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Stability of precessing domain walls in ferromagnetic nanowires
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We show that recently reported precessing solution of Landau-Lifshitz-Gilbert equations in ferro-
magnetic nanowires is stable under small perturbations of initial data, applied field and anisotropy
constant. Linear stability is established analytically, while nonlinear stability is verified numerically.
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I. INTRODUCTION

The manipulation and control of magnetic domain
walls (DWs) in ferromagnetic nanowires has recently be-
come a subject of intense experimental and theoretical
research. The rapidly growing interest in the physics of
the DW motion can be mainly explained by a promising
possibility of using DWs as the basis for next-generation
memory and logic devices! 2. However, in order to realize
such devices in practice it is essential to be able to posi-
tion individual DWs precisely along magnetic nanowires.
Generally, this can be achieved by either applying ex-
ternal magnetic field to the nanowire, or by generating
pulses of spin-polarized electric current. The current
study is concerned with the former approach.

Even though the physics of magnetic DW motion under
the influence of external magnetic fields has been studied
for more than half a century® 2, current understanding of
the problem is far from complete and many new phenom-
ena have been discovered only recently? 14, In particu-
lar, a new regime has been reportedi®!4 in which rigid
profile DWs travel along a thin, cylindrically symmetric
nanowire with their magnetization orientation precessing
around the propagation axis. In this paper we address
the stability of the propagation of such precessing DWs
with respect to perturbations of the initial magnetization
profile, some anisotropy properties of the nanowire, and
applied magnetic field.

Let m(x) = (cos6(z), sin §(x) cos ¢(x), sin O(x) sin ¢(x))
denote the magnetization along a one-dimensional wire.
With easy magnetization axis along X and hard axis
along ¥, the micromagnetic energy is given by

E(m) = %/ (Am’2 + Ki(1 —m?) + K2m§) dx
- %/ (A0’2 +sin® §(A¢'” + K + K cos® ¢>)) dz (1)

where A is the exchange constant and Ki, Ko the
anistropy constants. Here and in what follows, integrals
are taken between —oo and oo (for the sake of brevity,
limits of integration will be omitted).

We consider here the case of uniaxial anisotropy, Ko =
0. Minimizers of F subject to the boundary conditions

lim m(x) = +X%, (2)

z—+o0

describe optimal profiles for a domain wall separating
two magnetic domains with opposite orientation. The
optimal profiles satisfy the Euler-Lagrange equation

m x H =0, (3)

H= = Am" + K;(m-%)X = egm+en+esp. (4)

Here m, n = 9m/960 and p = m xn form an orthonormal
frame, and the components of H in this frame are given
by

eo = AB”” + sin? (K, + A¢'?)
er = A0" — %sin 20(K, + Ad'),
ea = Asinf¢” +2Acos60'¢’. (5)

The Euler-Lagrange equation is then e; = e2 = 0.

While the energy FE is invariant under translations
along and rotations about the x-axis, the optimal pro-
files cannot be (because of the boundary conditions).
They form a two-parameter family, which we denote by
T(s)R(o)m.,, obtained by applying translations T'(s) and
rotations R(o) to a given optimal profile m,. In po-
lar coordinates, T'(s)R(o)m, is given by ¢(z) = o (the
optimal profile lies in a fixed half-plane), and 6(z) =

0.((x — s)/do), where dy = /A/K; and
0.(&) = 2tan~1(e™%). (6)
It is clear that 0, (&) satisfies
0, = —sinb,,

sin 0, (§) = sech €. (7)

The dynamics of the magnetization in the presence of
an applied magnetic field is described by the Landau-
Lifschitz-Gilbert equation, which for convenience we
write in the equivalent Landau-Lifschitz (LL) form,

m=mxH+H,) —-amx(mx(H+H,)). (8

Here o > 0 is the damping parameter, and we take the
applied field to lie along X,

H, = Hi(t)%. (9)
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In polar coordinates, the LL equation is given by

0= e + aey, (10)
sinf = —aey + es. (11)

The precessing solution is a time-dependent translation
and rotation of an optimal profile, which we write as
T(x0(t))R(¢o(t))m,. The centre xo(t) and orientation
¢o(t) of the domain wall for the precessing solution evolve
according to

Ll":o = —adoHl, (Z.SQ = —Hl. (12)

