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Abstract

Recent studies of the AdS4/CFT3 correspondence involve the construction of

a peculiar supersymmetric gauge theory on the worldvolume of multiple M2s

branes as a boundary field theory. Under suitable conditions the quantum the-

ory becomes a noncommutative supersymmetric YM-CS gauge theory which

call for an study of its renormalized perturbative corrections. As a prelimi-

nary step to more general consideration, the modification of the N = 3, 2, 1

supersymmetric YM-CS gauge theory due to noncommutativity of spatial co-

ordinates is proposed. We carry out the one-loop renormalization and a non-

commutative correction for the Chern-Simons coefficient is obtained. Finally

it is found that this new correction depends of the noncommutative parameter

in an analytic form.
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1 Introduction

In recent years, supersymmetric Chern-Simons (CS) gauge theories have attracted

a great deal of attention due to the correspondence AdS4/CFT3 between CS matter

field theories (CSM) and M-theory on AdS4 × S7 (the ABJM model [1]). It is expected

that a superconformal CSM theory with a large number of supersymmetries be useful to

describe, at low energies, the worldvolume theory on multiple membranes (M2-branes) in

M-theory. However in Ref. [2], it was argued that these theories have not the required

supersymmetries. Moreover from the construction of a model with N = 8 supersymmetry

[3] (the BL model) a lot of work has been developed in different directions (for instance

see [4] and references therein). On the other hand, it has been constructed a large class

of N = 4 CSM theories by a method that enhances N = 1 supersymmetry to N = 4 [5],

and has been proved that with some suitable conditions these theories are equivalent to

the model building in [3]. By using group representation theory, from N = 1 to N = 8

CSM theories were constructed systematically [6], and the equivalence of these models

has been described for N = 5 in [7].

In Ref. [8] it is studied the quantum properties of the theory of Bagger and Lambert

(BL) where it is analyzed the perturbative shift in the CS coupling constant. They use

a Yang-Mills action as regulator in the spirit of [9], and find that there are a one-loop

correction in the coupling κ → κ + 2sgn(κ). They conjecture that, although the BL

theory and the model proposed in [1] for N = 6 are equivalent classically, they may not

be equivalent at the quantum level. Another study in the context of quantum properties

of CSM models for N = 2 is performed in [10]. So the quantum properties of CS theories

with supersymmetry are interesting.

Perturbative studies of Chern-Simons theories have many motivations. Historically

they arise from the quest of new topological invariants order by order in perturbation

theory [11]. From a seminal paper [12], it is a known fact that the requirement of in-

variance of the Chern-Simons Lagrangian under finite gauge transformation leads to the

quantization of the coupling constant. This quantization is also valid in the noncommuta-

tive version as it was shown in [13, 14, 15]. Nevertheless if one couples Yang-Mills theory

in three dimensions with the Chern-Simons theory it was recognized that a shift of the
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coupling constant is found due to quantum corrections, κ→ κ+cv, where cv is the Casimir

of the underlying group. This shift is found through the analysis of the renormalization

of the coupled theory [11, 16].

Supersymmetric YM-CS theories arise also from some configurations of D3-branes

and (p, q)-fivebranes in Type IIB superstring theory. These theories has been described

in [17] for which is placed a D3-brane between NS5-branes and D5 branes. In [18, 19]

it was constructed the brane configuration which describe supersymmetric YM-CS and

the conditions under which is breaking the supersymmetry. There were reproduced the

results obtained by Witten by computing the index [20].

For N = 3, 2, 1 supersymmetric theories the quantum corrections for YMCS theory

are nice computed in by Kao, Lee and Lee in Ref. [9]. They found a shift in the coupling

constant only for N = 1. In the present paper we construct a noncommutatve version

of Kao, Lee and Lee model. We find some no-trivial correction to the Chern-Simons

coefficient in terms of the non-commutative parameter Θ, which is an analytical function

of this parameter. This would be relevant in order to find a noncommutative version of

the the AdS4/CFT3. The field theory version would involves a noncommutative YM-

CS theory of the form considered in this paper or in general grounds a noncommutative

version of the BL model or the ABJM model. Some recent proposals in this direction

are found in [21]. To construct the noncommutative theory we will consider only spatial

noncommutativity to avoid causality problems [22]. The noncommutativity is introduced

as usual, by through the Moyal star product (for a review, see [23, 24]). As it is known

the noncommutativity changes the algebra of the gauge group to the universal enveloping

algebra of the group. As we will shown this change can be summarize in a new Θ

dependent functions of structure.

In the context of noncommutative supersymmetric Chern-Simons theories, recently

there have been some studies shown the consistency an finiteness of this kind of theories

by using superfields formulation [25, 26, 27, 28, 29].

