5, [6, [7] (as reviews) and fuzzy manifolds arise as classical solutions of Matrix
theory, e.g. [8 0]. It is also known that fuzzy superspheres provide a set-up for field theory on
SUSY lattice regularization [3, [10} [I1], and realize as a classical solution of supermatrix model
[12/13]. For such important properties, fuzzy spheres and their variants have attracted a great deal
of attentions [I4] (15} | (as reviews). Fuzzy physics also found its applications to gravity [18] and
even to condensed matter physics [19, 20]. Recently, the mathematics of fuzzy geometry is applied
to construction of topologically non-trivial many-body states on bosonic manifolds [211 22] 23] and
on supermanifolds [24] 25] as well.

In this paper, we apply close relations between fuzzy spheres and Hopf maps [20] to generalize
fuzzy superspheres in higher dimensions. A useful mathematical tool for the construction is the
Schwinger operator formalism [27) [I6]. Specifically, the two-dimensional fuzzy sphere coordinates
are simply obtained by sandwiching the Pauli matrices with two-component Schwinger operators:

X; = ®'0;®. (1)

With the Schwinger operator, it is quite straightforward to derive fully symmetric representation,
which corresponds to a finite number of states on fuzzy sphere. In general, a finite number of
states on 2k-dimensional fuzzy spheres are given by fully symmetric representation of SO(2k + 1)
[28]. The Schwinger operator is regarded as the “square root” of the fuzzy sphere coordinates,
and play fundamental roles rather than the fuzzy sphere coordinates themselves. Meanwhile, with
¢ denoting a normalized two-component complex spinor, the (1st) Hopf map is represented as

z; = ¢l (2)

Comparison between (Il) and (2)) finds that the (1st) Hopf map can be regarded as the “classical”
counterpart of the (Schwinger) operator construction of fuzzy two-sphere.



In the construction of fuzzy superspheres [29] [30], nice algebraic structures and relations be-
tween the Hopf map and fuzzy sphere are inherited. The fuzzy two—superspheresﬁl constructed by
Grosse et al. [3] [4] are based on the UOSp(1]2) algebra that includes SU(2) ~ USp(2):

SU(2) € UOSp(1]2). (3)

(The classical counter part of the fuzzy two-supersphere, the graded 1st Hopf map, was first
given in Refs.[31) B2]. See also Refs.[33] B0].) The coordinates of the fuzzy two-supersphere are
introduced by replacing the SU(2) Pauli matrices with the UOSp(1]|2) matrices of fundamental
representation. As the UOSp(1|2) contains the SU(2) as its maximal bosonic subalgebra, the
fuzzy two-supersphere “contains” the fuzzy two-sphere as its fuzzy body. The construction is
based on the graded Lie algebra, and fuzzy super-geometry is transparent. We want to maintain
such nice features. To this end, we utilize a graded Lie algebra whose maximal bosonic subalgebra
is SO(5). The minimal graded Lie algebra that suffices for this requirement is UOSp(1[4), since
SO(5) ~ USp(4):

SO(5) Cc UOSp(1]4). (4)

We adopt UOSp(1]4) version of Schwinger operator in the construction of fuzzy four-supersphere
and also introduce the graded 2nd Hopf map as its classical counterpart. We further extend such
formulation to include more supersymmetries with use of UOSp(N|2) and UOSp(N|4). Represen-
tation theory of the graded Lie algebra is rather complicated, however if restricted to graded fully
symmetric representationlg, investigations are greatly simplified. By dealing with the Schwinger

7 of symmetry of fuzzy superspheres.

operator as fundamental quantity, we observe “enhancemen
This mechanism is similar to the symmetry enhancement reported in higher dimensional fuzzy
spheres [35] [36]. We also reconsider such enhancement in view of quantum fluctuations of fuzzy
superspheres.

Some comments are added to clarify difference to related works. In Ref.[37], supersymmetric
Hopf maps were introduced in the context of SUSY non-linear sigma models. In the construction,
the fermionic parts are introduced to incorporate N = 4 supersymmetry. Though the bosonic
parts are related to Hopf maps, the fermionic parts themselves are not directly related. In the
present construction, together with bosonic components, the fermionic components themselves
constitute graded Hopf maps. Supersymmetric quantum mechanics in monopole background
related to the Hopf map is well investigated recently [38] [39] 40, [41), [42] 43| [44]. Works about
higher dimensional fuzzy super-manifolds of which the author is aware are Ref.[45] 46, 47]. The
fuzzy complex projective space was constructed in Ref.[45] based on the super unitary algebra.

n this paper, two-supersphere is referred to as the supersphere whose body is two-dimensional sphere. The
two-supersphere with N supersymmetry is denoted as S22V \whose bosonic dimension is two and the fermionic
dimension is 2V, and hence the total dimension is 2+ 2N. Similarly, fuzzy four-supersphere consists of four-sphere
body and extra fermionic coordinates.

2 We adopt the terminology, “graded fully symmetric representation” to indicate a representation constructed
by a supersymmetric version of Schwinger operator. The graded fully symmetric representation is totally symmetric
for the bosonic part and totally antisymmetric for the fermionic part. It is also referred to as harmonic oscillator
representation in several literatures. For general representation theory of graded Lie groups, one may for instance
consult Ref.[34] and references therein.



Such construction is similar to the spirit of the present work, and is indeed closed related as we
shall discuss. In [47], fuzzy superspheres are formulated in any dimensions. However, the fuzzy
two-supersphere provided by the formulation is not same as of Grosse et al. In the present, though
the construction is restricted to two and four-dimensions, the underlying algebraic geometry is
transparent and the fuzzy two-supersphere of Grosse et al. is naturally reproduced.