It is was shown!?1% that T(zo)R(do)m, satisfies
the LL equation. It is important to note that the
precessing solution is fundamentally different from
the so-called Walker solution®. Indeed, the latter is
defined only for K» > 0 (the fully anisotropic case)
and time-independent H; less than the breakdown field
Hy = aK3/2. The Walker solution is given by m(z,t) =
(cos Oy (, t), sin Oy (z, t) cos pw, sin Gy (, ) sin pw)
with

9W (I t) = 90( (:E — th)) (13)
sin 2¢w = H1/Hw , (14)
and
Vi = y(a+a Y)doHy , (15)
— Kl %
7= <K1+K26082¢W> ’ (16)

Equations ([I3)-(I6) describe a DW traveling with a con-
stant velocity Vi whose absolute value is bounded by
y(a+ a~Y)doHy . More importantly, Vi, unlike i, is
not directly proportional to the magnitude of the ap-
plied field due to the constraint Eq. (I4), and v being
a nonlinear function of Hy. Also, while for the Walker
solution the plane of the DW remains fixed, for the pre-
cessing solution it rotates about the nanowire at a rate
proportional to H;. Finally, for the Walker solution, the
DW profile contracts (7 < 1) in response to the applied
field, whereas for the precessing solution the DW pro-
file propagates without distortion. For convenience we
choose units so that A = K7 = 1.

In this paper we consider the stability of the precess-
ing solution. We establish linear stability with respect
to perturbations of the initial optimal profile (Sec. [,
small hard-axis anisotropy (Sec. [II), and small trans-
verse applied magnetic field (Sec. [[V]); specifically, we
show, to leading order in the perturbation parameter,
that up to translation and rotation, the perturbed solu-
tion converges to the precessing solution (in the case of
perturbed initial conditions) or stays close to it for all
times (for small hard-axis anisotropy and small magnetic
field). The argument is based on considerations of energy,
and depends on the fact that for all ¢, the precessing so-
lution belongs to the family of global minimizers. The
analytic argument establishes only linear stability. Non-
linear stability is verified numerically for all three cases

in Sec. [Vl

II. PERTURBED INITIAL PROFILE

Let m.(x,t) denote the solution of the LL equation
with initial condition m, + eu, a perturbation of an opti-
mal profile. Let T'(z(t))R(¢c(t))m., denote the optimal
profile which, at time ¢, is closest to m,; that is,

||mE—T(s)R(0)m*||2=/(me(x,t)—R(U)m*(x—s)fdx
(17)

is minimized for s = z.(t) and o = ¢(t). This implies

that
[me (TR o) 5 ) =0,
/m6 (X X T(z(t))R(¢e(t))my) dx = 0. (18)

It is clear that z.(t) = zo(t) + O(e) and ¢c(t) = ¢o(t) +
O(€), but we shall not explicitly calculate the O(e) correc-
tions produced by the perturbation. Rather, our aim is to
show that to leading order O(€?), ||m.—T (z.) R(¢c )m.||?
decays to zero with ¢. This will imply that the precessing
solution is linearly stable under perturbations of initial
conditions up to translations and rotations.

Let 0.(z,t) and ¢c(x,t) denote the spherical coordi-
nates of m.(x,t). We expand these in an asymptotic
series,

Oc(z,t) = 0(x — x(t) + ebr(x—ac(t),t)+---,

Pe(z,t) = du(t) + epr(z —xe(t), ) +--- (19)

where the correction terms 61 (€, t), ¢1(&,t), etc are ex-
pressed in a reference frame moving with the domain
wall. Then to leading order O(€?),

Ime — Tz R(go)m.|]? = & / (02 + sin? 0,42) de
= 62 <91 |91> + 62 <sin 9*¢)1 |sin 9*¢1> y (20)

where for later convenience we have introduced Dirac no-
tation, expressing the integrals as inner products. It is
straightforward to show that the conditions Eq. (I8) im-
ply (using 6, = —sinf,)) that

(sinf, |01) = (sin 6, |sin Ouéy) = 0, (21)

which expresses the fact that the perturbations described
by 61 and ¢, are orthogonal to infinitesimal translations
(described by sind,) along and rotations about X.

Since the difference between m. and T'(z.)R(¢pe)m.
is O(e), the difference in their energies is O(€?) (as
T(z.)R(¢c)m, satisfies the FEuler-Lagrange equation
Eq. @), and is given to leading order by the second
variation of E about m,,

AE, = E(m,) — E(T(z.)R(¢)m,) =
- / fo dé, (22)

where fo = 6, + c0s 26,07 + sin? 0,.¢/ .

