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Abstract

We propose superfield equations in tensorial N -extended superspaces to describe
the N = 2, 4, 8 supersymmetric generalizations of free conformal higher spin theo-
ries. These can be obtained by quantizing a superparticle model in N -extended ten-
sorial superspace. The N -extended higher spin supermultiplets just contain scalar
and ‘spinor’ fields in tensorial space so that, in contrast with the standard (su-
per)space approach, no nontrivial generalizations of the Maxwell or Einstein equa-
tions to tensorial space appear when N > 2. For N = 4, 8, the higher spin-tensorial
components of the extended tensorial superfields are expressed through additional
scalar and spinor fields in tensorial space which obey the same free higher spin
equations, but that are axion-like in the sense that they possess Peccei-Quinn-like
symmetries.

1 Introduction

It is known [1, 2, 3, 4, 5, 6, 7, 8] that the D = 4 free conformal higher spin equations can
be formulated as a field theory on a ten-dimensional tensorial space, Σ(10|0), parametrized
by 10 bosonic coordinates (xm, ymn),

Xαβ = Xβα =
1

4
xmγαβm +

1

8
ymnγαβmn α, β = 1, 2, 3, 4 , m, n = 0, 1, 2, 3 . (1.1)

and in N = 1 tensorial superspace Σ(10|4) with coordinates (Xαβ, θα).
The bosonic tensorial space (1.1) was proposed as a natural basis to build D=4 con-

formal higher spin theories in [1]. More general tensorial spaces of dimension n(n+1)
2

are
introduced by means of a symmetric n × n coordinates matrix Xαβ (α, β = 1, . . . , n)
which, for even n = 4, 8, 16, determine tensorial enlargements of the standard spacetimes
of dimension D=4,6,10 (D = n

2
+ 2). Adding n fermionic coordinates θα one obtains the

N = 1 tensorial superspaces Σ(
n(n+1)

2
|n),

Σ(
n(n+1)

2
|n) : ZM := (Xαβ , θα) ,

{

α, β = 1, ..., n,
Xαβ = Xβα ;

(1.2)
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rigid tensorial superspaces Σ(
n(n+1)

2
|n) have a supergroup structure. Taking n even is not

a restriction if we think of the underlying spinorial origin of the α indices; furthermore
this motivates also the restriction to n = 2k = 2, 4, 8, 16, ... assuming that θα are spinors.

Although the fermionic coordinates in Σ(
n(n+1)

2
|n) are usually assumed to be real, in the

n = 4, D = 4 case it is convenient to consider θα as a Majorana spinor in the Weyl
realization of the Dirac matrices so that θα =

(

θA, θ̄Ȧ
)

.
For n = 2 the spin-tensorial coordinates Xαβ are expressed in terms of the 3-vector

spacetime coordinates, Xαβ ∝ xaγ̃αβa so that Σ(3|2) is just the standard D = 3, N = 1
superspace. The case n = 32 gives the tensorial extension of D=11 superspace Σ(528|32),
relevant in the context of the BPS preon hypothesis [9, 10] and also in the analysis of
the hidden gauge structure of D=11 supergravity [11, 12]. In this paper we shall restrict
ourselves to the n=4,8,16 cases that are used to describe massless conformal higher spin
theories in D = 4, 6, 10. Almost all our equations (all but those in Sec. 4.2.1) will be
valid for all these dimensions, although we shall make special emphasis on the n = 4 case
corresponding to D = 4.

The first mechanical model in N=1, D=4 tensorial superspace Σ(10|4) and in its higher

dimensional generalizations Σ(
n(n+1)

2
|n) with n > 4 was proposed in [13], where it was no-

ticed that the ground state of such a superparticle model describes BPS states preserving
all but one supersymmetry. The possible ‘constituent’ rôle of such states in string/M-
theory was introduced and discussed in general in [9], where they were called ‘BPS preons’
(see further [10]). Thus, from this viewpoint, the superparticle in [13] may be called ‘pre-
onic’. Its quantization was performed in [2], where it was shown that the spectrum of the
quantized n = 4 preonic superparticle is given by a tower of massless conformal higher
spin fields of all possible helicities and where evidence in favor that the n = 8 and n = 16
models describe conformal higher spin theories in D = 6 and D = 10 spacetimes was
presented.

An elegant form of the bosonic and fermionic higher spin equations in Σ(10|0) tensorial
space was given and studied in [3, 4]. The explicit form of the conformal higher spin
equations in D = 6, 10 tensorial spaces was extracted from the their tensorial space
version in [8]. The superfield form of the equations for the supermultiplets of D = 6, 10
massless conformal fields in the N = 1 tensorial superspaces Σ(36|8) and Σ(126|16),

D = 10 Σ(126|16) : ZM := (Xαβ , θα) ,

{

α, β = 1, ..., 16,
Xαβ = 1

16
xmσ̃αβ

m + 1
2·5!y

m1...m5σ̃αβ
m1...m5

,
m = 0, 1, . . . 9

(1.3)
was given in [7]. In particular, the N = 1 supermultiplets of D=4,6,10 conformal higher

spin fields are described by real scalar superfields on the corresponding n=4,8,16 Σ(n(n+1)
2

|n)

superspaces,

Φ(Xαβ, θγ) = b(X) + fα(X) θα +
n

∑

i=2

φα1···αi
(X) θα1 · · · θαi , (1.4)

obeying the following simple superfield equation [7]

D[αDβ]Φ(X, θ) = 0 . (1.5)

Here,

Dα =
∂

∂θα
+ iθβ∂βα , Dαβ = ∂αβ :=

∂

∂Xαβ
, (1.6)
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are the covariant derivatives on the rigid tensorial superspace Σ(
n(n+1)

2
|n) that satisfy

{Dα, Dβ} = 2i∂αβ (1.7)

which, we note in passing, exhibits the central extension structure of the superalgebras of
tensorial superspaces [14] (see further [15]).