The paper is organized as follows. In Sec[2] we briefly introduce the unitary-orthosymplectic
algebra UOSp(N|M). In Secll we review the construction of fuzzy two-supersphere as well as 1st
graded Hopf map. N = 2 fuzzy two-supersphere and the corresponding 1st graded Hopf map are
provided, too. In SecHl we argue construction of N =1 and N = 2 fuzzy superspheres and the
graded 2nd Hopf maps. More supersymmetric extensions are explored in Sec[il In Secltl we give
supercoherent states on fuzzy two- and four-superspheres and investigate quantum fluctuations of
fuzzy superspheres. Sec[lis devoted to summary and discussions.

2 UOSp(N|M)

Generators of the orthosymplectic algebra, OSp(N|M), are defined so as to satisfy

J 0 J 0
st by =0 5
AB <0 1N> + <0 1N> AB ; (5)

where 1y denotes N x N unit matrix and J represents the invariant matrix of the symplectic

group
T (6)

and the supertranspose, st, is defined as

st
B F\ (Bt F"
B ~\-Ft B')" )

Here, t stands for the ordinary transpose, and B and B’ signify bosonic components while ' and
F' fermionic components. ¥ 45 can be expressed by a linear combination of

oo 0 0 O 0 Ol
2& == 3 E m — 9 E o — Y 8
p < 0 0) ! <O Ulm) : <_(Jala)t 0 ®)

where a, 3 are the indices of Sp(M) (o, = 1,2,---,M) and [,m those of O(N) (I,m =
1,2,---,N). o014 denote arbitrary M x N matrices, while 0,3 and oy, signify M x M and
N x N matrices that respectively satisfy
O'lmt + o = 0, (93')
Oap'd + Joag = 0. (9b)

The OSp(M|N) algebra contains the maximal bosonic subalgebra, Sp(M) @ O(N), whose gen-
erators are X,g and ;. The off-diagonal block matrices >, are called fermionic generators
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that transform as fundamental representation under each of Sp(M) and O(N). Then, the SO(N)
matrix oy, is an antisymmetric real matrix ([@al) with real degrees of freedom N(N — 1)/2. The
indices of oy, can be taken to be antisymmetric, 0}, = —0,,;. Meanwhile, from the relation (D)

k s
Oap = (S, —kt> ) (10)

where k stands for a M /2 x M /2 complex matrix, and s and s" are M /2 x M /2 symmetric complex
matrices. If the hermiticity condition instead of the reality condition is imposed, o,z are reduced
to generators of USp(M) and take the form of

h s
OaB = (ST —h*> 5 (11)

where h represents hermitian matrix and s symmetric complex matrix. The real independent
degrees of freedom of 0,5 is M (M + 1)/2. Then, for USp(M), the indices can be taken to be
symmetric, 0,3 = 0go. Meanwhile, the real degrees of freedom of the fermionic generators ¥, is
MN'. As a result, th real degrees of freedom of UOSp(N|M) are given by

oq8 takes the form of

dim[UOSp(N|M)] = %(MQ + N?4+ M — N)|MN = %((M +N)2+ M —N). (12)

There are isometries between the unitary-symplectic and orthogonal algebras only for
USp(2) ~ SO(3), USp(4) ~ SO(5),
Taking advantage of the isomorphism, we construct fuzzy two- and four-superspheres based on
UOSp(N|2) and UOSp(N |4).
3 Graded 1st Hopf maps and fuzzy two-superspheres

Here, we review relations between fuzzy two-sphere and 1st Hopf map, and their supersymmetric
version. We also explore a construction of N = 2 fuzzy supersphere with use of typical represen-
tation of UOSP(2]2) algebra.

3.1 The 1st Hopf map and fuzzy two-sphere

To begin with, we introduce relations between fuzzy two-sphere and 1st Hopf map
1
53 5, 52, (13)

With a normalized complex two-component spinor ¢ = (¢1, o)t subject to ¢f¢ = 1, the 1st Hopf
map is realized as

¢ — x; = dloio, (14)



where o; (i = 1,2,3) are the Pauli matrices,

o S (A AR (A 5)

¢ is regarded as coordinates on S? from the normalization condition, and x; denote coordinates
of §2:
ziz; = (¢19)% = 1. (16)

Coordinates of fuzzy two-sphere S% are constructed as

where ® = (&1, ®5)! stands for two-component Schwinger operator that satisfies [®,, <I>}'3] = 0ap
and [®, P5] = 0 (o, B = 1,2). Usually, in front of the right-hand side of (I7]), the non-commutative
parameter of dimension of length is added, however for notational brevity, we omit it throughout
the paper. X; satisfy

[XZ',X]'] = 2i6iijk, (18)

and square of the radius of fuzzy two-sphere is given by
X X; = (®T0)(®TD + 2) = iu(n + 2). (19)

Here, 7 is the number operator 7 = ®® and its eigenvalues are non-negative integers that specify
fully symmetric representation. The fully symmetric representation is simply obtained by acting
the Schwinger operators to the vacuum:

1 I+l
1) = =1 @) 710), (20)

where [1 and [y are non-negative integers satisfying [ + 1o = n. Physically, |l1,[3) represent a finite
number of states on fuzzy two-sphere, and their 3rd-components are

ngll—lgzn—Qk’, (21)
where k =13 =0,1,2,--- ,n. The dimension of (20)) is
din) =n+1. (22)

The Hopf map (I4]) is regarded as a classical counterpart of the Schwinger construction of
fuzzy sphere () with the replacement

®— ¢, D ¢F (23)

and (9 is reduced to (I6]) except for the “zero-point energy”, stemming from the non-commutativity
of two bosonic components of the Schwinger operator.



