
ar
X

iv
:1

10
6.

52
44

v1
  [

m
at

h.
C

V
] 

 2
6 

Ju
n 

20
11

EQUIDISTRIBUTION OF ZEROS OF HOLOMORPHIC SECTIONS IN THE NON
COMPACT SETTING

TIEN-CUONG DINH, GEORGE MARINESCU, AND VIKTORIA SCHMIDT

ABSTRACT. We consider tensor powersLN of a positive Hermitian line bundle (L; hL) over

a non-compact complex manifold X . In the compact case, B. Shiffman and S. Zelditch

proved in [32] that the zeros of random sections become asymptotically uniformly dis-

tributed as N ! 1 with respect to the natural measure coming from the curvature ofL. Under certain boundedness assumptions on the curvature of the canonical line bundle

of X and on the Chern form of L we prove a non-compact version of this result. We

give various applications, including the limiting distribution of zeros of cusp forms with

respect to the principal congruence subgroups of SL2(Z) and to the hyperbolic measure,

the higher dimensional case of arithmetic quotients and the case of orthogonal polyno-

mials with weights at infinity. We also give estimates for the speed of convergence of the

currents of integration on the zero-divisors.
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1. INTRODUCTION AND RELATED RESULTS

This note is concerned with the asymptotic distribution of zeros of random holomor-

phic sections in the high tensor powers LN of a positive Hermitian line bundle (L; hL)
over a non-compact complex manifold X. Distribution of zeros of random polynomials is

a classical subject, starting with the papers of Bloch-Pólya, Littlewood-Offord, Hammer-

sley, Kac and Erdös-Turán, see e.g. Bleher-Di [6] and Shepp-Vanderbei [31] for a review

and complete references.
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Shiffman and Zelditch [32] obtained a far-reaching generalization by proving that the

zeros of random sections of powers LN of a positive line bundle L over a projective man-

ifold become asymptotically uniformly distributed as N !1 with respect to the natural

measure coming from L. In a long series of papers these authors further considered the

correlations between zeros and their variance (see e.g. [7,33]). Berman [5] generalized

some of these results in the context of pseudoconcave domains.

A different method to study the distribution of zeros was introduced by Sibony and the

first-named author [14] using the formalism of meromorphic transforms. They also gave

bounds for the convergence speed in the compact case, improving on the ones in [32].

There is an interesting connection between equidistribution of zeros and Quantum

Unique Ergodicity related to a conjecture of Rudnik and Sarnak [29] about the behaviour

of high energy Laplace eigenfunctions on a Riemannian manifold. By replacing Laplace

eigenfunctions with modular forms one is lead to study of the equidistribution of zeros of

Hecke modular forms. This was done by Rudnick [28], Holowinsky and Soundararajan

[17] and generalized by Marshall [21] and Nelson [25].

Another area where random polynomials and holomorphic sections play a role is sta-

tistical physics. Holomorphic random sections provide a model for quantum chaos and

the distribution of their zeros was intensively studied by physicists e.g. [6,9,26].

The proof of the equidistribution in [14, 32] involves the asymptotic expansion of the

Bergman kernel. In [19, 20] we obtained the asymptotic expansion of the L2-Bergman

kernel for positive line bundles over complete Hermitian manifolds under some natural

curvature conditions, see (1.4) and Remark 1.3. In this paper we regain the asymptotic

equidistribution of random zeros of holomorphic L2-sections under the additional as-

sumption, that the spaces of holomorphic L2-sections of LN are of finite dimension. We

give more explanations after we have stated the theorem precisely.

Let us consider an n-dimensional complex Hermitian manifold (X; J;�), where J is

the complex structure and � a positive (1; 1)-form. The manifold (X; J;�) is called

Kähler if d� = 0. To � we associate a J-invariant Riemannian metric gTX given bygTX(u; v) = �(u; Jv) for all u; v 2 TxX, x 2 X.

We consider further a Hermitian holomorphic line bundle (L; hL) on X. The curvature

form of L is denoted by RL. We denote by LN := L
N the N -th tensor power of L.

The Hermitian metrics � and hL provide an L2 Hermitian inner product on the space of

sections of LN and we can introduce the space of holomorphic L2-sections H0(2)(X;LN),
cf. (2.3).

For a section s 2 H0(2)(X;LN) we denote by Div(s) the divisor defined by s; then Div(s)
can be written as a locally finite linear combination

P 
iVi, where Vi are irreducible

analytic hypersurfaces and 
i 2 Z are the multiplicities of s along the Vi’s.
Recall here the notion of current: let 
p;q0 (X) denote the space of smooth compactly

supported (p; q)-forms on X, and we let 
0 p;q(X) = 
n�p;n�q0 (X)0 denote the space of(p; q)-currents on X; (T; ') = T (') denotes the pairing of T 2 
0p;q(X) and ' 2
n�p;n�q0 (X).
We denote by [Div(s)℄ the current of integration on Div(s). If Div(s) = P 
iVi then�[Div(s)℄; '� :=Xi 
i ZVi ' ; ' 2 
n�1;n�10 (X) ;
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where the integrals are well-defined by a theorem of Lelong (cf. [13, III-2.6], [16, p. 32]).

Assume that the spaces H0(2)(X;LN) have finite dimension dN for all N . We endowH0(2)(X;LN) with the natural L2-metric (cf. (2.2)) and this induces a Fubini-Study metric!FS on the projective space PH0(2)(X;LN). The volume form !dN�1FS defines by normaliza-

tion a probability measure �FS on PH0(2)(X;LN). We consider the probability space

(1.1) (
; �) = 1YN=1(PH0(2)(X;LN); �FS) :
Note that for two elements s; s0 2 H0(2)(X;LN) which are in the same equivalence class

in PH0(2)(X;LN) we have Div(s) = Div(s0), so Div is well defined on PH0(2)(X;LN).
Definition 1.1. We say that the zero-divisors of generic random sequences (sN) withsN 2 PH0(2)(X;LN) are equidistributed with respect to a Hermitian metric ! on X, if for�-almost all sequences (sN) 2 Q1N=1 PH0(2)(X;LN) we have

(1.2)
1N hDiv(sN)i! ! ; N !1 ;

in the sense of currents, that is, for any test (n � 1; n � 1)-form ' 2 
n�1;n�10 (X) there

holds

(1.3) limN!1 � 1N hDiv(sN)i; '� = ZX ! ^ ':
Our first result is a generalization to non-compact manifolds of a seminal result of

Shiffman-Zelditch [32, Th. 1.1].

Let KX denote the canonical bundle of X, i.e., KX = �n;0T �X. If � is a Hermitian

metric on X we consider the induced metric on KX with curvature RKX . If � is Kähler,

then
p�1RKX = �Ri
�, where Ri
� is the Ricci curvature of the Riemannian metric

associated to � (cf. (4.1)-(4.2)).

Theorem 1.2. Let (X;�) be an n-dimensional complete Hermitian manifold. Let (L; hL)
be a Hermitian holomorphic line bundle over X. Assume that there exist constants " > 0,C > 0 such that

(1.4)
p�1RL > "�; p�1RKX < C�; j��jgTX < C :

Furthermore, assume that the spaces H0(2)(X;LN) have finite dimension for all N . Then the

zero-divisors of generic random sequences (sN) 2 Q1N=1 PH0(2)(X;LN) are equidistributed

with respect to
p�12� RL.