The tensorial superspace higher spin equations with N -extended supersymmetry, how-
ever, have not been studied yet1. In this paper we fill this gap by presenting the free N=2,
N=4 and N=8 supersymmetric conformal higher spin equations in N -extended tenso-

rial superspaces Σ(
n(n+1)

2
|N n). In particular, we show that the N = 2 supermultiplets of

D = 4, 6 and 10 conformal higher spin equations are described by scalar, chiral superfields

Φ(Xαβ ,Θγ, Θ̄γ) in N = 2 tensorial superspace Σ(n(n+1)
2

|2n), which obey the following set
of linear superfield equations

D̄αΦ = 0 , D[αDβ]Φ = 0 , (1.8)

where

Dα =
∂

∂Θα
+ iΘ̄β∂βα =

1

2
(Dα1 + iDα2) ,

D̄α =
∂

∂Θ̄α
+ iΘβ∂βα = −(Dα)

∗ , Dαβ = ∂αβ :=
∂

∂Xαβ
, (1.9)

are the covariant derivatives on the the rigid N=2 extended superspace Σ(
n(n+1)

2
|2n), which

obey the superalgebra

{Dα,Dβ} = 0 , {Dα, D̄β} = 2i∂αβ , {D̄α, D̄β} = 0 . (1.10)

The superfield equations in extended tensorial superspaces with even N > 2 are given by
a straightforward generalization of (1.8) (Eqs. (3.22), (3.23) in Sec. 3).

We also present the extended supersymmetric N > 1 generalization of the preonic
superparticle model of [2] and show how the above superfield equations can be obtained

by quantizing the Σ(n(n+1)
2

|N n) superparticle model for even N ≥ 2.
Although our superfield equations make sense for general even N and n, we elaborate

in detail the N = 2, 4, 8 cases which, when n = 4, correspond to the supermultiplets of
D = 4 massless conformal higher spin theories with a clear standard ‘lower spin’ field
theory counterparts. These are the hypermultiplet for N = 2, the supersymmetric Yang-
Mills supermultiplet for N = 4, and the maximal supergravity multiplet for N = 8,
the linearized versions of which can be described by scalar superfields in the standard
extended D = 4 superspaces Σ(4|4N ) with N = 2, 4, 8.

One of the reasons of our interest in N -extended supersymmetric systems of higher
spin theories comes from the observation that N -extended supersymmetry with N =
4 unifies the scalar and vector gauge fields. On the other hand, all the higher spin
equations have been formulated in terms of scalar and spinor fields in tensorial space,
so that the study of N -extended supersymmetries might prove convenient in a search
for a sensible generalization of Maxwell and Einstein equations in tensorial superspace.

1See [16] as well as [17] and refs. therein for the description of supersymmetric free higher spin
equations in standard superspace and [18, 19] for the superfield form of Vasiliev’s interacting higher spin
equations [20, 21, 22] in the usual simple and extended superspaces.
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Indeed, at some point our study of the superfield equations in N = 4 tensorial superspace
Σ(4|16) produces a tensorial space counterpart of the Maxwell equations. However, a
careful analysis shows that the corresponding (spin-)tensorial fields can be expressed as
derivatives of other scalar fields in tensorial superspace so that, for instance, the bosonic
fields of N = 4 conformal higher spin multiplet are actually given by two complex scalar
fields in tensorial space, φ and φ̃. Similarly, when studying the superfield equations in
N = 8 tensorial superspace Σ(4|32), although the tensorial space generalizations of the
conformal (super)gravity equations do appear at an intermediate stage, it will turn out
that they reduce to the scalar (and spinor) field equations in the tensorial space form first
presented by Vasiliev [3]. Roughly speaking one can state that the increasing of N results
just in multiplication of the scalar and spinor fields.

However, at N = 4 a new phenomenon does occur. As the new scalar field appears in
the theory only through a ‘Maxwell-like’ field, which is to say under the action of bosonic
derivatives ∂αβ , the (free higher spin N = 4) theory becomes invariant under constant
shifts of this bosonic field which makes it similar to the axion (for which such a symmetry
is called Peccei-Queen [23] symmetry2). For the N = 8 multiplet reformulated in terms
of scalar and spinor fields, the Peccei-Queen symmetry becomes more complicated for
the scalars and is also present for spinor fields entering the model under the action of
derivative in the combination simulating the structure of the Rarita-Schwinger fields.