3.2 N =1 fuzzy two-supersphere

Here, we extend the above discussions to the graded 1st Hopf map [31, B2] and N = 1 fuzzy
two-supersphere [3, 4] along Refs.[30, [33].

3.2.1 UOSp(1]2) algebra

The UOSp(1]2) algebra contains the SU(2) algebra as its maximal bosonic subalgebra, and con-
sists of five generators three of which are bosonic L; (i = 1,2,3) and two of which are fermionic
Ly (= 07,05). They satisty

) 1 1
[Li, Lj] = tejjily, [Li,Lo] = §(Uz’)ﬁaLﬁ, {La,Lg} = §(€Uz')aﬁLz’, (24)

where € = ioy is the SU(2) charge conjugation matrix. One may find that L; transform as an
SU(2) vector, while L, an SU(2) spinor. The UOSp(1|2) Casimir is constructed as
C=L,L; + EQBLQLB, (25)

and its eigenvalues are given by j(j + 1/2) with j referred to as superspin that takes non-negative
integers and half-integers, j = 0,1,2,1,3/2,---. The UOSp(1]2) irreducible representation speci-
fied by the superspin index j consists of SU(2) j and j — 1/2 spin representations and hence the
dimension of the UOSp(1]2) representation with superspin j = n/2 is

din)+d(n—1)=2n+1, (26)

where d(n) is the dimension of the SU(2) spin n/2 ([22). For UOSp(1|M), there exists a “square
root” of the Casimir, the Scasimir [48, [34]. In the present, Scasimir is given by

1
S =2€eqgLoLg — T (27)
which satisfies 1
2
= —. 2
S C+ T (28)

Then, the eigenvalues of Scasimir are +5(j + 1/4). The Scasimir is commutative with the bosonic
generators and anticommutative with the fermionic ones,

[L;,S] = {La, S} = 0. (29)

3.2.2 N =1 graded 1st Hopf map
The graded 1st Hopf map is given by
5312 5 g212. (30)

where left index to the slash indicates the number of bosonic coordinates, while the right index
fermionic coordinates. The bosonic part of ([B0) is exactly equivalent to the 1st Hopf map. The
coordinates on the total manifold $3/2 is represented by a normalized three-component superspinor



Y = (1h1,%9,m)t whose first two components are Grassmann even and the third component is
Grassmann odd. A normalization condition is imposed as

Php = i + P — ' =1, (31)

where ¥ = (7,5, —n") and * represents the pseudo—conjugationﬁ. The graded 1st Hopf map is

realized as [31], [32]
O o= x =20 L, 0, = 20 Lo, (32)

where L; and L, are the fundamental representation matrices of UOSp(1]2)

1({o; O 1 02 Ta
L= - , Lo=-= , 33
‘T2 (0 0) ‘2 (-(em)t 0) (33)

with € = ioy, 71 = (1,0)" and 79 = (0,1)!. They are “hermitian” in the sense
L =L;, L} =caply, (34)

where I is the super-adjoint defined by

i
A B At
(C’ D> :<—BT DT>' (35)

From (B2), we see that x; and 6, are coordinates on S2I2:
Tixr; + Eageoﬂg = (1[)11[))2 =1, (36)

and from (34]),
a;;k = Ty, 92 = eageg. (37)

Notice that x; are Grassmann even but not usual c-number, since the square of z; is not c-number
as observed in ([B6). Instead, we can introduce c-number y; as

1
- z;,
vi V1 —€aptlals !

which satisfy y;i; = 1 and denote coordinates on S2, the body of S22, The original normalized

SU(2) spinor is “embedded” in v as
b1 2 Y1
= . 39
<¢2> 24+n*n <¢2) (39)

®1 _ 1 1+ys eix (40)
P2 20+ y3) \v1 +iy2)

3The pseudo-conjugation is imposed as (n*)* = —n and (min2)* = nins for Grassmann odd quantities. See
Ref.|34] for instance.

(38)

With y;, ¢ can be written as




where ¢X denotes arbitrary U(1) phase. Represent the Grassmann odd component 7 as
n=¢1pu+ dov, (41)
with g and v being real and imaginary components of 7. They satisfy
wt =, vt = —p. (42)

The map ([B2) immediately determines the relations between 61, 0 and p, v:

n = 01’ UV = 92. (43)
Consequently, 1) can be expressed as
R 1 -
e — 2 = —— 2
1—n* V1+6:0
T n 2\ @161 + 6265
1 14+ys '

= Y1 + Y2 e’ (44)

V2(1 4 y3) (1 + 6162) (1 +y3)01 + (y1 + iy2)0-

The last expression on the right-hand side manifests the N = 1 graded Hopf fibration, S32 ~
522 @ S': the S'(~ U(1))-fibre, e’X, is canceled in the graded Hopf map (B2), and the remaining
quantities, y; and 6,, correspond to the coordinates on 522,

3.2.3 N =1 fuzzy two-supersphere

Coordinates on fuzzy supersphere are constructed by the graded version of the Schwinger con-
struction] [29]:
X; =20'L, ¥, ©,=20'L,0, (45)

where ¥ stands for a graded Schwinger operator
U = (U, Uy, ¥)!, (46)

with bosonic operators ¥; and ¥y and fermionic one U satisfying

[T, O] = 0o, {0, 07} =1, [¥,, 0] =0,
(W, Us] = {¥, T} = [T, V] =0. (47)