Remark 1.3. Some comments about the hypothesis of the theorem are in order. If (X;�)
is Kähler (d� = 0, equivalently, ��=0) they are the natural hypotheses to apply Hörman-

der’s L2 �-method (with singular weights) in order to find L2 holomorphic sections of LN
which separate points and give local coordinates. If (X;�) is not Kähler, then we have

to apply the expansion of the Bergman kernel to achieve this goal (see Corollary 2.2

(i)). Indeed, (1.4) implies that the Kodaira-Laplacian on LN has a spectral gap (via

the Bochner-Kodaira-Nakano formula) and the Bergman kernel of LN has an asymptotic

expansion (cf. [20], [19, Th. 6.1.1], see Theorem 2.1).

Let us remark that:

3
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(i) if L = KX , the first two conditions in (1.4) can be replaced by the following simpler

condition: hKX is induced by � and
p�1RKX > "�, for some " > 0 (see also (iii)).

(ii) If (X;�) is Kähler, the condition �� = 0 is trivially satisfied.

(iii) If we consider the equidistribution of sections of LN 
KX of n-holomorphic forms

with values in LN we can skip the condition
p�1RKX < C� in (1.4). In fact, we can

state the following result. Assume that

(1.5)
p�1RL > "�; j��jgTX < C :

Furthermore, assume that the spaces H0(2)(X;LN 
KX) have finite dimension for all N .

Then the zero-divisors of generic random sequences (sN) 2 Q1N=1 PH0(2)(X;LN 
KX) are

equidistributed with respect to
p�12� RL.

Using these remarks we can obtain various versions of Theorem 1.2.

Remark 1.4. Note that on a compact manifold equipped with a positive line bundle one

can always realize condition (1.4) by choosing � = p�12� RL. This is not always possible

in general; if X is non-compact, the metric associated to � = p�12� RL might be non-

complete. The existence of a complete metric � with
p�1RL > "� is equivalent to

saying that
p�1RL defines a complete Kähler metric.

Another interesting fact is that by changing � we change the L2-product (2.2) on the

spaces of sections of LN . However, as long as (1.4) holds, the L2-holomorphic sections

are equidistributed with respect to
p�12� RL.

Theorem 1.2 is a consequence of the following equidistribution result on relatively

compact open sets. We also address here the problem of the convergence speed of the

currents [ 1N Div(sN)℄ towards
p�12� RL. For a compact manifold X the estimates of the con-

vergence speed from Theorem 1.5 were obtained in [14] and we will adapt the method

of [14] in the present context.

Theorem 1.5. Let (X;�) and (L; hL) be as in Theorem 1.2. Then for any relatively compact

open subset U of X there exist a constant 
 = 
(U) > 0 and an integer N(U) with the

following property. For any real sequence (�N) with limN!1(�N= logN) = 1 and for anyN > N(U) there exists a set EN � PH0(2)(X;LN) such that:

(a) �FS(EN) 6 
N2n e��N=
,
(b) For any sN 2 PH0(2)(X;LN) nEN we have the following estimate

(1.6)

����� 1N hDiv(sN )i� p�12� RL; '����� 6 �NN k'kC 2 ; ' 2 
n�1;n�10 (U) :
In particular, for a generic sequence (sN) 2 Q1N=1 PH0(2)(X;LN) the estimate (1.6) holds fors = sN , for N large enough.

By choosing (�N) such that limN!1(�N=N) = 0 we obtain that zero-divisors of generic

random sequences (sN) 2 Q1N=1 PH0(2)(X;LN) are equidistributed with respect to
p�12� RL

on U . From this observation, Theorem 1.2 follows immediately.

Of course, we can use different values of (�N) depending of our purpose: if we want

a better estimate on EN , the speed of equidistribution will be worse; if we want a better

convergence speed, we have to allow larger sets EN . For example, we can take �N =
4



EQUIDISTRIBUTION OF ZEROS OF HOLOMORPHIC SECTIONS IN THE NON COMPACT SETTING(logN)1+�, 0 < � � 1. Then (�N=N) in (1.6) converges very fast to 0. Note that in

[32, p. 671] it is observed that in the compact case the convergence speed is bounded

above by N "� 12 , for any " > 0.

Let X be an n-dimensional, n > 2, irreducible quotient of a bounded symmetric do-

main D by a torsion-free arithmetic group � � Aut(D). We call such manifolds arith-

metic quotients. The Bergman metric !BD on D (cf. (4.5)) descends to a Hermitian metric

on X, called Bergman metric on X and denoted by !BX . This metric induces a volume

form on X and a Hermitian metric on KX and thus a L2 Hermitian inner product on the

sections of KNX .

Corollary 1.6. Let X be an n-dimensional, n > 2, arithmetic quotient. Let H0(2)(X;KNX )
be the space of holomorphic sections of KNX which are square-integrable with respect to

the L2 Hermitian inner product induced by the Bergman metric. Then the zero-divisors of

generic random sequences (sN) 2 Q1N=1 PH0(2)(X;KNX ) are equidistributed with respect to

the Bergman metric 12�!BX on X. Moreover, we have an estimate of the convergence speed on

compact sets as in Theorem 1.5.

Theorem 1.2 has the following application to the equidistribution of zeros of modular

forms.

Corollary 1.7. Let � � SL2(Z) be a subgroup of finite index that acts freely on the hyper-

bolic plane H: Consider the spaces of cusp forms S2N as Gaussian probability spaces with

the measure induced by the Petterson inner product. Then for almost all random sequences(f2N) in the product space
Q1N=1 S2N the associated sequence of zeros becomes asymptotically

uniformly distributed, i.e. for piecewise smooth open sets U contained in one fundamental

domain we have limN!1 1N ℄nz 2 U ; f2N(z) = 0o = 12� Vol (U);
where Vol denotes the hyperbolic volume. Moreover, we have an estimate of the convergence

speed on compact sets as in Theorem 1.5.

This result concerns typical sequences of cusp forms. If one considers Hecke modular

forms, by a result of Rudnick [28] and its generalization by Marshall [21], the zeros of all

sequences of Hecke modular forms are equidistributed. The method used in [21,28] fol-

lows the seminal paper of Nonnenmacher-Voros [26] and consists in showing the equidis-

tribution of masses of Hecke forms. Rudnick [28] invoked for this purpose the Gener-

alized Riemann Hypothesis and this hypothesis was later removed by Holowinsky and

Soundararajan [17]. Marshall [21] extended their methods to the higher-dimensional

setting. Nelson [25] removed later some of the hypotheses in [21].

This lay-out of this paper is as follows. In Section 2, we collect the necessary ingre-

dients about the asymptotic expansion of Bergman kernel. In Section 3, we prove the

main results, Theorems 1.2 and 1.5, about the equidistribution on compact sets together

with the estimate of the convergence speed. In the next sections we give applications of

our main result in several geometric contexts and prove equidistribution: for sections of

the pluricanonical bundles over pseudoconcave manifolds and arithmethic quotients in

dimension greater than two (Section 4), for modular forms over Riemann surfaces (Sec-

tion 5), for sections of positive line bundles over quasi-projective manifolds (Section 6)

5
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and finally for polynomials over C endowed with the Poincaré metric at infinity (Section

7).