The plan of this paper is as follows. After discussing in Sec. 2 the Σ(
n(n+1)

2
|Nn) super-

particle model and the structure of its constraints, we sketch its quantization in Sec. 3
(using the N = 1 results of [2] to simplify the discussion) and find our superfield equa-
tions, Eqs. (3.22) and (3.23), as the condition obeyed by the superparticle wavefunction
in the tensorial superspace coordinate representation. In Sec. 4 we study the field content
of our superfield equations, which are valid for arbitrary even N and n (with n = 4, 8, 16
corresponding to D = 4, 6, 10 free massless conformal higher spin theories) for the par-
ticular cases of N = 2, 4, 8. In particular, we show in Sec. 4.1 (where the analysis is not
restricted to n = 4) that the N = 2 supermultiplets D = 4, 6 and 10 of conformal higher
spin fields described by complex scalar and complex spinor (s-vector) fields obeying the
Vasiliev’s tensorial space higher spin equations are encoded in the chiral scalar superfield

Φ(Xαβ ,Θγ, Θ̄γ) on N = 2 tensorial superspace Σ(n(n+1)
2

|2n) which obeys the set of linear
superfield equations (1.8). In Sec. (4.2) we study the superfield equations (3.22) and
(3.23) in N = 4 tensorial superspace, find a tensorial superspace counterpart of D = 4
Maxwell equation and show that its general solution is expressed through the scalar field
obeying the tensorial space higher-spin equation of usual type. We also show there that
this new scalar field is defined up to a constant shift which resembles the Peccei-Quinn
transformation of the axion. Sec. 4.3 analyzes the field content of the complex super-
field obeying a N = 8 version of Eqs. (3.22), (3.23) and presents the more complicated
Peccei-Quinn-like symmetry characteristic of the N = 8 massless conformal free higher
spin theories. Some comments on possible extensions of this work are made in Sec. 5.

2As far as in type IIB string theory and supergravity the axion appears as a member of the family
of the RR gauge fields, its Peccei-Queen symmetry can be considered as a counterpart of the gauge
symmetries characteristic of higher RR gauge potentials.
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2 Superparticle in N -extended tensorial superspace

2.1 An action for the Σ(n(n+1)
2 |N n) superparticle

The superparticle action in Σ(n(n+1)
2

|N n) has the form

S =

∫

dτ L =

∫

dτ [
˙̂
Xαβ(τ)− i

˙̂
θαI(τ)θ̂βI(τ)]λα(τ)λβ(τ) ,

{

α, β = 1, ..., n ,
I = 1, 2, ...,N ,

(2.1)

where the λα(τ) are auxiliary commuting spinor variables, X̂αβ(τ) = X̂βα(τ) and θ̂αI(τ)
are the bosonic and fermionic coordinate functions that define the superparticle worldline

W 1 ∈ Σ(
n(n+1)

2
|N n), ẐM(τ) = (X̂αβ(τ) , θ̂αI(τ)), and the dot denotes derivative with

respect to proper time τ ; due to the time derivative, the term
˙̂
θαI(τ)θ̂βI(τ) is also (α ↔ β)-

symmetric.
It is convenient to write the action (2.1) in the form

S =

∫

W 1

Π̂αβλα(τ)λβ(τ) , (2.2)

where

Π̂αβ(τ) = dτΠ̂αβ
τ (τ) = dτ(

˙̂
Xαβ − i

˙̂
θI(αθ̂β)I) ,

{

α, β = 1, ..., n ,
I = 1, 2, ...,N ,

(2.3)

is the pull-back to W 1 of the vielbein Παβ of the flat N -extended tensorial superspace

Σ(
n(n+1)

2
|Nn) (the bosonic Maurer-Cartan one-form on the Σ(

n(n+1)
2

|Nn) supergroup mani-
fold), namely

Παβ = dXαβ − idθI(αθβ)I , (2.4)

by the map φ : W 1 → Σ(
n(n+1)

2
|N n) (φ∗(Παβ) ≡ Π̂αβ(τ)).

The superparticle action is manifestly invariant under the supertranslations on the

rigid N -extended tensorial superspace Σ(n(n+1)
2

|Nn) ,

δaX
αβ = aαβ , δaθ

Iα = 0 , (2.5)

δǫX
αβ = iθI(αǫβ)I , δǫθ

Iα = ǫβI , (2.6)

which act on the worldline fields as

δaX̂
αβ(τ) = aαβ , δaθ̂

Iα = 0 ; δaλ̂α = 0 . (2.7)

δǫX̂
αβ = iθ̂I(αǫβ)I , δǫθ̂

Iα = ǫβI ; δǫλα = 0 . (2.8)

The action (2.1) is also manifestly invariant under the GL(n,R) transformations of the
α, β = 1, ..., n indices, which reduce to the n-dimensional representation of Spin(1, D−1)
when these indices are thought of as Lorentz-spinorial ones3.

3In [3, 4] the counterparts of λα were called ‘s-vectors’ to avoid their immediate identification as
GL(n,R) vectors or SO(1, D − 1) spinors.
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2.2 Symplectic supertwistor form of the action

Actually, the Σ(n(n+1)
2

|Nn) superparticle action (2.1) is invariant under the largerOSp(N|2n)
supergroup. To make this manifest as well as to determine easily the number of physical
degrees of freedom it is convenient to use Leibniz’s rule4 to rewrite the action (2.1) in the
form

S =

∫

W 1

(λαdµ
α − µαdλα − idχI χI) =

∫

W 1

dΥΣΞΣΩΥ
Ω . (2.9)

This action is written in terms of the bosonic spinor λα(τ), which is present in (2.1), a
second bosonic spinor µα and N real fermionic variables χI ; these form the N -extended,
(2n+N )-dimensional orthosymplectic supertwistor (see [13, 2] and also [14] for N = 1)

ΥΣ =





µα

λα
χI



 , α = 1, . . . , n , I = 1, . . . ,N . (2.10)

This generalizes the Penrose twistors [24] (or conformal SU(2, 2) spinors) and the Ferber-
Schirafuji supertwistors [25, 26] (carrying the basic representation of D=4 SU(N|2, 2)).
The ΥΣ’s carry the defining representation of the OSp(N|2n) supergroup (see in this
context [13, 2, 14] for N = 1), the transformations of which preserve the (2n+N )× (2n+
N ) orthosymplectic ‘metric’ ΞΣΩ,

ΞΣΩ =





0 δα
β 0

−δαβ 0 0
0 0 −iδIJ



 , α = 1, . . . , n , I = 1, . . . ,N . (2.11)

In fact, OSp(1|2n) may be considered as a supersymmetric generalization of the super-
conformal group for D = n

2
+ 2 (see [27, 13, 28, 14] and refs. therein).