The paper is organized as follows. I Section II we review the supersymmetric YM-

CS theory and build the noncommutative version. Section III is devoted to study the

Ward-Slanov-Taylor identities. In section IV we analyze the one-loop renormalization
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of our model. In section V we compute the noncommutative shift to the Chern-Simons

coefficient. In section VI the final comments are presented.

2 Noncommutative Supersymmetric Yang-Mills-Chern-

Simons

We start from the N = 3 supersymmetric YM Lagrangian with gauge group G [9] with

a explicit symmetry O(3). In this Lagrangian we have the gauge multiplet, consisting of

a massive vector Aµ, three Majorana Fermions λa, three neutral scalar bosons Ca and

one Majorana fermion of opposite helicity χ. This Lagrangian can be obtained from the

dimensional reduction for a pure supersymmetric N = 2 YM theory in four dimensions

[30]. The Lagrangian is given by

LYM =
1

g2
Tr

{
−1

2
FµνF

µν +DµCaD
µCa + (Da)

2 + iλ̄aD�µλa + χ̄D�µχ

+ iεabcλ̄a[λb, Cc]− 2iλ̄a[χ,Ca]−
1

2
[Ca, Cb][Cb, Ca]

}
, (1)

where Dµ = ∂µ − i[Aµ, ·], a, b, c = 1, 2, 3 y Da are auxiliary fields. The auxiliary fields

are absent when we consider the Lagrangian on-shell. The generators of the gauge group

satisfy [Tm, T n] = if lmnT l and TrTmT n = δmn/2 with f lmn being the structure constants

of G. The fields belong to the adjoint representation and Aµ = Amµ T
m. The quadratic

Casimir cf of the gauge group G in the adjoint representation is given by fkmnf lmn = cfδ
kl.

The metric is written as (1,−1,−1) and ε012 = ε012 = 1. The gamma matrices are purely

imaginary and satisfy the relation: γµγν = ηµν − iεµνργρ.

Now the N = 3 supersymmetric Chern-Simons Lagrangian which is obtained and

given in [30]

LCS = κTr

{
εµνρ

(
Aµ∂νAρ −

2

3
iAµAνAρ

)
− λ̄aλa + χ̄χ+ 2CaDa +

i

3
εabcCa[Cb, Cc]

}
,

(2)

where κ is the coupling constant also termed the Chern-Simons coefficient.

The system to be considered in this paper comes from the addition of both Lagrangians

L = LYM + LCS. (3)
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The N = 3 supersymmetric transformations are given by

δAµ = −iᾱaγµλa,

δλa = iB�αa − εabc(Dbαc − iD�Cbαc) + i[Ca, Cb]αb,

δχ = −iD�Caαa −Daαa + i
2
εabc[Cb, Cc]αa,

δCa = −εabcᾱbλc + ᾱaχ,

δDa = iεabcᾱbD�λc + iᾱaD�χ+ i[ᾱbλa, Cb]

−i[ᾱbλb, Ca] + i[ᾱaλb, Cb]− iεabcᾱb[χ,Cc],

(4)

where Bµ = εµνρ∂νAρ.

Using field equations for the auxiliary field Da + κg2Ca = 0, derived from L we can

eliminate the auxiliary fields Da to obtain in this way, the total on-shell Lagrangian reads

L =
1

g2
Tr

{
−1

2
FµνF

µν + (DµCa)
2 + iλ̄aγ

µDµλa + iχ̄γµDµχ

+ iεabcλ̄a[λb, Cc]− 2iλ̄a[χ,Ca]−
1

2
[Ca, Cb][Cb, Ca]

}
+κTr

{
εµνρ

(
Aµ∂νAρ −

2

3
iAµAνAρ

)
− κg2C2

a − λ̄aλa + χ̄χ

− i

3
εabcCa[Cb, Cc]

}
. (5)

If we scale the gauge field by Amµ → gAmµ , we can see that the expansion parameter is g2,

which has mass dimension.

We must add the fixing gauge term and the Faddeev-Popov one for the ghost fields

Lgf = − 1

2ξ
(∂µAmµ )2, (6)

LFP = −2Tr[η̄(∂µDµ)η]. (7)

These terms complete the commutative theory.

We are interested in analyzing the one-loop corrections of the noncommutative theory.

The spatial noncommutativity of space is introduced by changing the usual product of

smooth functions by the Moyal star product. After defining m = kg2 and adding all
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Lagrangians we have

L = Tr
1

g2

{
1

2
(∂µAν − ∂νAµ − i[Aµ, Aν ]?) (∂µAν − ∂νAµ − i[Aµ, Aν ]?)

+(∂µCa − i[Aµ, Ca]?)(∂µCa − i[Aµ, Ca]?)