2. BACKGROUND ON THE BERGMAN KERNEL

Let (X; J;�) be a complex Hermitian manifold of dimension n, where J is the complex

structure and � is the (1; 1)-form associated to a Riemannian metric gTX compatible withJ , i.e.

(2.1) �(u; v) = gTX(Ju; v) ; gTX(Ju; Jv) = gTX(u; v) ; for all u; v 2 TxX, x 2 X :
The volume form of the metric gTX is given by dvX = �n=n!. The Hermitian manifold(X; J;�) is called complete if gTX is a complete Riemannian metric.

Let (E; hE) be a Hermitian holomorphic line bundle. For v; w 2 Ex, x 2 X, we denote

by hv; wiE the inner product given by hE and by jvjE = hv; vi1=2E the induced norm. TheL2–Hermitian product on the space C10 (X;E) of compactly supported smooth sections

of E, is given by

(2.2) (s1; s2) = ZXhs1(x); s2(x)iE dvX(x) :
We denote by L2(X;E) the completion of C10 (X;E) with respect to (2.2). Consider

further the space of holomorphic L2-sections of E:

(2.3) H0(2)(X;E) := ns 2 L2(X;E) : �Es = 0o :
Here the condition �Es = 0 is taken in the sense of distributions. Elementary continuity

properties of differential operators on distributions show that H0(2)(X;E) is a closed sub-

space of L2(X;E). Moreover, the hypoellipticity of �E implies that elements ofH0(2)(X;E)
are smooth and indeed holomorphic.

For a Hermitian holomorphic line bundle (E; hE) we denote by RE its curvature, which

is a (1; 1)-form on X. Given the Riemannian gTX metric on X associated to � as in (2.1),

we can identify RE to a Hermitian matrix _RE 2 End(T (1;0)X) such that for u; v 2 T (1;0)x X,

(2.4) RE(u; v) = h _RE(u); vi:
There exists an orthonormal basis of (T (1;0)x X; gTX) such that _RE = diag(�1; : : : ; �n). The

real numbers �1; : : : ; �n are called the eigenvalues of RE with respect to � at x 2 X. We

denote

(2.5) det( _RE) = nYk=1�k :
For a holomorphic section s in a holomorphic line bundle, let Div(s) be the zero divisor

of s and we denote by the same symbol Div(s) the current of integration on Div(s). We

denote by KX the canonical line bundle over X.

Let (L; hL) ! X be a Hermitian holomorphic vector bundle. As usual, we will writeLN instead of L
N for the N�th tensor power of L and omit the 
� symbol in all similar

expressions. On LN we consider the induced Hermitian metric hLN = (hL)
N . An inner

product on the spaces of holomorphic sections H0(X;LN) is defined by (2.2). Denote by

6



EQUIDISTRIBUTION OF ZEROS OF HOLOMORPHIC SECTIONS IN THE NON COMPACT SETTINGH0(2)(X;LN) the subspace of holomorphic L2-sections. The Bergman kernel PN (x; y) is

the Schwartz kernel of the orthogonal projectionPN : L2(X;LN)! H0(2)(X;LN) :
If H0(2)(X;LN) = 0, we have of course PN(x; x) = 0 for all x 2 X. If H0(2)(X;LN) 6= 0,

consider an orthonormal basis (SNj )dNj=1 of H0(2)(X;LN) (where 1 6 dN 61). Then

(2.6) PN(x; x) = dNXj=1 jSNj (x)j2LN in C
1lo
(X) :

The following proposition is a special case of [19, Th. 6.1.1]. The case whenX is compact

is due to Catlin [11] and Zelditch [38].

Theorem 2.1. Let (X;�) be an n-dimensional complete Hermitian manifold. Let (L; hL)
be a Hermitian holomorphic line bundle over X. Assume that there exist constants " > 0,C > 0 such that p�1RL > "�; p�1RKX < C�; j��jgTX < C:
Then there exist coefficients br 2 C1(X), for r 2 N, such that the following asymptotic

expansion

(2.7) PN (x; x) = 1Xr=0 br(x)Nn�r
holds in any C `-topology on compact sets of X. Moreover, b0 = det � _RL2� �.

To be more precise, the asymptotic expansion (2.7) means that for any compact setK � X and any k; ` 2 N there exists a constant Ck;`;K > 0, such that for any N 2 N,

(2.8)

�����PN (x; x)� kXr=0 br(x)Nn�r�����
C `(K) � Ck;`;KNn�k�1 :

Let

(2.9) BsN := fx 2 X : s(x) = 0 for all s 2 H0(2)(X;LN)g
be the base locus of H0(2)(X;LN), which is an analytic set. Assume now that for N large

enough

(2.10) dN := dim H0(2)(X;LN) <1 :
The Kodaira map is the holomorphic map�N : X nBsN ! PH0(2)(X;LN)�x 7�! ns 2 H0(2)(X;LN) : s(x) = 0o(2.11)

In this definition we identify the projective space PH0(2)(X;LN)� of lines in H0(2)(X;LN)�
to the Grassmannian manifold of hyperplanes in H0(2)(X;LN). To be precise, for a sections 2 H0(2)(X;LN) and a local holomorphic frame eL : U ! L of L, there exists a holo-

morphic function f 2 O(U) such that s = fe
NL . We denote f by s=e
NL . To x 2 X and

a choice of local holomorphic frame eL of L, we assign the element s 7! (s=e
NL )(x) inH0(2)(X;LN)�. If x =2 BsN , this defines a line in H0(2)(X;LN)� which is by definition �N(x).
7
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By a choice of basis fSNi g of H0(2)(X;LN) it is easy to see that �N is holomorphic and has

the coordinate representationx 7! [(SN0 =e
NL )(x); : : : ; (SNdN=e
NL )(x)℄:
As a consequence of the asymptotic expansion (2.7) of the Bergman kernel we obtain:

Corollary 2.2. (i) Under the assumption of Theorem 2.1 the ring �NH0(2)(X;LN) separates

points and gives local coordinates at each point of X.

(ii) Let K � X be compact. There exists an integer N(K) such that for every N > N(K)
we have BsN \K = ; and �N is an embedding in a neighbourhood of K.

Proof. Item (i) follows by applying the analytic proof of the Kodaira embedding theo-

rem by the Bergman kernel expansion (see e.g. [19, §8.3.5], where symplectic man-

ifolds are considered; the arguments therein extend to the non-compact case due to

[19, Th. 6.1.1]). Item (ii) follows immediately from (i). �

Let us note a case when the Kodaira map (2.11) gives a global embedding.

Proposition 2.3. Under the assumption of Theorem 2.1 suppose further that the base man-

ifold X is 1-concave (cf. Definition 4.1). Then there exists N0 such that for all N > N0 we

have BsN = ; and the Kodaira map (2.11) is an embedding of X.

Proof. By Corollary 2.2 (i) the ring �NH0(2)(X;LN) separates points and gives local co-

ordinates at each point of X. Applying the proof of the Andreotti-Tomassini embedding

theorem [3] to the ring �NH0(2)(X;LN) we obtained the desired conclusion. �

Let V be a finite dimensional Hermitian vector space and let V � be its dual. Let O(�1)
be the universal (tautological) line bundle on P(V �). Let us denote by O(1) = O(�1)�
the hyperplane line bundle over the projective space P(V �).