The relations between the supertwistor components and the variables of the action
(2.1) that make the transition between both actions are

µα = X̂αβλβ −
i

2
θ̂αIχI , χI = θ̂αI λα , (2.12)

which generalize the Penrose and the Ferber-Shirafuji incidence relations [24, 25, 26] (see
[13] and [2, 14] for N = 1). Since the action (2.9) does not possess any gauge symmetries,
the components of the orthosymplectic supertwistors are the true, physical degrees of
freedom (2n bosonic and N fermionic) of our generalized superparticle model.

2.3 Gauge symmetries

By construction, the actions (2.9) and (2.1) describe the same dynamical system. Thus,

since the action (2.1) depends on n(n+1)
2

+ n bosonic variables and Nn fermionic ones,
it should possess n(n − 1)/2 bosonic gauge symmetries and N (n − 1) fermionic ones to
reduce the number of degrees of freedom to those of the supertwistors ΥΣ appearing in
the action (2.9). The simplest way to describe these gauge symmetries, called fermionic

4It is sufficient to use λαλβdX
αβ = λαd(λβX

αβ)− λαX
αβdλβ ; no integration by parts is needed.
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κ-symmetry and bosonic b-symmetry, is to define restrictions on the basic variations of
the bosonic and fermionic coordinate functions (see [2, 14] for the N = 1 case)

δκX̂
αβ = iδκθ̂

I(αθ̂β)I , δκθ̂
αIλα = 0 , δκλα = 0 , (2.13)

δbX̂
αβλα = 0 , δbθ̂

Iαλα = 0 , δbλα = 0 . (2.14)

2.4 Constraints and their conversion to first class

In the hamiltonian formalism, the δκ and δb gauge symmetries in Eqs. (2.13), (2.14) are
generated by first class constraints which may be extracted from the following bosonic
and fermionic primary constraints of the model (2.1)

dαI := παI + iPαβθ
βI ≈ 0 , (2.15)

Pαβ := Pαβ − λαλβ ≈ 0 , P α(λ) ≈ 0 , (2.16)

where

Pαβ :=
1

2

δL

δ
˙̂
Xαβ

, P (λ)
α :=

δL

δλα
, παI :=

δL

δ
˙̂
θα

, (2.17)

are the canonical momenta conjugated to the coordinate functions and to the auxiliary
bosonic spinor (s-vector). Using the canonical Poisson brackets

[X̂γδ, Pαβ ]PB = −[Pαβ , X̂
γδ]PB = δα

(γδβ
δ) , [λβ, P

α(λ)]PB = −[P α(λ), λβ]PB = δβ
α ,(2.18)

{πα , θ̂
β}PB = {θ̂β , πα}PB = −δα

β , (2.19)

it follows that the nonvanishing Poisson brackets of the above constraints are

{dαI , dβJ}PB = −2iPαβδIJ , [Pαβ , P
γ(λ)]PB = −2λ(αδβ)

γ . (2.20)

These clearly indicate that the primary constraints above are a mixture of first and second
class constraints. Rather than separating them, we use below the so-called ‘conversion
procedure’ (see [2] for references), by which a pair of degrees of freedom is added to each
pair of second class constraints to modify Eqs. (2.20) in such a way that they form a closed
algebra. In this way, these modified constraints become first class ones generating gauge
symmetries in the enlarged phase space. In it, all the constraints of the model are first
class and account as well for the original second class constraints. These can be recovered
by gauge fixing the additional gauge symmetries/first class constraints of the system in
the enlarged phase space. For the N = 1 version of (2.1) this was done in [2].

As the bosonic sector of all the superparticle models is the same irrespective of N , we
may use the results of [2] for N = 1 and state that the conversion in the bosonic sector
is effectively reduced to ignoring the constraints P α(λ) ≈ 0 in the analysis. An easy way
to see that this is indeed consistent is to observe that, as far as λα 6= (0, ..., 0) (the usual
configuration space restriction for twistor-like variables), the second brackets in (2.20)
show that P α(λ) = 0 is a good gauge fixing condition for n of n(n+1)/2 gauge symmetries
generated by the constraints Pαβ .
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To perform the conversion in the fermionic sector, we introduce the N fermionic
variables χI and postulate for them the Clifford-type Poisson brackets

{χI , χJ}PB = −2iδIJ . (2.21)

These χI are then used to modify the fermionic constraints to DαI = dαI + iχIλα. Thus,
after conversion, the superparticle model (2.1) is described by the following set of first
class constraints

DαI := παI + iPαβθ
βI + iχIλα ≈ 0 , Pαβ := Pαβ − λαλβ ≈ 0 , (2.22)

which obey the superalgebra of the rigid supersymmetry of N -extended tensorial super-

space Σ(
n(n+1)

2
|Nn) in Eq. (1.10), namely

{DαI ,DβJ}PB = −2iPαβδIJ , [Pαβ,DγI ]PB = 0 , [Pαβ ,Pγδ]PB = 0 . (2.23)