E(m.) —



Using the relations Eq. ([l and performing some integra-
tions by parts, we can write

/f0d§ — (0|02 + (sin oy | H [sin Ouh),  (23)

where H is the Schrédinger operator —d?/d¢?+V (€) with
potential given by

V(€) =1 —2sech®¢. (24)

V(€) is a particular case of the Péschl-Teller potential,
for which the spectrum of H is knowni?. A has two eigen-
states, namely sin 6, () = sech { with eigenvalue Ag = 0,
and cos6,(§) = tanh{ with eigenvalue \; = 1, and its
continuous spectrum is bounded below by A = 1. This
is consistent with the fact that the optimal profiles are
global minimizers of F (subject to the boundary condi-
tions Eq. (@), which implies that the second variation
of ¥ about m, is positive for variations transverse to
translations and rotations of m,. It follows that, for any
(smooth) square-integrable function f(£) orthogonal to
sin ., we have that

(I = (fFIH 1) (25)

for j > 0 (we will make use of thisfor j =0and j = 1). In
particular, since #; and sin #,¢; are orthogonal to sin 6,
(cf Eq. ), it follows that

(01| H 101) = (01 [61) , (26)

(sin .1 | H [sinf. 1) > (sinb.¢y [sinfipq).  (27)
Therefore, to leading order O(e?),

Ime — T(ze) R(de)m.||* < AE.. (28)

Below we show that, to leading order O(e?), for small
enough H; (it turns out that |H| < 1/2 is sufficient), we
have the inequality

d

—AE, < —yAE, 29

OB <~ (29)
for some v > 0. Taking Eq. (29)) as given, it follows from
the Gronwall inequality that

AE. < Ce?e™ (30)

for some C' > 0 (which depends only on the form of the
initial perturbation). From Eq. (28], it follows that

|lm, — T'(z)R(¢e)m,||> < Ce?e . (31)

It remains to establish Eq. (29). From Eq. (), we have
that for any solution m(x,t) of the LL equation,

iE(m):—/H-fnda:

dt
:/(mxH)-Had:z:—
—a/(mxH)2+(m><H)~(m><Ha) dx

= —a/ (el + e} + Hysinfe) dz, (32)

where e; and es are given by Eq. (@), and we have used
the fact that the term (m x H) - H, vanishes on inte-
gration. Substituting the perturbed solution m. into
Eq. 32) and noting that the F(T (z.)R(¢c)m,) = E(m.,)
does not vary in time, we obtain after some straightfor-
ward manipulation that

d

—AB =

— a€® (01| H?|61) + (sinf.¢1| H? sinb.¢1) + H1 F)
(33)

to leading O(€?), where
F = / (cos O, fo + cos B, sin0,67) de. (34)

For the first two terms on the rhs of Eq. (33]), we have,

from Eq. [25) and Eqs. (22)-@23), that

(01| H%|01) + (sin 0.1 | H? |sin O, ¢)
> (01| H |601) + (sin .1 | H |sin 0.1 )
2
The term H1F in Eq. (33) is not necessarily positive,
as H; can have arbitrary sign. But for sufficiently
small |H1|, it is smaller in magnitude than the preceding
two terms. Indeed, we have, again using Eq. (23] and

Eqs. 22)-23), that

2
Pl [ (ol +00%) de < ZAE + 0, 100
2 4
Substituting Eqgs. (85) and (B6]) into Eq. (33]), we get that
G AB. < (1~ 2|H|)AE,, (37)

from which the required estimate ([29)) follows for |H;| <
1/2.

It is to be expected that the stability of the pre-
cessing solution depends on the applied field not being
too large. Indeed, it is easily shown that, for H; > 1
(resp. H; < —1), the static, uniform solution m = —%
(resp. m = +X) becomes linearly unstable. As the
precessing solution is nearly uniform away from the do-
main wall, one would expect it to be similarly unstable
for |Hy| > 1. The numerical results of Sec. [VAl bear
this out. The stability criterion obtained here, namely
|H1| < 1/2, is certainly not optimal.