It is straightforward to see that ([43]) satisfy the algebra
[Xi, Xj] = 2i€ijuXp,  [XisOa] = (0)paOp,  {Oa,Op}t = (e07)apXi- (48)
Radius of the square of fuzzy supersphere is given by the UOSp(1]2) Casimir

X; X; + Eaﬁ@a@B = (\IIT\I’)(\I]T\II +1), (49)

“In @3) we adopted the ordinary definition of the Hermitian conjugate f, so o # €230 p unlike 0}, = e.503.



where we used

X;X; =np(hp +2),
Eag@a@g = —Np+2nphr + 20 F, (50)

with ng = \I’J{\Ill + \P;\PQ, ng = i’T\IJ, and ﬁ% = np. UIW denotes the total number-operator
f = UIW = fip+hap. Notice the zero-point energy in (@) reflects the difference between the bosonic
and fermionic degrees of freedom of the Schwinger operator. The Scasimir is also expressed as

§ = (r — )+ 3). (51)

From (@) and (&Il), one may readily show (28]).
Graded fully symmetric representation specified by the superspin j = n/2 is given by

1 Tll Tlg

VIl b2
1 mi _+ma =

— "l "), 52b
vV m1! m2! ! 2 | > ( )
where [ + ly = my + mg + 1 = n with non-negative integers, ly,ly,m1 and mqy. |my,ms) are the
fermionic counterpart of |ly,l5), and thus they exhibit N = 1 SUSY. The bosonic and fermionic
stateﬁﬁ are classified by the sign of Scasimir (5II). Scasimir takes the values

ll1,12) = 10), (52a)

|m1, mg) =

1

S:i4

(2n+1), (53)

with + and — for the bosonic (52al) and fermionic (G2D]) states, respectively. The degrees of
freedom of bosonic and fermionic states are respectively

dp=dn)=n+1, dr=dn—1)=n, (54)
and then the total degrees of freedom is
dr =dg +dp = 2n + 1. (55)

X3-coordinates of these states are
X3 =n— k‘, (56)

where £k = 0,1,2,--- ,2n. For even k, the eigenvalues of X3 correspond to the bosonic states (52al),
while for odd k, the fermionic states (52hl). Compare the X3 eigenvalues of fuzzy supersphere (56))
and those of the fuzzy (bosonic) sphere (2I)): the degrees of freedom of fuzzy supersphere for even
k are accounted for those of fuzzy sphere with radius n, while those for odd k are for those of
fuzzy sphere with radius n — 1. Thus, the bosonic and fermionic degrees of freedom are same
as of the fuzzy spheres with radius n and radius n — 1, respectively. Consequently, the fuzzy

5 In the paper, the bosonic and fermionic states refer to states with even and odd number of fermion operators,
respectively. They are eigenstates of the fermion parity (—1)"# with the eigenvalues +1 and —1.
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two-supersphere of radius n is intuitively understood as a “superposition” of two fuzzy spheres
whose radii are n and n — 1. Schematically,

S22 (n) ~ S%(n) @ S%(n — 1). (57)

It is noted that though we only utilized the UOSp(1|2) algebra, fuzzy two-supersphere itself
is invariant under the larger SU(2|1) symmetry: indeed, the right-hand side of (@9) is invariant
under the SU(2|1) rotation of the Schwinger operator W. In this sense, the symmetry of fuzzy
two-supersphere is SU(2|1) rather than UOSp(1]2). Also notice that the graded fully symmetric
representation (B2]) is regarded as a (atypical) representation of SU(2|1).

3.3 N =2 fuzzy two-supersphere

We utilized the UOSp(1|2) algebra to construct N = 1 fuzzy supersphere S?,P. Here, we apply
UOSp(2|2) algebra to construct N = 2 fuzzy supersphere 5?4.

3.3.1 UOSp(2|2) algebra

UOSp(2|2) algebra contains the USp(2) ~ SU(2) and O(2) ~ U(1) as bosonic algebras, and the
fermionic generators transform as a SU(2) spinor and carry U(1) charge as well. UOSp(2|2) is
isomorphic to SU(2|1), and its dimension is

dim[U0Sp(2]2)] = dim[SU(2|1)] = 4|4 = 8. (58)

We denote the four bosonic generators as L; (i = 1,2,3) and I', and the four fermionic generators
as L, and L, (aw = 61,62). The UOSp(2]2) algebra is given by

. 1 1 1
[Li, Lj] = teijily,  [Li, Lao) = §(Ui)5aLﬁo, {Lao,Lsr} = 5507(50'1')0:514 + 56076aﬁP,

1
[F,Lz] = 0, [F, Lao] = 5570La7’7 (59)

where Loy = (La, L) H L; and L, form the UOSp(1|2) subalgebra. There are two sets of
fermionic generators, L, and L/, which bring N = 2 SUSY. The fundamental representation is 3
dimensional representation, as expected from UOSp(2|2) ~ SU(2|1). The UOSp(2|2) algebra has
two Casimirs, quadratic and cubic [49]. The quadratic Casimir is given by

C=LiLi+ eqpLlalg + €apLl, L + I'*. (61)

The irreducible representation is classified into two categories; typical representation and atypical
representation (see Appendix[A.T.]for details). Since the Casimir eigenvalues (GI]) are identically

The algebra (B9) coincides with the UOSp(2|2) algebra usually found in literature by the following redefinitions,

L;—Li, Lo - Lo, L, —iD,, T'— —il. (60)
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zero for atypical representation, we utilize typical representation to construct N = 2 fuzzy two-
superspheres. The minimal dimensional matrices of typical representation is given by the following
4 x 4 matrices:

02 Ta 0 02 0 7,
1 i 0 1 1 1 {02 O
L; = 5 (g 02) , Lo= 3 —(etn)t 0 0], L= 5 0 0o 0|, I'= 5 <02 :) ]
2 0 0 0 —(era)t 0 2
(62)

(These are equivalent to those given in Ref.[49].)