3 Quantization of the superparticle in Σ
(
n(n+1)

2 |Nn) with

even N and conformal higher spin equations

Quantizing the model in its orthosymplectic-twistorial formulation (2.9) is straightfor-
ward. The canonical hamiltonian is equal to zero and thus the Schrödinger equation
simply states that the wavefunction is independent of τ . Following a procedure similar to
that in [2] one can show that, in the n = 4 tensorial space corresponding to D = 4, the
wavefunction of the bosonic limit of the superparticle model (2.9) describes the solution
of the free higher spin equations. This means that it can be written in terms of an infinite
tower of left and right chiral fields φA1...A2s(pµ) and φȦ1...Ȧ2s

(pµ) for all half-integer values
of s with pµp

µ = 0.
Let N > 1 and even (as it will be henceforth). Quantization à la Dirac of a dynamical

system with first class constraints requires imposing them as equations to be satisfied by
its wavefunction. In the case of our superparticle model (2.1) this wavefunction can be
chosen to depend on the coordinates of N -extended tensorial superspace (Xαβ = Xβα,
θαI), on the bosonic spinor (s-vector) variable λα and on a half of the fermionic variables
χI as far as they are, by (2.21), their own momenta. The separation of a half of the
real χI coordinates can be achieved by introducing complex5 variables ηq, (ηq)∗ = η̄q,
q = 1, . . . ,N /2, so that χI = (χq, χN/2+q) = ((ηq + η̄q), i(η̄q − ηq)),

ηq =
χq − iχN/2+q

2
, η̄q =

χq + iχN/2+q

2
, {η̄q, η

p}PB = −iδq
p . (3.1)

Then, the wavefunction superfield in the coordinates representation depends only on ηq,

W = W(Xαβ , θα;λα; η
q) , (3.2)

the various momenta are given by the differential operators

Pαβ = −i∂αβ , παI = −i
∂

∂θαI
, η̄q =

∂

∂ηq
, (3.3)

5A separation in pairs of conjugate constraints is used in the Gupta-Bleuler method of quantizing
systems with second class constraints as the massive superparticle [29, 30].
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and the Poisson brackets become quantum commutators or anticommutators ([ , }PB 7→
1
i~
[ , }; we take ~ = 1). The quantum constraints operators, to be denoted by the same

symbol (although having in mind DαI 7→ −iDquantum
αI , Pclassical

αβ 7→ −iPquantum
αβ ) are then

DαI :=
∂

∂θαI
+ i∂αβθ

βI − χIλα , (3.4)

Pαβ := ∂αβ − iλαλβ , (3.5)

and have to be imposed on the wavefunction (3.2).
For even N , it is convenient to introduce complex Grassmann coordinates and complex

Grassmann derivatives,

Θαq =
1

2
(θαq − iθα(q+N/2)) = (Θ̄α

q )
∗ ⇔ ∂αq :=

∂

∂Θαq
=

∂

∂θαq
+ i

∂

∂θα(q+N/2)
, (3.6)

q = 1, . . . ,N /2, and conjugate pairs of fermionic constraints

∇αq := Dαq + iDα(q+N/2) = ∂αq + 2i∂αβΘ̄
β
q − 2λα

∂

∂ηq
=: Dαq − 2λα

∂

∂ηq
, (3.7)

∇̄α
q := Dαq − iDα(q+N/2) = ∂̄α

q + 2i∂αβΘ
βq − 2λα η

q =: D̄α
q − 2λαη

q . (3.8)

Since {Dαq, D̄
p
β} = 4i∂αβδ

p
q , the above ∇αq, ∇̄α

q and the bosonic constraint (3.5) deter-
mine the superalgebra given by the only nonzero bracket

{∇αq, ∇̄
p
β} = 4iPαβδ

p
q . (3.9)

This shows that it is sufficient to impose on the superwavefunction (3.2) the fermionic
constraints,

∇αqW := DαqW − 2λα
∂

∂ηq
W = 0 , (3.10)

∇̄p
βW := D̄q

αW − 2λα η
qW = 0 , (3.11)

since the mass-shell-like bosonic constraint,

PαβW := (∂αβ − iλαλβ)W = 0 , (3.12)

will follow as a consistency condition for (3.10), (3.11).
Decomposing the superwavefunction in a finite power series in the complex Grassmann

variable ηq,

W(X,Θq, Θ̄q, λ, η
q) = W (0)(X,Θq, Θ̄q, λ) +

N/2
∑

k=1

1

k!
ηqk . . . ηq1 W (k)

q1...qk
(X,Θq, Θ̄q, λ) , (3.13)

we find that Eqs. (3.10), (3.11) imply

DαqW
(0) = 2λαW

(1)
q , ... , DαqW

(k)
q1...qk

= 2λαW
(k+1)
qq1...qk

, . . . ,

DαqW
(N/2)
q1...qN/2

= 0 , (3.14)
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and

D̄q
αW

(0) = 0 , D̄q
αW

(k)
q1...qk

= 2kλαW
(k−1)
[q1...qk−1

δqk]
q , . . . ,

D̄q
αW

(N/2)
q1...qN/2

= NλαW
(N/2−1)
[q1...qN/2−1

δqqN/2]
. (3.15)

Eqs. (3.14) show that all the superfields W
(k)
q1...qk can be constructed from fermionic deriva-

tives of the superfield W (0)(X,Θq, Θ̄q, λ) which is chiral as a consequence of the first
equation in (3.15),

Dαkqk . . .Dα1q1W
(0) = 2kλα1 . . . λαk

W (k)
q1...qk

, D̄q
αW

(0) = 0 . (3.16)