III. SMALL HARD-AXIS ANISOTROPY

Next we suppose the hard-axis anisotropy is small but
nonvanishing, taking Ko = ¢ > 0. Let m.(z,t) denote



the solution of the LL equation with initial condition
m.(x,0) = m.(z). As above, let T'(z(t))R(¢.(t))m.
denote the translated and rotated optimal profile closest
to m. at time ¢t. Adapting the argument of the preceding
section, we show below that, to leading order O(e?),

|lm, — T(z.)R(¢e)m,||* < Cre® for allt >0  (38)

for some constant C; > 0. In contrast to the preceding
result Eq. BI) for perturbed initial conditions, here we
do not expect m, to converge to T'(z¢) R(¢e)m.. Indeed,
while an explicit analytic solution of the LL equation is
not available for small Ko (the Walker solution is valid
only for Ko > 2|Hy|/a), it is easily verified that there are
no exact solutions of the form T'(z.(t))R(¢pe(t))m.. The
result Eq. (38) demonstrates that, through linear order in
€, the solution for Ky = € remains close to the precessing
solution, up to translation and rotation.

To proceed, let AFE, denote, as above, the difference in
the uniazial micromagnetic energy, i.e. the energy given
by Eq. [l with K3 = 0, between m, and T'(z¢) R(¢)m..
Then, as in Eq. (3), we have that

lme = T(z) R(¢)m.||* < AE.. (39)

As E(T(z.)R(¢c)m,) = E(m,) is constant in time, we
have that
d d
The hard-axis anisotropy affects the rate of change of
the unperturbed energy through additional terms in m.
Indeed, for any solution m(z,t) of the LL equation, we
have that
d d

ZE(m) = —

o o E(m) + G(m), (41)

K2=0

where d/dt|k,—oF(m) denotes the rate of change when
K5 =0, as given by Eq. (32) and

Glm) = ¢ [ (m-5)(m x H(m)) -5 ds
+ ea/(m x Hm))(m x y)(m-y)dz. (42)

Taking m = m,, we recall from the preceding section
(c.f. Eq. 29)) that, for |Hy| < 1/2,

d

It E(me) < _'YAEe (43)
dt|r,—o

for some v > 0. Below we show that there exists con-
stants C1,v; with 41 < 7 such that

|G(m,)| < AE: + C1€”. (44)
Taking Eq. () as given and substituting it along with

Eq. (@3) into Eqs. (#0)—(41l), we get that

%AEE < —(vy=m)AE. + Ci€. (45)

From Gronwall’s equality it follows that
AE, < Cyé%, (46)

which together with Eq. (89) yields the required result
Eq. (38).

It remains to show Eq. [@]). Substituting the asymp-
totic expansion Eq. ([I3]), we obtain after straightforward
calculations that, to leading order O(€?),

G(m,) = —€* cos? ¢. (1)
X / (sin? 0.¢7 +4/3asin® 0,0]) d¢.  (47)

This can be estimated using the elementary inequality
b2
2|a/b| S BG/2 + Eu

which holds for any 8 > 0. Indeed, recalling Eqs. (@),
@2), @4), and using integration by parts where neces-
sary, we have that

1
’/sin40*¢/1 de| < g/sinz 0.8, de + %/sinﬁ 0, d¢

B 8
< PAm 42
~ €2 + 158

1 -3 / B/ 2 1 6

— < — JE—

3 '/sm 0.67 d¢ 5 0,7 d§ + 5 sin® 0, d§
B 8

(48)

<= —.
< GAE 103 (49)

From Eqs. @T)-(9), it is clear that 8, v; and Cy can be
chosen so that Eq. (@) is satisfied.

IV. SMALL TRANSVERSE APPLIED FIELD

Suppose the applied magnetic field has a small trans-
verse component, so that Hy = H1X + Hoy, where

H2 = Eh,Q(I) (50)

(ho depends on z but not ¢). For simplicity, let Ko =
0. Let m.(x,t) denote the solution of the LL equation
with initial condition m.(z,0) = m.(z). As above, let
T(zc(t))R(¢pc(t))m, denote the translated and rotated
optimal profile closest to m, at time ¢.

We first note that, unless hs vanishes as * — o0,
m, will not remain close to T(x.(t))R(¢c(t))m,. For
example, if hso is constant, then away from the domain
wall, m, will relax to one of the local minimizers of the
homogeneous energy Ki(1 — m3) — H, - m, and these
do not lie along +% for Hy # 0. It follows that ||m. —
T(2c(t))R(pe(t))m,|| will diverge with time.

Physically, this divergence is spurious. It stems from
the fact that we are taking the wire to be of infinite ex-
tent. One way to resolve the issue, of course, would be to



take the wire to be of finite length. However, one would
then no longer have an explicit analytic solution of the
LL equation.