+iλ̄aγ
µ∂µλa + λ̄aγ

µ[Aµ, λa]? + iχ̄γµ∂µχ+ χ̄γµ[Aµ, χ]?

+iεabcλ̄a[λb, Cc]? − 2iλ̄a[χ,Ca]? −
1

2
[Ca, Cb]?[Cb, Ca]?

+mεµνρ
(
Aµ∂νAρ −

i

3
Aµ[Aν , Aρ]?

)
−m2C2

a −mλ̄aλa +mχ̄χ

− i
3
εabcCa[Cb, Cc]?

}
− 1

g2

1

ξ
∂µAmµ ∂

νAmν − η̄m∂µ∂µηm − i∂µη̄m[Aµ, η]m? , (8)

where we have omitted explicitly one star product according to the properties of it [23, 24].

We must remark that this is a noncommutative non-abelian theory. It is well known that

when the noncommutativity is introduced in an abelian theory, the effect is, to turns out

the commutative theory into non-abelian one, with gauge symmetry being described by

a universal enveloping algebra of the gauge Lie algebra [14, 26, 31, 32, 33, 34, 35, 36, 37].

Now it is necessary to see how the commutator algebra changes for the noncommuta-

tive gauge theories. We know that the star commutator of two fields is

[Aµ, Aν ]? = Aµ ? Aν − Aν ? Aµ, (9)

as we are working in the adjoint representation Aµ = Amµ T
m, with the explicit calculus

we have

[Aµ, Aν ]? = Amµ T
m ? AnνT

n − AnνT n ? Amµ Tm

= Amµ ? A
n
ν

1

2
([Tm, T n] + {Tm, T n})− AnνAmµ

1

2
([T n, Tm] + {T n, Tm})

=
1

2
Amµ e

i
2

←−
∂ Θ
−→
∂ Anν ([Tm, T n] + {Tm, T n})

−1

2
Amµ e

− i
2

←−
∂ Θ
−→
∂ Anν ([T n, Tm] + {T n, Tm}). (10)

Recall that the structure constants totally antisymmetric fklm and the totally symmetric

dklm of the gauge group G = U(N) are given by the next relations [38, 39]

[T l, Tm] = ifklmT k, {T l, Tm} = dklmT k, (11)

6



and we can rewrite (10) as

[Aµ, Aν ]? = iAmµ cos

(←−
∂αΘαβ−→∂β

2

)
Anν flmnT

l + iAmµ sin

(←−
∂αΘαβ−→∂β

2

)
Anν dlmnT

l. (12)

In the momentum space the last expression takes the form

[Aµ, Aν ]? =

∫
p,q

iAmµ (p)
[
cos
(
−p ∧ q

2

)
flmnT

l + sin
(
−p ∧ q

2

)
dlmnT

l
]
Anν (q)ei(p+q)x,

(13)

where p ∧ q ≡ pαΘαβqβ. Thus we can define a new structure functions as follows

Flmn(q ∧ p) = flmn cos
(q ∧ p

2

)
+ dlmn sin

(q ∧ p
2

)
. (14)

Then we can write the commutator in a simplified form by

[Aµ, Aν ]
m
? =

∫
p,q

Akµ(p)Alν(q)iFklm(q ∧ p)e−i(p+q)x, (15)

where as we mentioned earlier, we are working with the universal enveloping algebra of

the gauge group [40, 41, 42, 43, 44, 45, 46]. The new structure function have the following

property

Flmn(p ∧ q) = −Fmln(q ∧ p). (16)

Consequently the free Lagrangian is given by

L0 =
1

2g2
Amµ

{
(∂2ηµν − ∂µ∂ν)−mεµνρ∂ρ +

1

ξ
∂µ∂ν

}
Amν

+
1

2g2
Ca(−∂2 −m2)Ca +

1

2g2
λ̄a(i∂�−m)λa +

1

2g2
χ̄(i∂� +m)χ

+η̄m(−∂2)ηm, (17)
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while the interacting Lagrangian is written as