Then, the wavefunctionW is completely characterized by the chiral superfieldW (0)(X,Θq, Θ̄q, λ).
As a consequence of (3.12), W (0) obeys

PαβW
(0) := (∂αβ − iλαλβ)W

(0) = 0 , (3.17)

which is solved by a planewave in tensorial space,

W (0)(X,Θq, Θ̄q, λ) = W̃ (λ,Θq, Θ̄q) exp{iλαλβX
αβ} . (3.18)

Then, the chirality of W (0) and the first equation in (3.14), which now implies ∂αqW
(0) ∝

λα, show that the general solution for the superparticle wavefunction is determined by
the following chiral plane wave superfield

W (0)(X,Θq, Θ̄q, λ) = w(λ , Θqλ) exp{iλαλβ(X + 2iΘpΘ̄p)
αβ} , (3.19)

where Θqλ = Θα qλα and

w(λ , Θqλ) = w(0)(λ) +

N/2
∑

k=1

1

k!
(λΘqk) . . . (λΘq1)w(k)

q1...qk
(λ) . (3.20)

We refer to [2] for a discussion on how the arbitrary function w(0)(λα) with α = 1, 2, 3, 4
encodes all the solutions of the massless higher spin equations in D = 4 and to [2, 8] for
the D = 6, 10 cases. The key point is that λα carries the degrees of freedom of a light-like
momentum (λγaλ is light-like in D=4,6,10 which corresponds to n=4,8,16) plus those of
spin. The d.o.f. of λα and those of the lightlike momenta are encoded, both up to a
scale factor, in the coordinates of the compact manifolds Sn−1 = S2D−5 and S

n
2 = SD−2,

respectively. The spheres6 S
n
2
−1 are related to helicity in the n = 4, D = 4 case and to

its multidimensional generalizations for D = 6, 10 [2, 8].
To obtain a superfield on tensorial superspace describing massless conformal higher

spin theories with extended supersymmetry, the wavefunction (3.19) has to be integrated
over R

n − {0} ∼ S
n−1×R+ , parametrized by λα, with an appropriate measure that we

denote by dnλ,

Φ(X,Θq, Θ̄q) =

∫

dnλW (0)(X,Θq, Θ̄q, λ) =

∫

dnλw(λ , Θqλ)eiλαλβ(X+2iΘpΘ̄p)αβ

. (3.21)

6The ‘celestial spheres’ SD−2 are the bases S2,4,8 of the Hopf fibrations S2D−5 → SD−2 (Sn−1 → S
n

2 )
of S 3,7,15, (n,D)=(4,4), (8,6), (16,10). The fibres SD−3 = S1,3,7 of these bundles correspond to the
complex, quaternion and octonion numbers of unit modulus. The remaining n=2, D=3 case corresponds
to the first of the four Hopf fibrations, S1 → RP 1; its fibre is determined by the reals of unit modulus,
Z2, and there are no extra coordinates.
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One can easily check that the superfield Φ is chiral

D̄q
αΦ(X,Θ

q′ , Θ̄p′) = 0 (3.22)

and satisfies the equation

Dq[βDγ]pΦ(X,Θ
q′ , Θ̄p′) = 0 . (3.23)

These are the superfield equations for the wavefunction of the superparticle inN -extended
tensorial superspace for even N .

4 From the superfield to the component form of the

higher spin equations in tensorial space

4.1 N = 2

When N = 2, Eqs. (3.22) and (3.23) coincide with Eqs. (1.8). It is easy to check that
Eq. (3.23) with N = 2 implies the vanishing of all the components of the ‘chiral’ superfield
Φ(X,Θ, Θ̄) = Φ(X + 2iΘ · Θ̄,Θ), except the first two,

Φ(X,Θ, Θ̄) = φ(XL) + iΘαψα(XL) , Xαβ
L = Xαβ + 2iΘ(αΘ̄β) = Xβα

L , (4.1)

where Xαβ
L is the analogue of the bosonic coordinates for the chiral basis of standard

D = 4 superspace. The above components are the complex bosonic scalar and the complex
fermionic spinor fields obeying the free higher spin equations in tensorial space form [3],

∂α[γ∂δ]βφ(X) = 0 , ∂α[βψγ](X) = 0 . (4.2)

Let us recall that the N = 1 supermultiplet contains a real bosonic scalar and a real
fermionic spinor field that obey the same equations (4.2). Hence, the N = 2 supermulti-
plet of the conformal fields in tensorial superspace is given by the complexification of the
N = 1 supermultiplet.

Clearly, the above results are n-independent and thus, besides n = 4, they are also
valid for the n = 8 and n = 16 cases corresponding to the D = 6 and D = 10 multiplets
of massless conformal higher spin fields.