A Hermitian metric hV on V induces naturally a Hermitian metric hV �
on V �, thus it

induces a Hermitian metric hO(�1) on O(�1), as a sub-bundle of the trivial bundle V � on

P(V �). Let hO(1) be the Hermitian metric on O(1) induced by hO(�1).
For any v 2 V , the linear map V � 3 f ! (f; v) 2 C defines naturally a holomorphic

section �v of O(1) on P(V �). By the definition, for f 2 V � r f0g, at [f ℄ 2 P(V �), we havej�v([f ℄)j2hO(1) = j(f; v)j2=jf j2hV � :(2.12)

For N > N(K), �N : K �! PH0(X;LN)� is holomorphic and the map	N : ��NO(1)! LN ;	N((��N�s)(x)) = s(x); for any s 2 H0(X;LN)(2.13)

defines a canonical isomorphism from ��NO(1) to LN on X, and under this isomorphism,

we have

(2.14) h��NO(1)(x) = PN(x; x)�1hLN (x)
on K (see e.g. [19, (5.1.15)]). Here h��NO(1) is the metric on ��NO(1) induced by the

Fubini-Study metric hO(1) on O(1)! PH0(X;LN)�.
8
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The Fubini-Study form !FS is the Kähler form on P(V �), and is defined as follows: for

any 0 6= v 2 V we set!FS = p�12� RO(1) = p�12� �� log j�vj2hO(1) on
nx 2 P(V �); �v(x) 6= 0o :(2.15)

Identity (2.14) immediately implies��N!FS = p�12� RLN + p�12� �� logPN(x; x)= Np�12� RL + p�12� �� logPN(x; x):(2.16)

We obtain as a consequence the analogue of the Tian-Ruan convergence of the Fubini-

Study metric on compact subsets of X.

Corollary 2.4 ([19, Corollary 6.1.2]). In the conditions of Theorem 2.1 for any ` 2 N there

exists C`;K such that

(2.17)

����� 1N��N!FS � p�12� RL�����
C `(K) 6 C`;KN �

Thus the induced Fubini-Study form 1N��N!FS converges to ! in the C1lo
 topology as N !1.

Proof. By (2.16), 1N��N!FS � p�12� RL = p�12�N �� logPN(x; x)
and by (2.8) ����� logPN (x; x)���

C `(K) = O(1) ; N !1 ;
where O(1) is the Landau symbol. �

Tian obtained the estimate (2.17), with the boundO(1=pN) and for ` = 2, for compact

manifolds [34, Th. A] and for complete Kähler manifolds (X;!) with Ri
! 6 �k ! for

some constant k > 0, [34, Th. 4.1]. Ruan [27] proved the C1-convergence and improved

the bound to O(1=N).
Remark 2.5. Assume that in Theorem 1.2 we have � = p�12� RL. Then b0(x) = 1. Thus

from (2.7) and (2.16), we can improve the estimate (2.17) by replacing the left-hand

side by C`;K=N2 (cf. [19, Rem. 5.1.5]).

3. EQUIDISTRIBUTION ON COMPACT SETS AND SPEED OF CONVERGENCE

Let (X;!) be a Hermitian complex manifold of dimension n. Let U be a relatively

compact open subset of X. If S is a real current of bidegree (p; p) and of order 0 on X
and � > 0, define kSkU;�� := sup' j(S; ')j
where the supremum is taken over all smooth real (k � p; k � p)-forms ' with compact

support in U such that k'kC � 6 1. When � = 0, we obtain the mass of S on U that is

denoted by kSkU .

9
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It is clear that if � � �, then kSkU;�� > kSkU;��:
If W is an open set such that U ⋐ W ⋐ X, by theory of interpolation between Banach

spaces [36], we have kSkU;�� 6 
kSk1��=�W kSk�=�W;��;
where 
 > 0 is a constant independent of S, see [15].

For an arbitrary complex vector space V we denote by P(V ) the projective space of1-dimensional subspaces of V . Fix now a vector space V of complex dimension d + 1.

Recall that there is a canonical identification of P(V �) with the Grassmannian Gd�1(V )
of hyperplanes in V , given by P(V �) 3 [�℄ 7! H� := ker � 2 Gd�1(V ), for � 2 V � n f0g.

Once we fix a Hermitian product on V , we endow the various projective spaces with

the Fubini-Study metric !FS, normalized such that the induced measure �FS := !dFS is a

probability measure.

Theorem 3.1. Let (X;!) be a Hermitian complex manifold of dimension n and let U be a

relatively compact open subset of X. Let V be a Hermitian complex vector space of complex

dimension d+ 1. There is a constant 
 > 0 independent of d such that for every 
 > 0 and

every holomorphic map � : X ! P(V ) of generic rank n we can find a subset E of P(V �)
satisfying the following properties:

(a) �FS(E) 6 
 d2 e�
=
;
(b) If � is outside E, the current ��[H�℄ is well-defined and we have


��[H�℄� ��(!FS)


U;�2 6 
:

The proof of the above result uses some properties of quasi-psh functions that we will

recall here. For the details, see [14]. For simplicity, we will state these properties for Pd
but we will use them for P(V �).

A function u : Pd ! R [ f�1g is called quasi-psh if it is locally the difference of a psh

function and a smooth function. For such a function, there is a constant 
 > 0 such thatdd
u + 
!FS is a positive closed (1; 1)-current. Following Proposition A.3 and Corollary

A.4 in [14] (in these results we can choose � = 1), we have:

Proposition 3.2. There is a universal constant 
 > 0 independent of d such that for any

quasi-psh function u with maxu = 0 and dd
u > �!FS we havekukL1 6 12(1 + log d) and ke�ukL1 6 
d;
where the norm L1 is with respect to �FS.

Quasi-psh functions are quasi-potentials of positive closed (1; 1)-currents. For such a

current, we will use the following notion of masskSk := (S; !dFS)
which is equivalent to the classical mass norm. More precisely, we have the following

result.

10
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Lemma 3.3 (��-Lemma for currents). Let S be a positive closed (1; 1)-current on Pd. As-

sume that the mass of S is equal to 1, that is, S is cohomologous to !FS. Then there is a

unique quasi-psh function v such thatmaxv = 0 and
p�1��v = S � !FS:

Finally, we will need the following lemma.

Lemma 3.4. Let � be a closed subset of Pd and u an L1 function which is continuous on

Pd n �. Let 
 be a positive constant. Suppose there is a positive closed (1; 1)-current S of

mass 1 such that �S 6
p�1��u 6 S and

R ud�FS = 0. Then, there is a universal constant
 > 0 and a Borel set E � Pd depending only on S and 
 such that�FS(E) 6 
d2e�
 and ju(a)j 6 

for a 62 � [ E.