3.3.2 N =2 fuzzy two-supersphere

Applying the Schwinger construction to (62)), we introduce N = 2 fuzzy supersphere coordinates

as
X, =20TL,0, ©,=20L,, O =201 ¥ G=20Ty, (63)

where ¥ denotes the four-component Schwinger operator
U = (U, Uy, Uy, Uy)'. (64)
U, (o =1,2) are bosonic operators while W, (o0 =1,2) are fermionic ones satisfying
(Vo Wh) = Gag. (W0, U1} = 55,
(W, Ug] = {Ty, Ur} = [T, Ty] = 0. (65)
Square of the radius of N = 2 fuzzy two-supersphere is evaluated as
XiXi + €ap©aOp + €450,05 + G = (T1T)2, (66)
Here, we used
X, X; =np(hp+ 2),

Eag@a@g + Eag@/a@/ﬁ = —Np+ 2nphr + 20,
G? = dnp(ip — 2), (67)

where ng = 22 \IJL\IJQ, np = 22 \i’l\ifg. For UTW = n, the graded fully symmetric represen-

a=1 o=1
tation is derived as

1.12) = <=9 91 ), (6%2)
Imy, ms) = \/ﬁ\y{mlxy;m@}\m, (68D)
) = 0" 0" ) (65¢)
mma) = <=0 9] ] 00), (654)

12



where I + 1o = my1 +ma+1=m) +mb+1=mn;1+ns+2=n with non-negative integers, l1, lo,

mi, ma, my, mh, ni, no. We have two sets of bosonic states, |l1,l2) and |nq,n2), and two sets of
fermionic states, |mq, ms) and |m/, m}) as well. The degrees of freedom of bosonic and fermionic
states are equally given by

dp =d(n)+d(n—2) =2n,
dp =2 xd(n—1) =2n, (69)

with d(n) = n + 1, and the total is
dr =dp + dp = 4n. (70)

Square of the radius of N = 2 fuzzy two-supersphere (66 does not have the zero-pint energy since
the bosonic and fermionic degrees of freedom are equal. The first two sets, (63a) and (63L]), are
UOSp(1|2) j = n/2 irreducible representations, and the other two, ([68d) and (68d)), are UOSp(1]2)
j =n/2—1/2. In this sense, the N = 2 fuzzy two-supersphere with radius n is regarded as a
“superposition” of two N = 1 fuzzy superspheres whose radii are n and n — 1. Remember that
N = 1 fuzzy two-supersphere can be regarded as a superposition of two bosonic fuzzy spheres.
Consequently, N = 2 fuzzy sphere is realized as a superposition of four fuzzy spheres whose radii
aren, n — 1, n— 1 and n — 2. Schematically,

2 (n) ~ S22 (n) & S (n — 1)
~ S%(n) @ SE(n—1) @ Sk(n—1) @ Sk(n —2). (71)

Notice that such particular feature is a consequence of the adoption of graded fully symmetric
representation. The corresponding latitudes of the states (G8]) are given by

ngn—k; (72)

with £ =0,1,2,--- ,2n. The even k correspond to the bosonic states, ([68al) and (68d)), while odd
k the fermionic states, (G8D) and (G8d). Except for non-degenerate states at the north and south
poles X3 = +n, the eigenvalues of X3 ([2)) are doubly-degenerate.

Since the right-hand side of (66) is invariant under the SU(2|2) rotation of ¥, the symmetry
of N = 2 fuzzy two-supersphere is considered as SU(2|2) rather than UOSp(2|2).

3.3.3 N =2 graded 1st Hopf map

Based on the Schwinger construction of N = 2 fuzzy two-supersphere, we introduce N = 2 version
of the graded 1st Hopf map. With (62]), we define

wp =20 Lith, B =20 Latp, 6L, =20 L0, g =T (73)
Here, v denotes a four-component spinor ¢ = (1,9, 71,72)" normalized as
Mo = i + U5 —nim — n3me = 1, (74)
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and then is regarded as coordinates on S%*. The coordinates (73)) satisfy the relation
;T + Eaﬁeaeﬁ + eaﬁefxeé + 92 = (1/11@ =1 (75)

Notice all of the quantities (73]) are not independemﬁ. This can typically be seen from 6,656,659 =
0. (If 8, ¢/, and g were independent, their product would not be zero.) Rewrite ¢ as

(01 ¢1
(05 b2
P = =V 1+nm+nin - 76
m VI ? 1 —15m2 1 (76)
72 L —mnim 2
where (¢1, ¢2) denotes the normalized SU(2) spinor (40). Also, we express 7 and 7y as
m = ¢ip1 + gar1,
N2 = $1p2 + Pava, (77)

where pq po represent the real parts of the Grassmann odd quantities and vy v5 represent the
imaginary parts. The map ({Z3]) determines the relations between j 2, v1 2 and 6 2, 9172 as

01=/1T+nim+mne 1, 0= /T+nim +nim v,
0y = /T mm +mne pas Oy =/T+0im + i va- (78)