4.2 N = 4

In contrast with the N = 2 case, spin-tensorial components are present when N > 2. For
N = 4, the general solution of the superfield equations (3.22) and (3.23) is given by

Φ(X,Θq, Θ̄q) = φ(XL) + iΘαqψαq(XL) + ǫpqΘ
αqΘβpFαβ(XL) , (4.3)

Xαβ
L = Xαβ + 2iΘq(αΘ̄β)

q , q = 1, 2 , (4.4)

where, again, the complex scalar and spinor fields obey the standard higher spin equations
in their tensorial superspace form,

∂α[γ∂δ]βφ(X) = 0 , ∂α[βψγ]q(X) = 0 , (4.5)
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while the complex symmetric bi-spinor (or ‘s-tensor’ [3]) Fαβ = Fβα satisfies the tensorial
counterpart of the D = 4 Maxwell equations (when these are written in spinorial notation
[24], see also below),

∂α[γFδ]β(X) = 0 , Fαβ = Fβα . (4.6)

However, one can easily show that the general solution of Eq. (4.6) is expressed through
a new complex scalar superfield φ̃(X) satisfying the bosonic tensorial space equation in
(4.5),

Fαβ = ∂αβφ̃(X) , (4.7)

∂α[γ∂δ]βφ̃(X) = 0 . (4.8)

4.2.1 n = 4 , D = 4

To prove this when n = 4 (α, β = 1, 2, 3, 4), we begin by decomposing the complex
symmetric GL(4) tensor Fαβ = Fβα in 2 × 2 blocks, thus keeping only the GL(2,C)
manifest symmetry,

n = 4 : Fαβ =

(

FAB VAḂ

VBȦ FȦḂ

)

, A, B = 1, 2 , Ȧ, Ḃ = 1, 2 . (4.9)

Let us first notice that the block components of Eq. (4.6) which contain the antisymmetric
tensors (encoded in the symmetric spin-tensors FAB and FȦḂ) only,

∂Ȧ[BFC]D = 0 , ∂A[ḂFĊ]Ḋ = 0 , (4.10)

are equivalent to the Maxwell equations for the complex selfdual field Fab =
i
2
ǫabcdF

cd ∝
σab

CDFCD i.e., they imply ∂aFab = 0 and ∂[aFbc] = 0.
Consider now the components of Eq. (4.6) which contain the complex vector VAḂ =

σa
AḂ
Va only, namely

∂A[ḂVĊ]D = 0 , ∂Ḃ[AVD]Ċ = 0 (4.11)

and

∂A[BVC]Ḋ = 0 , ∂Ȧ[ḂVĊ]D = 0 . (4.12)

Eqs. (4.11) imply ∂[aVb] = 0 and ∂aVa = 0. The first is solved by Va = ∂aφ̃ and the

second implies that the scalar field φ̃ obeys the Klein-Gordon equation ∂a∂aφ̃ = 0. In the
spin-tensor notation these read

VAḂ = ∂AḂφ̃ , ∂A[Ḃ∂Ċ]Dφ̃ = 0 . (4.13)

Next, the components of Eq. (4.6) which contain both vector and antisymmetric tensor
components, ∂AḂFCD − ∂ACVDḂ = 0 and ∂AḂFĊḊ − ∂ĊḊVAḂ = 0, can be written in the
form

∂AḂ(FCD − ∂CDφ̃) = 0 , ∂AḂ(FĊḊ − ∂ĊḊφ̃) = 0 , (4.14)
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the only covariant solution of which is given by

FCD = ∂CDφ̃ , FĊḊ = ∂ĊḊφ̃ . (4.15)

Keeping in mind the Maxwell equations (4.10), one finds that the scalar field φ̃(X) satis-
fies, besides the Klein-Gordon equation in (4.13), also the remaining components of Eq.
(4.8),

∂A[B∂C]Dφ̃ = 0 , ∂Ȧ[Ḃ∂Ċ]Ḋφ̃ = 0 . (4.16)

4.2.2 Proof for arbitrary n

We now prove that Eqs. (4.7), (4.8) provide the general solution of the Maxwell-like
equation in tensorial space, Eq. (4.6), for any n. The Fourier transform of Eq. (4.6) is

pα[γFδ]β(p) = 0 . (4.17)

The solution of this equation is nontrivial iff the matrix of the generalized momentum
has rank one, this is to say when pαβ = λαλβ for arbitrary λα 6= (0, ..., 0) or, equivalently,
when this matrix obeys pα[γpδ]β = 0. The general solution is characterized by Fαβ(λ) =

λαλβφ(λ) and can be equivalently written in the form Fαβ(p) = pαβφ̃(p) if pα[γpδ]βφ̃(p) = 0
7 of Eqs. (4.6). As far as set of equations

Fαβ(p) = pαβφ̃(p) , pα[γpδ]βφ̃(p) = 0 (4.18)

provide the Fourier transforms of Eqs. (4.7), (4.8), these describe the general solution.

4.2.3 Peccei-Quinn-like symmetry

Thus, the N = 4 higher spin supermultiplet actually contains two complex scalar fields
and two Dirac spinor fields in tensorial space, φ(X), ψ1

α(X), ψ2
α(X), φ̃(X), which satisfy

the free bosonic and fermionic higher spin equations, Eqs. (4.5), (4.8). They appear in
the on-shell scalar superfield decomposition as

Φ(X,Θq, Θ̄q) = φ(XL) + iΘαqψαq(XL) + ǫpqΘ
αqΘβp∂αβφ̃(XL) , q, p = 1, 2 . (4.19)

However, as the second complex scalar field φ̃ enters the original superfield with a deriva-
tive, its zero mode is not fixed. In other words, this scalar is axion-like: it possesses the
Peccei-Quinn-like symmetry

φ̃(X) 7→ φ̃(X) + const . (4.20)

4.3 N = 8

For higher N > 4 the general solution of the set of superfield equations (3.22) and (3.23)
is given by

Φ(X,Θq, Θ̄q) = φ(XL) + iΘαqψαq(XL) +

N/2
∑

k=2

1

k!
Θαkqk . . .Θα1q1Fα1...αk q1...qk(XL) , (4.21)

Fα1...αk q1...qk(XL) = F(α1...αk) [q1...qk](XL) , X
αβ
L = Xαβ + 2iΘq(αΘ̄β)

q , q = 1, ..., 4 , (4.22)