Proof. Let v be as in Lemma 3.3. Define m := R vd�FS. By Proposition 3.2, we have�12(1 + log d) 6 m 6 0. Define w := u + v. We have
p�1��w > �!FS. Since u is

continuous outside �, the last property implies that w is equal to a quasi-psh function

outside �. We still denote this quasi-psh function by w. Define l := maxw. Applying

Proposition 3.2 to w � l, we obtain thatm� l = Z (w � l)d�FS > �12(1 + log d):
It follows that l 6 12(1 + log d):
We have u = w � v 6 l� v 6

12(1 + log d)� v:
Let E denote the set fv < �
 + 12(1 + log d)g. This set depends only on 
 and on S. We

have u 6 
 outside � [E. The same property applied to �u implies that juj 6 
 outside� [ E. It remains to bound the size of E. The last estimate in Proposition 3.2 yields�FS(E) . d exp �� 
 + 12(1 + log d)� . d2e�
:
This is the desired inequality. �

Proof of Theorem 3.1. Fix an open set W such that U ⋐ W ⋐ X. Observe that when��1(H�) does not contain any open subset of X then ��[H�℄ is well-defined. Indeed,

we can write locally [H�℄ = p�1��u for some psh function u and define ��[H�℄ :=p�1��(u Æ �). The function u is smooth outside H� and equal to �1 on H�. So,

the expression
p�1��(u Æ �) is meaningful since u Æ � is not identically �1, see [22]

for details. Let � denote the closure of the set of � which do not satisfy the above

condition. By shrinking X we can assume that � is an analytic set with boundary in

P(V �). In particular, its volume is equal to 0. The currents ��[H�℄ depend continuously

on � 2 P(V �) n �.

Fix a smooth positive (n; n)-form � with compact support in W such that for any C
2

real form ' of bidegree (n� 1; n� 1) with compact support in U and k'kC 2 6 1 we have�� 6
p�1��' 6 �. Let M be the analytic subset of points (x; �) in X � P(V �) such that

11



EQUIDISTRIBUTION OF ZEROS OF HOLOMORPHIC SECTIONS IN THE NON COMPACT SETTINGx 2 H�. It is of dimension n + d� 1. Let �1 and �2 denote the natural projections fromM onto X and P(V �) respectively. Define v := (�2)�(�1)�('). This is a function on P(V �)
whose value at � 2 P(V �) n� is the integration of ��1(') on the fiber ��12 (�). So, we havev(�) = (��[H�℄; ') :
Hence, v is continuous on P(V �) n �. Since the form !FS on P(V ) is the average of [H�℄
with respect to the measure �FS on �, we also haveZ vd�FS = (��(!FS); ') :

Define also T := (�2)�(�1)�(�). Recall that � is positive. It is closed since it is of

maximal bidegree. It follows that T is a positive closed (1; 1)-current on P(V �). Since�� 6
p�1��' 6 �, we have �T 6

p�1��v 6 T . Let m denote the mass of �
considered as a positive measure. If a is a generic point in X, then T is cohomologous

to m(�2)�(�1)�(Æa) where Æa is the Dirac mass a, because � is cohomologous to mÆa. The

last expression is m times the current of integration of the hyperplane H of points � such

that �(a) 2 H�. So, the mass of T is equal to m. In particular, it is independent of � and'.

Define the function u on P(V �) byu := 1m�v � (��(!FS); ')� :
We deduce from the above discussion that u satisfies the hypothesis of Lemma 3.4 forS := 1mT . Applying this lemma to 
=m instead of 
, we find a set E 0 independent of '
such that �FS(E 0) 6 
d2e�
=m and juj 6 
=m outside � [ E 0. It follows that


��[H�℄� ��(!FS)


U;�2 6 

for � out of E := � [ E 0. It is enough to replace 
 by max(
;m) in order to obtain the

theorem. �

We show now how to apply Theorem 3.1 to prove Theorem 1.5. Consider the Kodaira

map associated to a line bundle over X, i.e. the map �N from X to PH0(X;LN)� defined

in (2.11). So, d ' Nn and log d ' logN . For � 2 PH0(2)(X;LN), the hyperplane H� �
PH0(2)(X;LN)� determines a current of integration ��N [H�℄ on the zero-divisor of a sections� 2 �. This section is unique up to a multiplicative constant.

Proof of Theorem 1.5. We know by Corollary 2.2 that there exists N 0(U) such that the

Kodaira map �N : X nBsN ! PH0(2)(X;LN)�
is an embedding in the neighbourhood of U for N > N 0(U). By (2.17), N�1��N(!FS)
differs from

p�12� RL on U by a form of norm bounded by C2;U=N . We apply Theorem

3.1 for �N , N > N 0(U) and choose 
 = �N=2 therein. Thus, for N > N 0(U) there existEN � PH0(2)(X;LN) such that �FS(EN) 6 
N2n e��N=
 and for all �N 2 PH0(2)(X;LN) nEN
we have ����� 1N��N [H�N ℄� 1N��N(!FS); '����� 6 �N2N k'kC 2 ; ' 2 
n�1;n�10 (U) :

12
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Hence ����� 1N��N [H�N ℄� p�12� RL; '����� 6 �C2;UN + �N2N �k'kC 2 ; ' 2 
n�1;n�10 (U) :
Choose now N 00(U) such that �N > 2C2;U for all N > N 00(U). We obtain the items (a)

and (b) of Theorem 1.5 by setting N(U) = maxfN 0(U); N 00(U)g.
Finally, the last property holds for a generic sequence (�N) 2 
, since

P�FS(EN) <1. �

Recall that by Remark 2.5 we can replace C2;U=N by C2;U=N2 if � = p�12� RL, so we can

in this case improve the estimate on N(U).
Remark 3.5. Let 1 6 p 6 n be an integer. Suppose there is a positive, closed (n � p +1; n� p+ 1)-form � with compact support in X, which is strictly positive on U . Then we

can extend Theorem 1.5 to projective subspaces of codimension p instead of hyperplanesH�. This can be applied to obtain the equidistribution on U of common zeros of p random

holomorphic sections i.e. of currents of the form [s(1)N = : : : = s(p)N = 0℄.
Proof of Theorem 1.2. Take an exhaustion (Uj)j2N of X by open relatively compact sets.

By Theorem 1.5 there exist sets Nj � 
, j 2 N, of �-measure zero such that (1.3)

holds for all ' 2 
n�1;n�10 (Uj) and all sequences s 2 
 n Nj. Now, since 
n�1;n�10 (X) =[j2N
n�1;n�10 (Uj), (1.3) holds for all s 2 
 n N where N = [j2NNj. �

4. ZEROS OF PLURICANONICAL SECTIONS ON PSEUDOCONCAVE AND ARITHMETIC

QUOTIENTS

We recall the definition of pseudoconcavity in the sense of Andreotti and Grauert.

Definition 4.1 (Andreotti-Grauert [2]). Let X be a complex manifold of complex di-

mension n and 1 6 q 6 n. X is called q-concave if there exists a smooth function' : X �! (a; b℄, where a 2 R [ f�1g, b 2 R, such that for all 
 2℄a; b℄ the superlevel

sets X
 = f' > 
g are relatively compact in X, and ��' has at least n � q + 1 positive

eigenvalues outside a compact set.

Example 4.2. Let Y be a compact complex space and let A � Y be an analytic subset

of dimension q which contains the singular locus of Y . Then Y n A is a (q + 1)-concave

manifold (see e.g. [37, Prop. 9]).