LI =
1

g2

∫
k

{
ik1µA

m
ν (k1)Anµ(k2)Atν(k3)Fnrm(k2 ∧ k3)e−i(k1+k2+k3)x

−1

4
Anµ(k1)Arν(k2)Asµ(k3)Atν(k4)Fnrm(k1 ∧ k2)Fstm(k3 ∧ k4)e−i(k1+k2+k3+k4)x

+
m

6
εµνρAmµ (k1)Anν (k2)Arρ(k3)Fnrm(k2 ∧ k3)e−i(k1+k2+k3)x

−ik1µC
m
a (k1)Anµ(k2)Cr

a(k3)Fnrm(k2 ∧ k3)e−i(k1+k2+k3)x

+
1

2
Anµ(k1)Cr

a(k2)Fnrm(k1 ∧ k2)Asµ(k3)Ct
a(k4)Fstm(k3 ∧ k4)e−i(k1+k2+k3+k4)x

+
i

2
λ̄ma (k1)γµAnµ(k2)λra(k3)Fnrm(k2 ∧ k3)e−i(k2+k3−k1)x

+
i

2
χ̄m(k1)γµAnµ(k2)χr(k3)Fnrm(k2 ∧ k3)e−i(k2+k3−k1)x

−1

2
εabcλ̄

m
a (k1)λnb (k2)Cr

c (k3)Fnrm(k2 ∧ k3)e−i(k2+k3−k1)x

+λ̄ma (k1)χn(k2)Cr
a(k3)Fnrm(k2 ∧ k3)e−i(k2+k3−k1)x

+
1

4
Cn
a (k1)Cr

b (k2)Cs
b (k3)Ct

a(k4)(k4)Fnrm(k1 ∧ k2)Fstm(k3 ∧ k4)e−i(k1+k2+k3+k4)x

+
1

6
mεabcC

m
a (k1)Cn

b (k2)Cr
c (k3)Fnrm(k2 ∧ k3)e−i(k1+k2+k3)x

}
+

∫
k

ikµ1 η̄
m(k1)Anµ(k2)ηr(k3)Fnrm(k2 ∧ k3)e−i(k2+k3−k1)x. (18)

Now we are in position to calculate the Feynman rules for the theory (see Appendix A).

Let us write here only the propagator for the gauge field by

∆µν(k) =
g2

k2(k2 −m2)
(kµkν − k2ηµν − imεµνρkρ) + g2ξ

kµkν
k4

. (19)

In order to avoid infrared divergences we will take the Landau gauge i.e. ξ = 0.

3 The Ward-Slanov-Taylor identities

In the ordinary gauge field theory the Ward-Slanov-Taylor identities play a very im-

portant role in the renormalizability of the perturbative theory. For renormalizable gauge

theories these identities essentially represent the manifestation of the gauge invariance

with the regularized or renormalized action with counterterms included. Conversely, by

verifying the Ward-Slanov-Taylor identities we can check the renormalizability and the

gauge invariance of the renormalized theory. The same is valid for the noncommutative
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theories [14]. In this section we comment on the conditions that Ward identities must be

fulfilled in order to verify the gauge invariance.

Due to the symmetry of the system, we can factorize the self-energy as

Πµν(p) =
1

m
(δµνp

2 − pµpν)Πe − iεµνρpρΠ0. (20)

Contracting Πµν with δµν
2p2

and εµνρpρ

2p2
we obtain Πe and Πo respectively. The kinetic term

in the effective action for the gauge boson leads to

∆−1
µν (p) = ∆−1

0µν(p) + Πµν(p), (21)

where Πµν is the self-energy of the gauge boson, and the subindex 0 stands for the bare

propagator. In the same way, the ghost propagator is corrected in the next form

∆̃(p) =
1

Z̃(p)p2
, (22)

where

Z̃(p) = 1 + Π̃(p). (23)

The part of the action that is similar to the classical Lagrangian can be written in

terms of the renormalized fields and their respective parameters according to the standard

normalization [47, 48]. Thus we obtain the relation between the renormalized fields and

bare fields, for instance

Amµ =
√
Z3A

m
renµ, (24)

ηm =
√
Z̃ηmren. (25)

Consequently the interaction between the ghost fields and the gauge field must be the

identity after the renormalization by the Ward identities, then we have

Z3 = Z̃−2. (26)

Let us define now Zκ ≡ 1−Πo(p)/κ [9], and the renormalized Chern-Simons coefficient

is

κren = κZκZ3 = ZκZ̃
−2

= κ

(
1− 1

κ
Πo(p) + 2Π̃(p)

)
. (27)
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4 One-loop renormalization

In here we calculate the one-loop self-energy of the gauge field, for which there are

seven diagrams, but according to decomposition did in (20), we have that for the odd

part Πo of the self-energy only contribute three diagrams, which are those that have a

term with a factor εµνρ. For the even part of the self-energy Πe it is necessary to take

into account all diagrams.

As we seen in the previous section, to calculate the correction to the Chern-Simons

coefficient only is necessary to find the odd part of the self-energy of the gluon and the

self-energy of the ghost field. Let us first calculate the self-energy of the ghost field.