7 More formally, the solution of this equation is given by a distribution with support on the subspace
of tensorial momentum space defined by the condition pα[γpδ]β = 0, so that φ̃(p) ∝ δ(pα[γpδ]β).
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where φ(XL) and ψαq(XL) obey the standard higher spin equations (4.2) while the higher
components satisfy

∂α[γFδ]β2...βk q1...qk(XL) = 0 , Fα1...αq = F(α1...αq) . (4.23)

For instance, for N = 8 the superfield solution of the higher spin equations (3.22) and
(3.23) reads

Φ(X,Θq, Θ̄q) = φ(XL) + iΘαqψαq(XL) +
1

2
Θα2q2Θα1q1Fα1α2 q1q2(XL) +

+
i

3!
Θα3q3Θα2q2Θα1q1ǫq1q2q3qψ

q
α1α2α3

(XL) +

+
1

4!
ǫq1q2q3q4Θ

α4q4 . . .Θα1q1Fα1...α4(XL) . (4.24)

Its two lowest components obey Eqs. (4.2), while its higher order nonvanishing field com-
ponents satisfy Eqs. (4.23),

∂α[γFδ]β q1q2(X) = 0 , (4.25)

∂α[γψδ]β2β3

q(X) = 0 , (4.26)

∂α[γFδ]β2β3β4
(X) = 0 . (4.27)

It is tempting to identify (4.26) with the tensorial space generalization of the Rarita-
Scwinger equations and Eq. (4.27) with that of the linearized conformal gravity equation
imposed on Weyl tensor. However, similarly to the N = 2 case in Sec. 4.1, it is possible to
show that the general solutions of Eqs. (4.25), (4.26) and (4.27) are expressed in terms of
a sextuplet of scalar fields φq1q2(X) = φ[q1q2](X), a quadruplet of spinorial fields ψ̃q

α3
and

a singlet of scalar field φ̃(X) obeying the standard tensorial space fermionic and bosonic
higher spin equations (4.2),

Fαβ q1q2(X) = ∂αβφq1q2(X) , (4.28)

ψq
α1α2α3

(X) = ∂α1α2ψ̃
q
α3
(X) , (4.29)

Fα1...α4(X) = ∂α1α2∂α3α4φ̃(X) . (4.30)

Summarizing, the N = 8 supermultiplet of free higher spin fields is described by a set
of two scalar fields, a sextuplet of scalar fields, a spinor field and a quadruplet of spinorial
fields, all in tensorial superspace, which obey the usual type free higher spin equations

∂α[γ∂δ]βφ(X) = 0 , ∂α[βψγ](X) = 0 ,

∂α[γ∂δ]βφqp(X) = 0 ,

∂α[βψ̃γ]
q(X) = 0 , ∂α[γ∂δ]βφ̃(X) = 0 . (4.31)

Thus, we conclude that, in tensorial superspace, at least all the free field dynamics is
carried by the scalar and spinor fields. However, the ‘higher’ scalar and spinor fields
appear in the basic superfield under the action of one or two derivatives and, hence, the
model is invariant under the following generalized bosonic and fermionic Peccei-Quinn-like
symmetries

φqp(X) 7→ φqp(X) + aqp ,

ψ̃α
q(X) 7→ ψ̃α

q(X) + βα
q ,

φ̃(X) 7→ φ̃(X) + a +Xαβaαβ , (4.32)
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with constant bosonic parameters aqp = −apq, a, aαβ and constant fermionic parameter
βα

q. Note that the non-constant shift in φ̃(X) is allowed by the presence of two derivatives
in Eq. (4.30).

5 Conclusion and discussion

In this paper we have obtained the superfield equations in N = 2, 4 and 8 extended
tensorial superspaces Σ(10|N4), which describe the supermultiplets of the D = 4 mass-
less conformal free higher spin field theory with N -extended supersymmetry. Actually

our results are valid for Σ(n(n+1)
2

|Nn) with arbitrary n and hence for other D’s; we have
elaborated the cases for N = 2, 4, 8 since for n = 4 these have clear ‘lower spin’ D = 4
counterparts (e.g. SYM for N = 4, supergravity for N = 8)

The N = 2 supermultiplet of massless conformal higher spin equations is simply given
by the complexification of the N = 1 supermultiplet. ForN = 4, 8 the N -extended super-
fields contain higher components carrying symmetric tensor representations of GL(n,R)
that satisfy first order equations in tensorial superspace. It is tempting to identify these
equations with a tensorial superspace generalization of the Maxwell equations and, in
the N = 8 case, also with the Rarita-Schwinger and linearized conformal gravity equa-
tions. However, the general solutions of these equations are expressed through scalar and
spinor fields in tensorial space which obey the standard higher spin equations in their
tensorial space version. As these additional scalar and spinor fields of the N -extended
supermultiplets appear in the basic superfield under derivatives, the theory is invariant
under Peccei-Quinn–like symmetries shifting these fields.

The superfield equations (3.22) and (3.23) were found for even N . It would be in-
teresting to consider as well the case of extended tensorial superspaces with odd N > 1
and to look for any specific properties of the N -extended supermultiplets of the massless
conformal higher spin fields for N odd.

Another possible direction for future study is to generalize the construction presented
here to the OSp(N|2n) supergroup manifolds, which provide [1, 2, 28, 7] the AdS gen-
eralization of the tensorial (super)spaces, and to compare the results with the free field
limit of [18, 19].
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