Then,
nim + n3m2

0105 + 0105 = —(nim + nan2) (1 +nin +nine) = — , 79
102 + 0105 = —(nim + mamz) (1 + nim + mam2) T ——— (79)
or inversely,
0162 +0’1% i Il
1 oy = ——— == = —010y — 010, — 20,05010,. 80
M+ 1am2 1— 010, - 0,0} 102 = 0105 102010 (80)
Therefore, from (8)) and 8Q), u1, v1, pe and vy are represented as
! 0 ! 0
= — N VN = — N
= ae ! VA
1 / 1 /
= — 90, Vg = ———f. 81
M= =00, ! 2T T 010, 2 (81)
Consequently, 1) is given by
1+ys
1 ; )
b= bt X, (82)

V20 + y3) (T + 010, + 005 + 40,0,0705) | (1+ 60105)(01(1 + y3) + O2(y1 + iy2))
(14 61602)(07(1 + y3) + O5(y1 + 2))

7 This situation is similar to Schwinger construction of fuzzy complex projective space. The coordinates on fuzzy
CPN! are represented by the SU(N) generators sandwiched by Schwinger operators. Though the real dimension
of CPN=1is 2N — 2, the dimension of SU(N) generator is N? — 1. This “discrepancy” is resolved by noticing all of
the SU(N) generators in the Schwinger construction are not independent and satisfy a set of constraints. See [50]
for more details.
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where X denotes arbitrary U(1) phase factor. x; and y; are related as

1 1
- Ti = T;.
L+nim +mme - 1 — 0100 — 0,0, — 26,0,0,0,™"

Yi (83)

Thus, 1 can be expressed by x;, 04, 0, the coordinates on 5214 and arbitrary U (1) phase factor.
Obviously, the U(1)(~ S') phase is canceled in (73). Then, the bilinear map (73] represents

g S g2 (84)

which we call the N = 2 graded 1st Hopf map. We have four bosonic and four fermionic coordinates
in (73), but g = —nin2 + n3m is a redundant coordinate. Indeed, with ([82)), g is expressed by y;,
0, and 0!, as

9= y1(0107 — 0205) — iy2(0160] + 02605) — y3(6165 + 6261). (85)

It can also be shown that the following “renormalization”,

T — 1—92@:(1—%92)@, Oo — V1 =92 0, =0,
O = V1 — g% 0, = b, (86)
eliminates g: the renormalized coordinates satisfy the ordinary condition of $2/4,
% + €qpbabp + EQB%H'B =1. (87)

One might attempt to introduce more supersymmetry. In principle, it is probable to do so
by utilizing UOSp(N|2) algebras for N > 3. However, the radius of the N = 2 fuzzy two-
supersphere (66]) already saturates the “classical bound” (78]). In general, square of the radius
of fuzzy supersphere with N-SUSY is proportional to n(n + 2 — N) and becomes negative for
“sufficiently small” n that satisfies n < N — 2. Hence we stop at N = 2.

4 Graded 2nd Hopf maps and fuzzy four-superspheres

In this section, we extend the previous formulation to fuzzy four-supersphere.

4.1 The 2nd Hopf map and fuzzy four-sphere

The 2nd Hopf map
3
ST 2 gl (88)
is represented as
¢ — o=, (89)

where ¢ = (¢1, ¢2, ¢3, d4)! is a normalized four-component complex spinor #T¢ = 1, representing
coordinates on S7. v, (a = 1,2,3,4,5) are SO(5) gamma matrices that satisfy {v,,7} = 20a
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with Kronecker delta d45. 7, can be taken as

o 0 iUl o 0 iUg o 0 iUg
M= siey 0 ) PN iy 0 ) BT\ ey 0 )
0 1 I, 0
= : = : 90
V4 ( 1, 0 ) 5 < 0 _12) (90)

where 19 denotes 2 x 2 unit matrix. From (89), we have
— (HT )2 =
Tala = (¢'9)” = 1. (91)

Thus, z, ([89) are coordinates on four-sphere.
Coordinates on fuzzy four-sphere S% are constructed as [2]

X, = 0,0, (92)

where ® = (&1, &y, P53, &4)! represents a four-component Schwinger operator satisfying [®,, <I>;] =
dap and [Pq, Pg] =0 (o, f =1,2,3,4). Square of the radius of fuzzy four-sphere is derived as

XoX, = (2'0)(d® 4 4). (93)

The zero-point energy corresponds to the number of the four-components of the Schwinger oper-
ator. Let n be the eigenvalues of the number operator 7 = ®'®. The corresponding eigenstates
are fully symmetric representation:

I
VI Il ]

with Iy + ls + 3 + 4 = n for non-negative integers 1, lo, I3, [4. The degeneracy is

l l l l
1,1, B3, 1) = ool ol el |0), (94)

D(n) = %(m 1)(n+2)(n+3). (95)

Notice, for the fully symmetric representation, square of the radius (@3)) is equal to the SO(5)
Casimir:
XoX, = (210) (D7D 4 4) = 2X 4, X op, (96)

where X, are the SO(5) generators given by
[th7 Xb] = 4iXab7 (97)
with

1
Yab = —ZZ[%,%]- (98)
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Yap are explicitly

o 1 g3 0 o 1 —09 0 o 1 01 0

Y12 = 5 0 o5’ 713 = 5 0 oy ] Y14 = 5 0 —o1)’
o 1 0 —01 o 1 g1 0 o l g9 0

Y15 = 5 oy 0 ) Y23 = 5 0 o)’ V24 = 5 0 —0y)°
o 1 0 —02 o 1 g3 0 o l 0 —03

Y25 = 5 oy 0 ) Y34 = 5 0 —o3)’ V35 = B o5 0 )

1 0 ily
_ , 99
Va5 2( il 0) (99)

Inversely, the sum of SO(5) generators can be “converted” to that of gamma matrices as long as
the fully symmetric representation is adopted. Such conversion is crucial in constructing fuzzy
four-superspheres as we shall see.