We can formulate now the following consequence of Theorem 1.2. We first recall some

terminology. Let (X; J; !) be a Hermitian manifold, let gTX be the Riemannian metric

associated to ! by (2.1) and let Ri
 the Ricci curvature of gTX . The Ricci form Ri
! is

defined as the (1; 1)-form associated to Ri
 by

(4.1) Ri
!(u; v) = Ri
(Ju; v) ; for any u; v 2 TxX, x 2 X:
If the metric gTX is Kähler, then

(4.2) Ri
! = p�1RK�X = �p�1RKX
whereK�X andKX are endowed with the metric induced by gTX ( see e.g. [19, Prob. 1.7]).

The metric gTX , or the associated Kähler form !, are called Kähler-Einstein if there exists

a real constant k such that

13
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 = k gTX(4.3)

or, equivalently Ri
! = k ! :(4.4)

Theorem 4.3. Let (X;!) be an n-dimensional complete Kähler manifold with Ri
! 6 �k !
for some constant k > 0. Assume that X is (n�1)-concave. Then the zero-divisors of generic

random sequences (sN) 2 Q1N=1 PH0(2)(X;KNX ) are equidistributed with respect to � 12� Ri
!.

If (X;!) is Kähler-Einstein with Ri
! = �k !, k > 0, then we have equidistribution with

respect to k2�!.

The L2 inner product here is constructed with respect to the volume form of ! and the

Hermitian metric on KX induced by !.

Proof. The proof follows immediately from Theorem 1.2, since
p�1RKX = �Ri
! .

Moreover, an important feature of any q-concave manifold X is that for every holo-

morphic line bundle F on X the space of holomorphic sections H0(X;F ) is of finite

dimension. This is a consequence of the finiteness theorem of Andreotti-Grauert [2] (cf.

also [19, Th. 3.4.5]). �

Example 4.4. Assume that X is an n-dimensional Zariski open set in a compact complex

space X� such that the codimension of the analytic set X� n X is at least two. ThenX is (n � 1)-concave. Assume moreover that (e.g. after desingularization of X�) X is

biholomorphic to fX nD, where fX is a compact manifold, D is an effective divisor with

only normal crossings such that K eX 
 [D℄ is ample. Then X admits a (unique up to

constant multiple) Kähler-Einstein metric with negative Ricci curvature, by a theorem

due to R. Kobayashi [18] and Tian-Yau [35].

Example 4.5. Another class of examples is the following. By a well-known theorem of

Cheng-Yau [12] and Mok-Yau [24], any Riemann domain � : D! C
n with �(D) bounded

(e.g. a bounded domain of holomorphy in Cn) carries a unique complete Kähler-Einstein

metric ! of constant negative Ricci curvature, Ri
! = �! .

Assume that X is an n-dimensional Zariski open set in a compact complex space X�
such that the codimension of the analytic set X� n X is at least two and X is covered

by a bounded domain of holomorphy in Cn. Then X is (n � 1)-concave and it carries a

complete Kähler-Einstein metric ! of constant negative Ricci curvature, Ri
! = �! .

Other examples where Theorem 4.3 applies are provided by arithmetic quotients. Let

us quote the following fundamental result about compactification of arithmetic quotients.

Theorem 4.6 (Satake [30], Baily-Borel [4]). Let X be an n-dimensional, n > 2, ir-

reducible quotient of a bounded symmetric domain D by a torsion-free arithmetic group� � Aut(D). Then there exists a compactification X� of X such that: (i) X� is a normal

projective variety and (ii) X� nX is a complex analytic variety is of codimension > 2 in X�.
We are now in the position to prove Corollary 1.6.
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Proof of Corollary 1.6. By Example 4.2 it follows that an n-dimensional arithmetic quo-

tient X, with n > 2, is (n � 1)-concave, since the singular locus of X� has dimension

at most n� 2. (The proof of pseudoconcavity (initially in a weaker sense) of arithmetic

quotients by Andreotti-Grauert [1] and Borel [10] actually also shows that X is (n� 1)-
concave.)

Assume that X = �nD, where D is a bounded symmetric domain and � an arithmeti-

cally defined discontinuous group that acts freely on D. The domain D has a canonicalAut(D)-invariant Kähler metric, namely the Bergman metric. Pick a basis fSigi>1 of the

Hilbert space H0(2)(D) of square-integrable holomorphic functions. The Bergman kernel

is defined as the locally uniformly convergent sumP (z; w) =XSi(z)Si(w)
which is in fact independent of the choice of the basis. The Bergman metric

(4.5) !BD := p�1� �� logP (z; z)
is invariant under Aut(D) ([23, Ch. 4, §1, Prop. 2]) and obviously Kähler. Therefore it

descends to a Kähler metric on X, denoted !BX . Since (D;!BD) is a Hermitian symmetric

manifold, the Bergman metric is complete. Therefore (X;!BX) is complete with respect

to the Bergman metric.

The volume form of !BD defines a Hermitian metric in the canonical line bundle KD
and there holds

p�1RKD = !BD. In fact, since !BD is invariant, the forms (!BD)n andP (z; z)dz1^d�z1^� � �^dzn^d�zn are both invariant (n; n) forms ([23, Ch. 4, §1, Prop. 2]).

Since D is homogeneous, an invariant object is determined by its value in a point. Hence,

two (n; n)�forms only differ by a constant. Writing(!BD)n = 
 P (z; z)dz1 ^ d�z1 ^ � � � ^ dzn ^ d�zn
shows that

p�1RKD = p�1� �� logP (z; z) = !BD ([23, Ch. 4, §1, Prop. 3]). Since !BD
descends to X, we also have

p�1RKX = !BX . The result follows therefore from Theorems

1.2 and 1.5. �

Note that in the above examples the base manifold X turns out to be actually quasi-

projective. In fact, we can replace the hypothesis that X is (n � 1)-concave in Theorem

4.3 by the hypothesis that X is quasi-projective and obtain the same conclusions. More

precisely we have the following.

Theorem 4.7. Let (X;!) be an n-dimensional complete Kähler manifold with Ri
! 6 �k !
for some constant k > 0. Assume that X is is quasi-projective. Then the zero-divisors of

generic random sequences (sN) 2 Q1N=1 PH0(2)(X;KNX ) are equidistributed with respect to� 12� Ri
!. If (X;!) is Kähler-Einstein with Ri
! = �k !, k > 0, then we have equidis-

tribution with respect to k2�!. Moreover, we have an estimate of the convergence speed on

compact sets as in Theorem 1.5.

Proof. Let X be a smooth compactification of X such that D = X n X is a divisor with

simple normal crossings. By [34, Lemma 5.1] any holomorphic section of H0(2)(X;KNX )
extends to a meromorphic section of KNX with poles along of order at most N along D,
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i.e.,H0(2)(X;KNX ) � H0(X;KNX
[D℄N). It follows that H0(2)(X;KNX ) are finite dimensional.