4.1 Self-energy of the Ghost Field

Using the Feynman rules shown in Appendix A, the term that result after contracting

the indices and taking the trace of the structure functions is given by

Π̃(p) =
im

κp2

1

2
(cf + cd)

∫
d3k

(2π)3

p2k2 − (p · k)2

k2(k2 −m2)(p+ k)2

+
im

κp2

1

2
(cf − cd)

∫
d3k

(2π)3

cos(p̃k)(p2k2 − (p · k)2)

k2(k2 −m2)(p+ k)2
, (28)

where p̃k = pµΘµνkν and cf , cd are the quadratic Casimirs of the structure constants

antisymmetric and symmetric respectively. To obtain this factorization, in the process of

using the Feynman rules we must take into account the properties of the algebra in the

new Θ-dependent structure function as is shown as follows

Tr[Ftsr(p ∧ k)Fusr(p ∧ k)] = Tr

{[
ftsr cos

(
p̃k

2

)
+ dtsrsin

(
p̃k

2

)]
[
fusr cos

(
p̃k

2

)
+ dusrsin

(
p̃k

2

)]}
= Tr

[
ftsr fusr cos2

(
p̃k

2

)
+ dtsr dusrsin

2

(
p̃k

2

)
+ (ftsr dusr + fusr dtsr) cos

(
p̃k

2

)
sin

(
p̃k

2

)]
, (29)

which can be simplified by using the Jacobi identity [T k, {T l, Tm}]+ cyclic permutations

= 0. Thus we obtain

fklo dmno + fmlo dnko + fnlo dkmo = 0. (30)
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For our particular case we have

ftsr dusr + fusr dstr + fssr dtur = 0,

ftsr dusr + fusr dstr = 0. (31)

After substitution of Eq. (31) in (29) obtain finally that

Tr[Ftsr(p ∧ k)Fusr(p ∧ k)] = Tr[ftsr fusr] cos2

(
p̃k

2

)
+ Tr[dtsr dusr]sin

2

(
p̃k

2

)
, (32)

where it is defined the quadratic Casimir as

Tr[ftsrfusr] = cf Tr[dtsrdusr] = cd. (33)

Using some trigonometric properties we obtain the desired form (28).

In Eq. (28) we can see that the planar and non-planar contributions for this diagram

are separated. For computing the integrals we use the Feynman parametrization

1

abc
= Γ(3)

∫ 1

0

dx

∫ 1−x

0

dy
1

[a(1− x− y) + bx+ cy]3
, (34)

in which if we take a = k2, b = (k + p)2 and c = k2 −m2 we get

1

k2(k2 −m2)(k + p)2
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[(k + xp)2 + x(1− x)p2 − ym2]3
. (35)

Making the change of variable

k′ = k + xp M2 = ym2 − x(1− x)p2, (36)

we can rewrite Eq. (28) as the planar and non-planar contributions

Π̃(p) = Π̃p(p) + Π̃np(p) (37)

where

Π̃p(p) =
im

κp2
(cf + cd)

∫ 1

0

dx

∫ 1−x

0

dy

∫
d3k′

(2π)3

p2k′2 − (p · k′)2

[k′2 −M2]3
(38)

and

Π̃np(p) =
im

κp2
(cf − cd)

∫ 1

0

dx

∫ 1−x

0

dy

∫
d3k′

(2π)3

cos(p̃k′)(p2k′2 − (p · k′)2)

[k2 −M2]3
. (39)
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It is convenient to reduce this integral into a simpler form, for which we use the property∫
dDkkµkνf(k2) =

∫
dDk k2f(k2)η

µν

D
and make a Wick’s rotation by taking k0 = ikE0,

then k2
E = −k2 and dDk = idDkE. Therefore we write the planar part as3:

Π̃p(p) = − m

κp2

2

3
(cf + cd)

∫ 1

0

dx

∫ 1−x

0

dy

∫
d3k

(2π)3

k2

[k2 +M2]3
. (40)

It is convenient use spherical coordinates such that d3k = dΩk2dk. Integration over the

angles and using the definition of the beta function and its properties we find

Π̃p(p) = −m
κ

1

8

1

2π
(cf + cd)

∫ 1

0

dx

∫ 1−x

0

dy
1

[m2y − x(1− x)p2]
1
2

. (41)

The non-planar part (39) after Wick’s rotation is expressed as

Π̃np(p) = −m
κ

2

3
(cf − cd)

∫ 1

0

dx

∫ 1−x

0

dy

∫
d3k

(2π)3

k2 cos(p̃k)

[k2 +M2]3
. (42)

Defining a new variable
√
p̃2kµ = zµ one can rewrite Eq. (42) as

Π̃np(p) = −m
κ

2

3

ρ

(2π)3
(cf − cd)