Here we shall take a simpler approach, and assume
that the transverse field ho(x) approaches zero as x ap-
proaches +oo. In fact, for technical reasons, it will be
convenient to assume that the integral of h%+h’22, i.e. the
squared Sobolev norm ||ha||z1, is finite. Then without
loss of generality, we may assume

Mhalfy = [+ w2y =1. (s)

Under this assumption, the main result of this section is
that m. stays close to an optimal profile up to translation
and rotation. That is, for some Cy > 0,

Ime = T(ze) R(de)m.|]® < Cre®. (52)

The demonstration proceeds as in the preceding sec-
tion, so we will discuss only the points at which the
present case is different. The main difference is that,
in place of Eq. [@1), we get (by considering the LL equa-
tion with Hs # 0 rather than K> # 0) the following
expression for G(m,) to leading order O(e?):

G(m,) = ¢ (a cos ¢ (t) / cos 0, (07 — cos20.601) ha d€
— asin ¢, (t) / sin 0, (¢} — 2 cos O, ) ha d
— sin ¢, (t) / (0] — cos26.071) ha dE

— cos ¢ (1) / sin 0, cos O, (¢} — 2 cos 0. d)) ho d§) :
(53)

After some straightforward manipulations including in-
tegration by parts, and making use of the inequality
Eq. (48)), one can show that

1
/6086‘* (07 — c0s20.01) ho df’ < gHOlep + 25
. 1" / ﬁ . /112 1
sin 0, (¢} — 2 cosO.d)) ho d&| < §||s1n9*¢1|| + 5
/(9” — c0820,01) hy d€| < éHolH? L+ L
1 — 2 H 2ﬁ7
/sinG* cos 0, (] — 2cos6.4]) ho d{‘
B 1
< Sllsme I+ (50
From Eqs. (22) and (26)) it follows that
4
/ (9’12 + sin? 9*9;2) dt < SAE,, (55)
€

and

/ 07 d¢ < %AEe. (56)
€

Substituting Eqgs. (B4)—-(B0) into Eq. (B3), we get that

|G(m)| < (14 ) (3BAE€ + %8) . (57)

This estimate is of the same form as (44), and the ar-
gument given there, with # chosen appropriately, estab-

lishes Eq. (52)).

V. NUMERICAL STUDIES

In the preceding Sections [IH[V] we have shown that
the precessing solution is linearly stable; to leading or-
der O(e), a perturbed solution either approaches or stays
close to the precessing solution up to a translation and
rotation, according to whether the perturbation is to the
initial conditions or to the anistropy and transverse ap-
plied magnetic field in the LL equation. Here we present
numerical results which verify nonlinear stability for the
precessing solution under small perturbations. To this
end, we investigate the energy, AE, = E(m.)—E(m.,.), of
the numerically computed perturbed DW, m.(z, t), rela-
tive to the minimum energy E(m.,) of an optimal profile,
as a function of time ¢. Throughout, E is taken to be
the uniaxial micromagnetic energy given by Eq. () with
K5 = 0. As in the preceding sections, we choose units so
that A = K7 = 1. In these units, E(m,) = 2. We also
take a = 1 throughout.

A. Perturbed initial profile

We first investigate the evolution of a DW, m(z,t),
from an initial perturbation of an optimal profile. We
take the initial condition in polar coordinates to be given
by

T
1—|—€1

0(x,0) _9*( ) . ¢e(z) =¢o t ez, (58)

which corresponds to stretching the unperturbed profile
along and twisting it around the axis of the nanowire.
The applied field is directed along the nanowire, H, =
H;x, and we take K5 = 0.

Figure [l shows the dependence of the relative energy
APFE, on time t for different values of the applied field H;.
The figure presents 16 curves corresponding, from top to
bottom, to Hy varying from —1.5 to 0 at the increment
of 0.1. In the initial condition given by Eq. (B8], we take
€1 = 0.1 and €2 = 7/50.

Figure[clearly indicates that AF,(t) decays exponen-
tially for weak applied fields, |Hy| < 1/2, in accord with
the analytic result Eq (30). However, for |Hy| ~ 1, devi-
ations from exponential decay are evident, and the pre-
cessing solution appears to become unstable for |H;| > 1.
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FIG. 1: (Color online) Relative energy, AE.(t), of the per-
turbed DW for 16 different values of the applied field H;. See
text for discussion.

B. Small hard-axis anisotropy

We consider next the evolution of a DW from an opti-
mal profile at t = 0 when the hard-axis anisotropy Ks is
nonvanishing. We fix H; = —0.5.

x10™°

FIG. 2: (Color online) Relative energy, AE.(t), of the per-
turbed DW for 15 different values of the hard-axis anisotropy
constant K»>. See text for discussion.