By applying Theorems 1.2 and 1.5 we obtain the result. �

5. EQUIDISTRIBUTION OF ZEROS OF MODULAR FORMS

Consider the group SL2(Z) acting on the hyperbolic plane H via linear fractional trans-

formations. Let � be any subgroup of finite index that acts freely and properly disconti-

nously. Then the quotient space is naturally endowed with a smooth manifold structure

and we want to consider holomorphic line bundles on Y = �nH:
Denote by p the projection map H ! �nH. For any line bundle L ! Y there exists a

global trivialization ' : p�L! H� C:
By invariance, (p�L)� = (p�L)
� for any 
 2 � and we can form j
(� ) := '
� Æ '�1� :
Clearly, j
 2 O�(H) and satisfies j

0(� ) = j
(
 0� )j
0(� ): The map j : � � H ! C� is

called an automorphy factor for �. Conversely, any automorphy factor induces a ��
action on the trivial bundle H � C via (�; z) 7! (
�; j
(� )z) and the quotient becomes a

holomorphic line bundle on Y with transition functions given by the j
:
Holomorphic sections of L can be identified with holomorphic functions on H that

satisfy f(
� ) = j
(� )f(� ): Sections of the tensor powers LN satisfy f(
� ) = j
(� )Nf(� ):
Hermitian metrics on L are identified with smooth (real) functions that satisfy h(
� ) =jj
(� )j�2h(� ); the induced metric on LN corresponds to hN(
� ) = jj
(� )j�2NhN (� ):

We consider a canonical map ��H! C�,(
; � ) 7! d
dz ������
where d
dz is the complex differential. The chain rule implies d

0dz (� ) = d
dz (
 0� )d
0dz (� ): We

call this map the canonical automorphy factor. Recall that 
 2 � are the transition maps

of the coordinate charts on Y . Therefore the d
dz are the transition functions of the tangent

bundle TY . Explicitly,
� =  a b
 d ! � = a� + b
� + d ; d
dz (� ) = 1(
� + d)2 �
The transition functions of the dual bundle T �Y = KY are then j
(� ) = (
� + d)2.

Summarizing, holomorphic functions on H that satisfy the transformation law f(
� ) =(
�+d)2Nf(� ) are in correspondence with holomorphic sections of the bundle K
NY ! Y:
Definition 5.1. A modular form for � of weight 2N is a function on H such that:

(1) f(
� ) = (
� + d)2Nf(� ) , all � 2 H,

(2) f is holomorphic on H,

(3) f is “holomorphic at the cusps”.

A modular form f that is zero at every cusp of � is called a cusp form. We write M2N(�)
for the space of modular forms of weight 2N and S2N (�) for the subspace of cusp forms.

The last condition means the following. If the index [SL2(Z) : �℄ is finite, then for

some natural number ` the transformation z 7! z + ` is contained in � and by (1),f(z + `) = f(z): We identify a neighbourhood f0 < <z 6 `;=z > 
g of 1 with the
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punctured disk f0 < jwj < exp(�2�
=`)g via the map q : z 7! exp(2�p�1z=`) and

define the q-expansion f̂ of f at the cusp 1 by q�f̂ = f . By definition, f is holomorphic

(resp. 0) at 1 if f̂ is holomorphic (resp. 0) at 0: Now any other cusp � of � is of the

form � = �1 with some � 2 SL2(Z) and we say that f is holomorphic (resp. 0) at � ifj�1� f Æ � is is holomorphic (resp. 0) at 1.

The space M2N(�) is finite dimensional for any N , in case N = 0 the dimension is 1

and in case N < 0 the dimension is 0. In the following, we consider N > 1.

The bundle KY inherits a positively curved metric from the hyperbolic space. Namely,

we endow the canonical bundle of H (which is trivial) with the metric h described in

terms of the length of the section 1 by j1jh(z) := j=zj = jyj. This metric descends to a

metric on KY and we havep�(p�1RKY ) = �p�1� �� log y2= �p�1� �� log(�14(z � �z)2)= �p�1 2(z � �z)2dz ^ d�z= p�1 12y2dz ^ d�z= dx ^ dyy2 �
Let D be a fundamental domain for �: If f is any modular form of weight 2N , g a cusp

form of the same degree, then the integralZD f(z)�g(z)y2N�2dxdy
converges and defines a Hermitian product on S2N (�), called the Petersson inner prod-

uct. This is just the induced L2 product on H0(Y;KNY ): We wish to describe the subspaceH0(2)(Y;KN) of square integrable sections, i.e. f 2 H0(2)(Y;KN) is a function on H satisy-

ing conditions (1),(2) from Definition 5.1 and such thatZD jf j2y2N�2dxdy <1:
Since the cusps of � are all of the form �i1 with �i 2 SL2(Z); 1 6 i 6 jSL2(Z) : �j;
it suffices to consider the integral in a neighbourhood U(1) of 1: Using f̂ defined onA := f0 < jwj < exp(�2�
=`)g we computeZU(1)\D jf j2y2N�2dxdy � Z 1
 Z `0 jf j2y2N�2dxdy

>
Zq�1(A) jf j2dx ^ dy (since N > 1)= ZA jf̂(w)j2p�12 dw ^ d �w4�2jwj2

&
ZA j bf(w)j2p�12 dw ^ d �w :

Hence, at each cusp the q-expansion of f is locally square integrable.
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Lemma 5.2. Denote D = fz 2 C : jzj < 1g and let bf be holomorphic in D n f0g: Thenbf 2 L2lo
(D) if and only if bf can be holomorphically extended to the whole disk.

Proof. Consider the Laurent-expansion bf = P�2Z a�w� . In the annuli Rr1;r2 = fr1 6jwj 6 r2g the series is normally convergent. We computeZRr1;r2 j bf j2p�12 dw ^ d �w =X�;� a��a��Z w� �w� p�12 dw ^ d �w�= X�2Z ja�j22� Z r2r1 r2�+1dr:
Either the principal part of bf at 0 is zero or there exists � < 0 such that ja� j2 > 0: In this

case, k bfk2L2(D) > 2�ja�j2 Z r2r1 r2�+1dr
and this is unbounded as r1 ! 0. �

Thus H0(2)(Y;KNY ) is of finite dimension. More precisely there holds:

Lemma 5.3. With the above notations we have H0(2)(Y;KNY ) ' S2N(�):
Proof. Since the Petersson inner product is the L2 product we have S2N (�) � H0(2)(Y;KNY ).
Let f 2 H0(2)(Y;KNY ). By the preceding lemma, f corresponds to a modular form of weight2N . We have to show that this modular forms vanishes at the cusps. It suffices to consider

the cusp at1. Assume that f does not vanish at1 and bf is the q�expansion of f around1. Then j bf(0)j2 = b > 0 and jf j2 > b=2 in a neighbourhood of 1. ThenZ 1
 Z `0 jf j2y2N�2dxdy >
`b2 Z 1
 y2N�2dy =1; N > 1:

This contracdiction shows that f corresponds to a cusp form. �

Theorems 1.2, 1.5 and the above discussion immediately imply Corollary 1.7.

6. EQUIDISTRIBUTION ON QUASIPROJECTIVE MANIFOLDS

In the previous sections we considered the eqidistribution with respect to some canon-

ical Kähler metrics. We turn now to the case of quasiprojective manifolds and construct

adapted metrics using a method of Cornalba and Griffiths. They depend of some choices

but have the advantage of being very general.