∫ 1

0

dx

∫ 1−x

0

dy

∫
d3z

z2 cos(z · p̂)
[z2 + a2]3

, (43)

where we defined a2 = M2ρ2 and ρ =
√
p̃2. The last integral in the previous expression

can be rewritten as

I(a) =
1

8a2

[
d2

da2
− 1

a

d

da

] ∫
d3z

z2 cos(z · p̂)
z2 + a2

, (44)

where p̂ is the unit vector along p̃. The integral arising in Eq. (44) can be done by

choosing, without loss of generality, z2 in the direction of p̂ [49]. For the integration we

use the functional form of the modified Bessel function [50]. Thus one finally gets for I(a)

the following form

I(a) = −2π2

8a2
(a2 − 3a)e−a. (45)

Finally the non-planar correction of the ghost fields is

Π̃np(p) =
m

κ

2

3

ρ

(2π)3
(cf − cd)

∫ 1

0

dx

∫ 1−x

0

dy
2π2

8a2
(a2 − 3a)e−a, (46)

or in terms of M we have

Π̃np(p) =
m

κ

ρ

24

1

2π
(cf − cd)

∫ 1

0

dx

∫ 1−x

0

dy

(
1− 3

ρM

)
e−ρM . (47)

3From now on we will omit the apostrophe in k except that it does not cause confusion.
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4.2 Self-energy of the gauge field

As was mentioned above, we are interested in noncommutative corrections to the

renormalization of the Chern-Simons coefficient, for this reason in what follows we consider

only the odd part of the self-energy of the gluon.

There are seven one-loop diagrams that contribute to the gauge field self-energy, but

for the odd part Πo, only the diagrams that have a gluon loop and two of them that

have a fermion loop do contribute (see Appendix B). Due to supersymmetry the self-

energy for the gauge field have not UV divergencies and do not be necessary to regularize.

Moreover, in [25, 26, 27, 28, 29] it was shown that the noncommutative supersymmetric

Chern-Simons is indeed finite. The contribution to the term Πo will be divided into a

bosonic part ΠB
o (p) for which only the ghost loop diagram contribute, and a fermionic part

ΠF
o (p) where everything else contribute. In both parts there are planar and non-planar

contributions. Thus we have for the bosonic part

ΠB
o (p) = ΠB

op(p) + ΠB
onp(p), (48)

where

ΠB
op(p) =

im

p2

1

2
(cf + cd)

∫
d3k

(2π)3

[k2p2 − (k · p)2][5k2 + 5k · p+ 4p2 − 2m2]

k2(k2 −m2)(k + p)2[(k + p)2 −m2]
, (49)

and

ΠB
onp(p) =

im

p2

1

2
(cf − cd)

∫
d3k

(2π)3

cos(p̃k)[k2p2 − (k · p)2][5k2 + 5k · p+ 4p2 − 2m2]

k2(k2 −m2)(k + p)2[(k + p)2 −m2]
. (50)

The fermionic contribution is given by

ΠF
o (p) = ΠF

op(p) + ΠF
onp(p), (51)

where

ΠF
op(p) = −im

p2

1

2
(cf + cd)

∫
d3k

(2π)3

2p2

[(k + p)2 −m2](k2 −m2)
, (52)

and

ΠF
onp(p) = −im

p2

1

2
(cf − cd)

∫
d3k

(2π)3

cos(p̃k)2p2

[(k + p)2 −m2](k2 −m2)
. (53)

For simplicity we first calculate the planar part (52). Using the Feynman parametrization

1
ab

=
∫ 1

0
dx

[ax+b(1−x)]2
and making k′ = k − xp and M2

1 = m2 − x(1− x)p2, (52) is simplified

ΠF
op(p) = −im(cf + cd)

∫ 1

0

dx

∫
d3k′

(2π)3

1

[k′2 −M2
1 ]2
. (54)
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Making a Wick’s rotation and integrating in spherical coordinates this integral becomes

ΠF
op(p) =

m

4

1

2π

1

8
(cf + cd)

∫ 1

0

dx

[m2 − x(1− x)p2]1/2
. (55)

The non-planar part, after Feynman parametrization and Wick’s rotation, is written

as

ΠF
onp(p) = m(cf − cd)

∫ 1

0

dx

∫
d3k′

(2π)3

cos(p̃k′)

[k′2 +M2]2
, (56)

where we have defined
√
p̃2kµ = zµ and a2 = M2ρ2, like in the previous section, we have

ΠF
onp(p) = m

ρ

(2π)3
(cf − cd)

∫ 1

0

dx

∫
d3z

cos(p̂ · z)

[z2 + a2]2
. (57)

The second integral in this equation reads

I1(a) = − 1

2a

d

da

∫
d3z

cos(p̂ · z)

z2 + a2
. (58)

Following a similar procedure in the computation of the integral in the non-planar case

for the ghost field (43) we obtain

I1(a) =
π2e−a

a
. (59)

Finally the non-planar contribution is given by

ΠF
onp(p) =

m

4

ρ

2π
(cf − cd)

∫ 1

0

dx
e−ρM1

ρM1

. (60)

For the bosonic part the procedure is completely analogous though a bit more involved.