In total, the fifteen operators, X, and X, satisfy a closed algebra:

[Xay Xb] - 4iXab: [Xay Xbc] - _i((sach - 5ach)7
[Xaby Xcd] - i((sachd - 5adec + 6chad - 5banc)' (100)

By identifying Xo6 = £X, and X, = X, one may find that (I00) is equivalent to SO(6) ~ SU (4)
algebra,
[Xap, Xcep] = i(0acXBp — 0apXpe + 0pcXap — dppXac), (101)

where A, B =1,2,...,6. Thus, the underlying algebra of fuzzy foursphere is considered as SU(4).
The SU(4) structure of the fuzzy four-sphere can also be deduced from the SU(4) invariance of
the right-hand side of ([@3]). The states |l1,[2,13,14) ([@4]) ring the four-sphere at latitudes

X5 =n— 2k, (102)
where £k =0,1,2,--- ,n, and is related to Iy, ls, I3, l4 as
k=l3+li=n—10—1 (103)
or
Lh+1l=n—k, ls3+1ls=k. (104)

From (I04]), one may find, unlike the fuzzy two-sphere case, at X5 = n — 2k, there is degeneracy
Di(n)=d(n—k)-dk)=(n—k+1)(k+1), (105)

where d(k) is the number of the states on fuzzy two-sphere (22)). (@5 is reproduced as

D(n) = Di(n) = _d(n—k)-d(k). (106)
k=0 k=0
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With increase of k, Di(n) monotonically increases from the north-pole to the equator k = n/2, and
monotonically decreases from the equator to the south-pole. Dy(n) is symmetric under k <> n—k,
which corresponds to the inversion symmetry of sphere with respect to the equator. Since d(n— k)
and d(k) represent the degrees of freedom of fuzzy two-spheres with radii n —k and k, respectively,
([I0%) and ([I0G) imply the “internal” degrees of freedom of fuzzy four-sphere: fuzzy four-sphere is
constituted of four-sphere and fibre consisting of two fuzzy two-spheres (whose radii are (n+ X3)/2
and (n — X5)/2 at the latitude X5). Schematically,

St (1) xs=n—21 = Si:(n — k) © SE (k). (107)

In particular, at the north-pole, i.e. X5 = n, we have only one fuzzy two-sphere fibre with radius
n: Sh(n)|xs=n =~ S%(n). Coordinates of the two “internal” fuzzy two-spheres are respectively

given by
1 1
Ri = SeijeXje + Xig, R; = 5 €igkXjk — Xia. (108)
They satisfy
[RZ', R]] = _2i€iijka [R;, R;] = 21'61'ij;€, [RZ,R;] =0. (109)

Then, naturally, |l1,1s,l3,14) are regarded as the states on the fuzzy manifold spanned by X, and
X The three independent quantities of I, lo, I3, l4, specify three latitudes of the four-sphere
and two “internal” fuzzy two-spheres:

Xy =11 +1lp — 13—y,
Rz =11 — o,
Ry=1s5— L. (110)

Inversely, |l1,12,13,14) is uniquely specified by the eigenvalues of X5, X159 and X3y4:

1 1 1 1 1 1
Iy = Zn + ZXS + §R37 lp = Zn + ZXS - §R3,
1, 1, 1, 1,
I3 = Zn — ZXS + §R3, ly = 4n 4X5 2R3. (111)

Thus, as emphasized in Refs.[35] 36], the fuzzy four-sphere has such “extra-fuzzy space” that does
not have counterpart in the original four-spherdd. The existence of th fuzzy fibre S% can naturally
be understood in the context of the 2nd Hopf map. The SO(5) spinor ¢ denotes coordinates on
ST~ §1® 83, and the U(1) phase of ¢ is factored out to obtain CP? ~ S7/S ~ 5% ® S? [52]: we
have S2-fibred S* as the classical counterpart of S%, not just S%. Such enhancement mechanism
is inherited to the supersymmetric cases.

4.2 N =1 fuzzy four-supersphere

Here, we utilize UOSp(1]4) algebra to construct fuzzy four-superspheres with N =1 SUSY.

80ne could truncate the extra fuzzy spaces, however in such a case, non-associative product has to be implemented

1.
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4.2.1 UOSp(1]4) algebra

The UOSp(1]4) algebra is constituted of fourteen generators, ten of which are bosonic Ty = =T,
(a,b=1,2,---,5), and the remaining four are fermionic I'y, (v =1,2,3,4),

dim[UOSp(1]4)] = 104 = 14. (112)
The UOSp(1|4) algebra is given by
[Paba ch] - Z‘((Sacrbd - 5adrbc - 5bcrad + 5bdFaC)7

[Faba Fa] = (Vab)ﬁarﬁa

{Faa Fﬁ} = Z(C'Vab)aﬁraby (113)
a<b

where C' is the SO(5) charge conjugation matrix

C— <8 S) (114)

with € = ioy (see Appendix [Bl for detail properties of C). Ty, act as SO(5) generators and Ty, as
a SO(5) spinor. The UOSp(1]|4) quadratic Casimir is given by

C=> Tala+ Caglals, (115)
a<b

and Scasimir is

1 3
S=—(Cupl'al's—-). 116
5(CapTals =) (116)
Similar to the UOSP(1/|2) case, the Scasimir satisfies
[Cap, S| ={T,S} =0, (117)
and 9
S*t=C+ =2 (118)

The fundamental representation matrices are constructed as follows. First, we introduce