Let X � P
k be a quasiprojective manifold, denote by X � P

k its projective closure

and let � = X nX. Denote by L = O(1)jX the restriction of the hyperplane line bundleO(1)! Pk.
We consider a resolution of singularities � : fX ! X in order to construct appropriate

metrics on X and LjX . More precisely, there exists a finite sequence of blow-upsfX = Xm �m�! Xm�1 �m�1�! � � � �1�! X0 = X
along smooth centers Yj such that

(1) Yj is contained in the strict transform �j = ��1j (�j�1nYj�1), �0 = �,

(2) the strict transform of � through � = �m Æ �m�1 Æ � � � �1 is smooth and ��1(�) is a

divisor with simple normal crossings in fX,
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(3) X = Xn� ' fXn��1(�) are biholomorphic.

If ��1(�) = [Sj is a decomposition into smooth irreducible components, we denote

for each j the associated holomorphic line bundle by O eX(Sj) and by �j a holomorphic

section vanishing to first order along Sj . Let � be the fundamental form of any smooth

Hermitian metric on fX. Since fX is projective, we can choose a Kähler form �, but the

construction works in general. The generalized Poincaré metric on fXn��1(�) ' X is

defined by the Hermitian form

(6.1) �" = ��p�1 "Xj �� log(� log k�jk2j)2 ; 0 < "� 1 fixed;
where we have chosen smooth Hermitian metrics k � kj on O eX(Sj) such that k�jkj < 1.

The generalized Poincaré metric (6.1) is a complete Hermitian metric on fXn��1(�) ' X
and satisfies the curvature estimates�C�" < p�1RKX < C�"; j��"j�" < C
with some positive constant C (where the metric on KX is the induced metric by �"). A

proof of this fact can be found in [19, Lemma 6.2.1]. Next we construct a metric on L
that dominates the Poincaré metric. By [19, Lemma 6.2.2], there exists a Hermitian line

bundle (eL; heL) on fX with positive curvature ReL on fX, and such thateLj eXn��1(�) ' ��(Lm)jX ;
with some m 2 N. If we equip LjX with the metric

(6.2) hLÆ = (heL) 1m Yj (� log k�jk2j)2Æ; for 0 < Æ � 1;
we obtain the estimate p�1RhLÆ > ��" ; for 0 < Æ; � � 1;
as ReL extends to a strictly positive (1; 1)-form dominating a small positive multiple of �
on fX. Thus, the expansion of the Bergman kernel holds as in Theorem 2.1. Moreover,

the space of holomorphic L2-sectionsH0(2)(X;LN ;�"; hLNÆ ) := ns 2 OX(LN) : ZX jsj2hLNÆ �n" =n! <1o
is finite dimensional since the holomorphic L2-sections extend holomorphically to all

of fX , more precisely, H0(2)(X;LN) � H0(fX;��LN), see [19, (6.2.7.)]. In view of the

previous discussion, Theorem 1.2 yields the following.

Corollary 6.1. Let X � Pk be a quasiprojective manifold. Denote by L = O(1)jX the restric-

tion of the hyperplane line bundle O(1)! Pk. Fix metrics �" as in (6.1) and hLÆ as in (6.2).

Then the zero-divisors of generic random sequences (sN) 2 Q1N=1 PH0(2)(X;LN ;�"; hLNÆ ) are

equidistributed with respect to
p�12� R(L;hLÆ ), where �" is the generalized Poincaré metric (6.1)

and hLÆ is defined by (6.2).
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7. EQUDISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS

We wish to illustrate the result of the previous Section in the case of polynomials.

As mentioned in the Introduction the distribution of zeros of random polynomials is a

classical subject. Recent results were obtained by Bloom-Shiffman [8] (see also [5])

concerning the equilibrium measure �eq of a compact set K endowed with a measure �
satisfying the Bernstein-Markov inequality. In this case the zeros of polynomials in L2(�)
tend to concentrate around the Silov boundary of K. In the following we consider the

equidistribution of the zeros of polynomials with respect to the Poincaré metric at infinity

on C.

Of course C is a special case of a quasi-projective variety, its complement in P1 is the

hyperplane at infinity H1 = fz0 = 0g, via the embedding C 3 � 7! [1 : �℄ 2 P
1. We

denote as usual Uj = f[z℄ 2 P1 : zj 6= 0g. The hyperplane section bundle O(1) ! P1
comes along with the canonical (defining) section s0 locally given as s0jU0 = 1 � e0;s0jUi = z0=zi � ei = �0i � ei, where ej are the canonical frames of O(1)jUj , j = 0; 1. Now[f�0i < Rg is an open neighbourhood of H1.

Let us consider the charts:

P
1 = U0 [ f1g = U0 [ U1; z : U0 ! C; w : U1 ! C:

Consider the divisorD given by the following cover together with meromorphic functionsf(U0; 1); (U1; w)g. The associated line bundle [D℄ is defined by the cocycle U0 \ U1; g01 =1=w and we have [D℄ = O(1). A metric in [D℄ corresponds to functions hi 2 C
1(Ui;R>0)

that satisfy h1 = jg01j2h0: In fjwj < Rg set h1 = 1 and extend it to a smooth metric over

P1: Then s0 = 0 precisely at 1. To determine the L2-condition in the Poincaré metric it

suffices to investigate the integrals in a neighbourhood of 1.

It is well known that the holomorphic sections of [D℄
N are identified with complex

polynomials of degree 6 N in the chart U0. We denote this space by HN . The Poincaré

metric on C is �" = !FS �p�1"�� log(� log ks0k2)2;
the metric on O(1) is hO(1)Æ = hO(1) � (� log ks0k2)2Æ:
Note that choosing Æ = 2�" provides

p�1R(O(1);hO(1)Æ ) = 2��".
A polynomial P 2 HN lies in L2(C;�"; hNÆ ) if and only if the integralZjzj>R jP (z)j2 (1 + jzj2)�N| {z }=hO(N) �� log ��� 1z ���2 �2NÆ �p�12� dz ^ d�z(1 + jzj2)2 �p�1"�� log �� log ���1z ���2 �2�| {z }=�"
is finite. If deg P = d, then jP (z)j2(1 + jzj2)�N = O((1 + jzj2)�n); with �2N 6 n =2d� 2N 6 0 and in particular bounded.

First consider I = Zjzj>R(log jzj2)2NÆp�12 dz ^ d�z(1 + jzj2)2 :
20
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In polar coordinatesI = C Z 1R (log r2)2NÆ rdr(1 + r2)2 substitute r2 = ex, 2rdr = exdx= C 0 Z 12 logR x2NÆ exdx(1 + ex)2
6 C 0 Z x2NÆdx(1 + ex)
6 C 0 Z x2NÆe�xdx <1 :

To estimate the second integral compute�� log �� log ��� 1z ���2 �2 = �� log(log jzj2)2 = �2dz ^ d�zjzj2(log jzj2)2 �
ThereforeZjzj>R(1 + jzj2)�n(log jzj2)2NÆ�2p�1dz ^ d�z2jzj2 = C Z 1R (1 + r2)�n(log r2)2NÆ�2 rdrr2= C 0 Z 12 logR(1 + ex)�nx2NÆ�2dx
is finite (N !1), only if n < 0: This shows thatHN \ L2(C;�"; hNÆ ) = HN�1
as sets.

Corollary 7.1. Denote by PHN�1 the projective space associated to HN�1. Then zero-

divisors of generic random sequences (sN ) 2 Q1N=1 PHN�1 are equidistributed with respect

to �" .
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