Figure 2] shows the dependence of the relative energy
AE, on time t for different values of Ky. The figure
presents 15 curves corresponding, from top to bottom, to
K varying from 1.5 to 0.1 at the decrement of 0.1. It is
evident that the relative energy remains small, verifying
the linear analysis of Sec. [TIl

Figure Bl shows the maximum value of the relative en-
ergy AE, (over the interval 0 < ¢ < 30) as a func-
tion K3. Red squares represent numerically computed
values. The black solid curve is the parabola Cx K3,
with Cx = 0.2486 fitted by the method of least squares

x10°
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FIG. 3: (Color online) Maximum value of the relative en-
ergy AFE. of the perturbed DW as a function of the hard-
axis anisotropy K2. Numerically computed values are repre-
sented by (red) squares. The (black) solid curve is a parabola,
max(AE.) = Cr K? with Cx = 0.2486, fitted by the method
of least squares through the data points with Ko < 0.05.

through the data points with Ko < 0.05. We obtain con-
vincing confirmation of the leading-order analytical re-
sult Eq. ({@]). For larger values of K3, we see departures
from quadratic dependence; for sufficiently large values
of K5 (not shown), the Walker solution was recovered.

C. Small transverse applied field

Finally, we address the stability of the precessing solu-
tion under an applied magnetic field, H, = H1x + Hsy,
with a small transverse component, Ha(z). As discussed
in Sec. [Vl we want Hs(z) to vanish as x — +oo. Here
we take

Ho(x) = Haw(z), (59)

where w(z) is equal to one inside the window 0 < z < 30
and vanishes outside (the argument of Section [[Vlis easily
modified to establish Eq. (@f]) in this case). We consider
the evolution of a DW given at ¢ = 0 by the optimal
profile m, centred at z = 0. We take H; = —0.5, so that
in the absence of the transverse field, the DW velocity is
positive (cf Eq. (I2)) and the DW crosses the window.
We take Ko = 0.

Figure [ shows the dependence of the relative energy
AFE, on time ¢ for different values of the transverse field
amplitude Hy. The figure presents 15 curves correspond-
ing, from top to bottom, to Hy varying from 1.5 to 0.1
at the decrement of 0.1. The results confirm that the rel-
ative energy of the perturbed magnetization profile re-
mains small for small values of Hs, in accord with the
leading-order results of Section [Vl

Figure Bl shows the maximum value of the relative en-
ergy AFE. (over the interval 0 < ¢ < 30) as a function of
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FIG. 4: (Color online) Relative energy, AE.(t), of the per-
turbed DW for 15 different values of the transverse field am-
plitude Hs. See text for discussion.

0 0.05 B 0.1 0.15
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FIG. 5: (Color online) Maximum value of the relative energy
AFE, of the perturbed DW as a function of the amplitude
of the transverse applied field, Hs. Numerically computed
values are represented by (red) squares. The (black) solid
curve is a parabola, max(AE.) = Cy H2 with Cy = 55.51,
fitted by the method of least squares through the data points
with Hy < 0.05.

H, Red squares represent numerically computed values.
The black solid curve corresponds to the parabola Cy H2
with Cy = 55.51 fitted by the method of least squares
through the data points with Hy < 0.05. The figure
provides a confirmation of the leading-order analytical
result of Sec. [V] that the maximum relative energy de-
pends quadratically on Hy for small H,. Deviations from
the parabolic dependence can be seen for Hy > 0.1.

VI. CONCLUSIONS

The precessing solution is a new, recently reported ex-
act solution of the Landau-Lifschitz-Gilbert equation. It
describes the evolution of a magnetic domain wall in a
one-dimensional wire with uniaxial anisotropy subject to
a spatially uniform but time-varying applied magnetic
field along the wire. We have analysed the stability of the
precessing solution. We have proved linear stability with
respect to small perturbations of the initial conditions as
well as to small hard-axis anisotropy and small transverse
applied fields, provided the applied magnetic field along
the wire is not too large. We have also carried out nu-
merical calculations that confirm full nonlinear stability
under these perturbations.

Numerical calculations suggest that, for sufficiently
large perturbations and applied longitudinal fields, the
precessing solution becomes unstable, and new stable so-
lutions appear. It would be interesting to analyse these
bifurcations and study these new regimes for DW motion.
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