Using the Feynman parametrization

1

abcd
= 3!

∫ 1

0

dw

∫ 1−x

0

dx

∫ 1−w−x

0

dy
1

[ay + bx+ cw + d(1− w − x− y)]4
, (61)

the planar part (49) reads

ΠB
op(p) = 3!

2im

3p2

1

2
(cf + cd)

∫ 1

0

dw dx dy

∫
d3k′

(2π)3

k′2p2[5k′2 + p2(5u2 − 5u) + 2m2]

[k′2 −M2
2 ]4

, (62)

where k′ = k − up, M2
2 = (w + y)m2 − u(1− u)p2 and u = x+ y.

Making the Wick’s rotation as in the previous cases and integrating out in spherical

coordinates we obtain

ΠB
op(p) = −2m

3

1

2
(cf + cd)

∫ 1

0

dw dx dy

[
15

16

1

2π

5

[(w + y)m2 − u(1− u)p2]1/2

− 3

16

1

2π

p2(5u2 − 5u)− 2m2

[(w + y)m2 − u(1− u)p2]3/2

]
. (63)
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The non-planar part after parametrization and Wick’s rotation is given by

ΠB
onp(p) = −3!

2m

3

1

2
(cf − cd)

∫ 1

0

dw dx dy

{∫
d3k

(2π)3

5k4 cos(p̃k)

[k2 +M2
2 ]4

− [p2(5u2 − 5u)− 2m2]

∫
d3k

(2π)3

cos(p̃k)k2

[k2 +M2
2 ]4

}
. (64)

We make the same change of variables that in the previous cases and we get

ΠB
onp(p) = −3!

2m

3

5ρ

(2π)3

1

2
(cf − cd)

∫ 1

0

dw dx dy

{∫
d3z

z4 cos(p̂ · z)

[z2 + a2]4

− ρ2[p2(5u2 − 5u)− 2m2]

∫
d3z

cos(p̂ · z)z2

[z2 + a2]4

}
. (65)

The last integrals in each term can be written as

I2(a) = − 1

48a3

[
d3

da3
− 3

a

d2

da2
+

3

a2

d

da

] ∫
d3z

z4 cos(p̂ · z)

z2 + a2
, (66)

I3(a) = − 1

48a3

[
d3

da3
− 3

a

d2

da2
+

3

a2

d

da

] ∫
d3z

cos(p̂ · z)z2

z2 + a2
. (67)

Similarly than the previous situations we can compute these integrals and this yields

I2(a) =
2π2

48a3
(a4 + 15a3 + 15a2)e−a, (68)

I3(a) =
2π2

48a3
(a2 − 3a− 3)e−a. (69)

Finally we obtain that the correction is given by

ΠB
onp(p) = −5mρ

48

1

2π
(cf − cd)

∫ 1

0

dw dx dy

{(
ρM2 + 15 +

15

ρM2

)
e−ρM2

− [p2(5u2 − 5u)− 2m2]

(
1

ρM2

− 3

(ρM2)2
− 3

(ρM2)3

)
e−ρM2

}
. (70)

5 Shift of κ

In order to calculate the shift of the κ coefficient we will expand the contributions

to the self-energy of gluon, and the contribution of the ghost fields and integrate over

Feynman parameters obtaining in this way that

Π̃(p) ≈ − cf
6π|κ|

+
mρ(cf − cd)

24π
, (71)

ΠF
o (p) ≈ cf

4π|κ|
− mρ(cf − cd)

8π
, (72)

ΠB
o (p) ≈ − 7cf

12π|κ|
. (73)
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We can see that for the bosonic part of the self-energy that comes from the gluon

there is not correction due to noncommutativity. The value obtained is the same that

the obtained for the commutative case with p = 0. The terms that have not as common

factor ρ in the fermionic and ghost contributions are precisely those that correspond to

the commutative usual case. The other terms are due to the non-commutativity.