_[7% O
ra_<0 0) (119)

with v, (@0), to yield SO(5) generators

1
L = _ZZ[Fme]’ (120)
or
Yab 0
T = 121
ab ( 0 0) 5 ( )
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with 74 ([@9). The fermionic generators are

1 04 Ta
r, = 122
CV2 <—(C’Ta)t 0) ’ (122)
where
1 0 0 0
0 1 0 0
1 0 , T2 0 y T3 1| T4 0 ( )
0 0 0 1
More explicitly,
00 0 01 0 0 0 00
1 000 O0O 1 0 0 0 01
Iy = — 000 O0O0], Ly, = — 0 0 0 0 0],
V2 000 O0O V2 0 00 0O
01000 -1 0 0 0 O
000 O0O 00 0 00
1 000 0O 1 00 0 00
Ly, = —= 0000 1], Ly, = — 00 0 0O (124)
V2 000 0O V2 00 0 01
00010 00 -1 00

They satisfy the “hermiticity” condition

Ih=T,, Tf =Tu  Th=Culs (125)

«

4.2.2 N =1 graded 2nd Hopf map

Generalizing the procedure in Sec[3.2.2] we construct N = 1 graded version of the 2nd Hopf map.
We first introduce an UOSp(1]4) spinor

¢ = (1,92, 3,94, 1), (126)
where 1, 12, ¥3, 14, are Grassmann even while 7 is Grassmann odd. v is normalized as
Py =1, (127)
where
W= (0,05, 95, ¢, ") (128)

with pseudo-complex conjugation *. From ([I27]), we find that ¢) denotes coordinates on S712. We
give N = 1 graded 2nd Hopf map as

¢ — Tg= WFal/J, 904 = WFaiﬂ’ (129)
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where I';, and T, are (I19]) and (I24]), respectively. In detail,
x1 = i1 + iPaihs — ih3he — i,
w9 = Piha — P3b3 — Y39 + Yy,
T3 = 113 — iaha — i1 + iie,
Tg = Y13 + P3ha + P31 + i,
T5 = Y11 + P3Pa — P33 — Py,

1
b1 = —2(¢T?7 — "),

5

1
Gy — — * + * ,
2 \/5(71)277 n 1)
1
G2 = — Kk ,
3 \/5(71)377 1" a)
1
0y = —(Yyn+ n*hs3). 130
4 \/5(71)477 n"3) (130)
From (n*)* = —n, we have z} = x, and 8}, = C,303. It is straightforward to see
Tata + 2Cus0a0p = (VHp)% = 1. (131)

If 2, and 6, were independent, (I31]) was the definition of four-supersphere with four (pseudo-real)
fermionic coordinates, S4*. However, 61, 0, 03 and 04 are not independent to each other, since
they are constructed from only one Grassmann odd quantity 7 that carries two real (Grassmann
odd) degrees of freedom. Indeed,

1
6102 = — =" n(ivr + 31),

2
1 * * *
0304 = —57 N33 + iva), (132)
and then, for instance, 610203 = 0. Also we find
Capblabp = =0 (V11 + aths + Y3v3 + Yiha) = —n'n, (133)

and the relation (I3T]) can be rewritten as
TaZoq — 20N =1, (134)

which corresponds to S42. Thus, z, and 6, are regarded as coordinates on S*? rather than S44.
As a consequence, ([I29) represents

sz S g2 - gt (135)

The cancellation of S% can be understood by the following arguments. The original normalized
SO(5) spinor is embedded in the UOSp(1]4) spinor as

o1 ()
2| 1 (0

= o3 | VIt s | (136)
¢4 Py
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From ([I27]), the normalization of ¢ follows

ol =1. (137)
Then, the map
¢ = Ya= ¢T7a¢y (138)
signifies the 2nd Hopf map (88)). y, are coordinates of $*; the body of S42. With y,, ¢ is expressed
as
u
1 (1+ys) <v>
gL (139)

20485) | () = i) (u) )

where (u,v)" is an arbitrary two-component spinor subject to the normalization v*u + v*v = 1
representing S3-fibre. Such S3-fibre is canceled in (I38)) to yield the coordinates on S*. In the
graded 2nd Hopf map (I30), the cancellation of S3 can also be shown. Write the Grassmann odd
component 7 as

t

1= up+vv, (140)

with p and v being real and imaginary Grassmann odd quantities that satisfy
w =, vt = —p. (141)
By inserting (I39) and (I4Q) to (I30)), one may show

Lag = (1 - IUV) Ya,
01\ VIituys(u
92 N 2 1% ’
O3\ _ 1 oty [ M
<9i) = Z\/T—%(m + iy;04") <1/> ; (142)

where n*n = —puv was utilized. Notice that S3-fibre denoted by (u,v) vanish in the expression of
zq and 6, ([I42). Furthermore, 0,—3 4 are not independent with 6,—1 2, but related as

03 1 . o [ 01
= 10 . 143
<94> T (ya + iyioi") <92> (143)

The N = 1 graded Hopf fibration, S7I2 ~ §42 & 3. is obvious from the expression

o1 VT (1 +ys) (“)

®2 v
1 1
_ N : 144
v V3= z 2(14ys) | VI —pv (ya — iyios) <Z> (144

7 2(1+ys) (up+vv)
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where S3-fibre, (u,v)!, is canceled in (I3Q), and y, and p, v, respectively account for bosonic and
fermionic coordinates on S*2. With 6; and 6, ¢ is rewritten as

V1= 10102 (1+ys) (Z)
1

, 145
b= V2(1+ys) \/1 9192 — 1Y;0;) <Z> (145)
2\/5 (uby + vb>)

where g, are related to z, as

4
= (1— 0 14
Y < 1 T 5 9192) xr ( 6