Finally applying the equation

κren = κ

(
1− 1

k
Πo(p) + 2Π̃(p)

)
, (74)

we obtain the result

κren = κ

(
1 +

5

24π
g2Θ(cf − cd)p

)
. (75)

For finding the shifts for the N = 2 theory it is necessary to consider that C1 = C2 =

λ3 = χ = 0, but as in the fermionic contribution to the ghost self-energy, the contribution

of λa is canceled by the contribution of χ. Then we have that for the N = 2 theory the

shift is the same. Nevertheless for the N = 1 theory we can obtain the contributions

from the N = 2 theory by considering that C3 = 0 and λ2 = 0 so the contribution to the

fermionic part of the self-energy is one-half of the result presented here. In this way we

find that for the N = 1 theory we have

κren = κ

(
1 +

cf
8π|κ|

+
5

48π
g2Θ(cf − cd)p

)
. (76)

6 Final Comments

In the present paper a noncommutative version of the supersymmetric YM-CS theory

is studied. This theory constitutes a Moyal deformation of the theory considered in [9].

For this noncommutative deformation we calculated the shifting to the Chern-Simons

coefficient due to noncommutativity in the limit of small moments. This calculation was

done in the context of perturbative N = 1, 2, 3 supersymmetric YM-CS gauge theory in

three dimensions with compact gauge group U(N). It was found that this shift have a

dependence of noncommutative parameter Θ and the momenta p (see Eqs. (75) and (76)).

This correction, nevertheless vanishes in the limit Θ→ 0 which is expected.

16



Although we explore noncommutative gauge theories in the perturbative context it

is known that the analyticity properties of the obsevables of the theory with respect to

the noncommutative parameter has information about non-perturbative properties of the

system [51] and there were computed different nonperturbative quantities as the Witten

index [20]. It is known that that Witten’s index is compatible with a one-loop quantum

correction to the Chern-Simons coupling κ in the Yang-Mills-Chern-Simons gauge theory.

Given our result from Eqs. (75) and (76) it would be very interesting to explore if there

will be a modification introduced by the noncommutative theory and make a comparison

with the result in [51]. We are currently exploring these issues and intend to report some

progress elsewhere.
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A Feynman rules

The propagator for the gauge bosons Aµ is

k
µ ν ∆µν(k) =

g2

k2(k2 −m2)
(kµkν − k2ηµν − imεµνρkρ) + g2ξ

kµkν
k4

, (77)

the propagator for each λa is given by

k
Dmn(k) =

δmng2

k�−m
, (78)

the propagator for the fermion χ is

k
Dmn(k) =

δmng2

k� +m
, (79)

the propagator for the bosons Ca is

k
µ ν δ(k) = − g2

k2 +m2
, (80)

the propagator for the ghost fields is η son

k
∆̃ab(k) = −δabg

2

k2
. (81)

The Feynman rules for the vertex are:

p q
r

k, µ

l, ν

m, ρ

=
−i
g2

[(p− r)νηρµ + (r− q)µηνρ + (q− p)ρηµν − imεµνρ]Fklm(q ∧ p), (82)

q
p

r

s

l, ν

k, µ

m, ρ

n, δ

=

1
g2

[
Fnmc(r ∧ s)Flkc(p ∧ q)(ηµρηνδ − ηµδηνρ)

+Fnlc(q ∧ s)Fmkc(p ∧ r)(ηµνηρδ − ηµδηνρ)

+Fnkc(p ∧ s)Fmlc(q ∧ r)(ηµνηρδ − ηµρηνδ)
]
,

(83)
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p q

r

k, µ

l,a

m,b

=
−i
2g2

, γµFklm(q ∧ p)δab, (84)

p q

r

k, µ

l

m

=
−i
2g2

, γµFklm(q ∧ p), (85)

p q

r

k, µ

l

m

= −irµFklm(q ∧ p), (86)

p q
r

k, µ

l,a

m,b

=
1

g2
irµFklm(q ∧ p)δab, (87)

q
p

r

s

l, ν

k, µ

m,a

n,b

=
1

g2
δµνδab[Flnt(s ∧ q)Fkmt(r ∧ p) + Fknt(s ∧ p)Flmt(r ∧ q)], (88)

p q

r

k,a

l,b

m,c

=
1

2

1

g2
εcbaFklm(q ∧ p), (89)

p q

r

k,a

l

m,b

=
1

g2
Fklm(q ∧ p)δab, (90)
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p q
r

k,a

l,b

m,c

=
1

g2
εabcFklm(p ∧ q), (91)

q
p

r

s

l,b

k,a

m,c

n,d

=

1
g2

[
Fnmc(r ∧ s)Flkc(p ∧ q)(δacδbd − δadδbc)

+Fnlc(q ∧ s)Fmkc(p ∧ r)(δabδcd − δadδbc)

+Fnkc(p ∧ s)Fmlc(q ∧ r)(δabδcd − δacδbd)
]
,

(92)

where the indexes a, b, c, d run from 1 to 3 and refer to Ca y λa and k, l,m, n refer to the

group algebra indexes.

B One loop diagrams

(a) (b) (c)

(d) (e)

(f) (g)
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