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Abstract

The Berezin-Lieb inequalities provide upper and lower bounds for

a partition function based on phase space integrals that involve the

Glauber-Sudarshan and Husimi representations, respectively. Gener-

alizations of these representations have recently been introduced by

the present authors, and in this article, we extend the use of these

new representations to develop numerous analogs of the Berezin-Lieb

inequalities that may offer improved bounds. Several examples illus-

trate the use of the new inequalities. Although motivated by prob-

lems in quantum mechanics, these results may also find applications

in time-frequency analysis, a valuable cross fertilization that has been

profitably used at various times in the past.
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1 Introduction

The Berezin-Lieb inequalities offer upper and lower bounds for partition func-
tions of elementary quantum systems. In particular, for a system composed
of a single canonical degree of freedom, let P and Q denote canonical Heisen-
berg variables, fulfilling the commutation relation [Q,P ] = iI, in units where
~ = 1. Let |0〉 denote the normalized ground state of an elementary oscilla-
tor for which (Q+ iP )|0〉 = 0. Canonical coherent states for this system are
taken to be states of the form (see, e.g., Refs. [1])

|p, q〉 ≡ U [p, q]|0〉 , U [p, q] ≡ ei(pQ−qP ) (1)

for all (p, q) ∈ R
2, where U [p, q] denotes the unitary Weyl operator. Let

H = H(P,Q) denote the Hamiltonian for the system in question. The
corresponding classical Hamiltonian is denoted by Hcl(p, q). We introduce
two well-known symbols associated with H, namely, the Husimi [2] symbol
HH(p, q) defined by

HH(p, q) ≡ 〈p, q|H(P,Q)|p, q〉 = 〈0|H(P + p,Q+ q)|0〉 ; (2)

and the Glauber-Sudarshan [3] symbol HG−S(p, q) implicitly defined by the
operator representation

H(P,Q) =

∫

HG−S(p, q) |p, q〉〈p, q| dpdq/2π . (3)

It follows from Eq. (2) that these two symbols are related by the integral
equation

HH(p
′, q′) =

∫

|〈p′, q′|p, q〉|2HG−S(p, q) dpdq/2π

=

∫

e−[(p′−p)2+(q′−q)2]/2HG−S(p, q) dpdq/2π . (4)

Armed with these definitions, the Berezin-Lieb inequalities [4, 5] read
∫

e−βHH(p,q) dpdq/2π ≤ Tr[e−βH(P,Q)] ≤
∫

e−βHG−S(p,q) dpdq/2π . (5)

In what follows we will implicitly rederive this inequality as a special example
of our generalizations.
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The purpose of the present paper is to extend such inequalities by offering
infinitely many additional symbol pairs that can stand in place of the Husimi
and Glauber-Sudarshan symbols in Eq. (5), thereby generalizing the original
Berezin-Lieb inequalities.

2 Multiple phase-space symbols

In a recent paper [6], the authors have introduced a wide class of phase-space
symbols that are analogues of the Husimi and Glauber-Sudarshan dual pair.
Let us first recall the principal elements of that study specialized to the
discussion at hand.

We first introduce a nonnegative, trace-class operator σ = σ† ≥ 0 which
we normalize so that Tr(σ) = 1. Such operators have the generic form given
by

σ =
∞
∑

l=1

cl |bl〉〈bl| , (6)

where {|bl〉}∞l=1 denotes a complete orthonormal sets of vectors, and the co-
efficients {cl}∞l=1 satisfy the conditions cl ≥ 0 and Σ∞

l=1cl = 1. In short, σ
enjoys all the properties to be a density matrix.

We shall make use of the function Tr(U [k, x]σ) defined for all (k, x) in
phase space, and we restrict σ so that the expression

Tr(U [k, x] σ) 6= 0 (7)

for all (k, x) ∈ R
2.

We next recall the Weyl representation of operators given by

A =

∫

Ã(k, x)U [k, x] dkdx/2π , (8)

where

Ã(k, x) ≡ Tr(U [k, x]†A) . (9)

Given two such operators A and B, it follows that

Tr(A†B) =

∫

Ã(k, x)∗ B̃(k, x) dkdx/2π . (10)
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In terms of the double Fourier transformation, given by

A(p, q) =

∫

ei(qk−px) Ã(k, x) dkdx/2π , (11)

and likewise for B(p, q), it also follows that

Tr(A†B) =

∫

A(p, q)∗B(p, q) dpdq/2π . (12)

We next modify the symmetric expression for Tr(A†B) given by Eq. (10)
so that

Tr(A†B) =

∫

{ Ã(k, x)∗

Tr(U [k, x]σ)
} {Tr(U [k, x]σ)B̃(k, x)} dkdx/2π

=

∫

{ Ã(k, x)

Tr(U [k, x]†σ)
}∗ {Tr(U [k, x]σ)B̃(k, x)} dkdx/2π

≡
∫

Ã−σ(k, x)
∗ B̃σ(k, x) dkdx/2π

≡
∫

A−σ(p, q)
∗Bσ(p, q) dpdq/2π . (13)

In the final line we have introduced the Fourier transform of the symbols in
the line above. We next show that there are alternative expressions involving
the symbols A−σ(p, q) and Bσ(p, q) directly in their own space of definition
rather than implicitly through a Fourier transformation.

We begin first with the symbol Bσ(p, q). In particular, we note that

Bσ(p, q) =

∫

ei(kq−xp)Tr(U [k, x]σ) B̃(k, x) dkdx/2π

=

∫

Tr(U [p, q]† U [k, x]U [p, q]σ) Tr(U [k, x]†B) dkdx/2π

=

∫

Tr(U [k, x]U [p, q]σ U [p, q]†) Tr(U [k, x]†B) dkdx/2π

= Tr(U [p, q]σ U [p, q]†B) , (14)

where in the second line we have used the Weyl form of the commutation
relations, and in the last line we have used the Weyl representation Eq. (10),
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which leads us to the desired expression for Bσ(p, q). This expression is the
sought for generalization of the Husimi representation; indeed, if σ = |0〉〈0|
it follows immediately that

Bσ(p, q) = Tr(U [p, q]|0〉〈0|U [p, q]†B)

= 〈p, q|B |p, q〉 = BH(p, q) . (15)

For general σ, to find the expression for A−σ(p, q) we appeal to the relation

Tr(A†B) =

∫

A−σ(p, q)
∗Bσ(p, q) dpdq/2π

=

∫

A−σ(p, q)
∗Tr(U [p, q]σ U [p, q)]†B) dpdq/2π , (16)

an equation, which, thanks to its validity for all suitable operators B, carries
the important implication that

A ≡
∫

A−σ(p, q)U [p, q]σ U [p, q]
† dpdq/2π . (17)

Observe that this equation implies a very general operator representation
as a linear superposition of basic operators given by U [p, q]σ U [p, q]†, for a
general choice of σ.

Equation (17) for A is the sought for generalization of the Glauber-
Sudarshan representation; indeed, if σ = |0〉〈0|, it follows immediately that

A =

∫

A−σ(p, q)U [p, q]|0〉〈0|U [p, q]† dpdq/2π

=

∫

A−σ(p, q) |p, q〉〈p, q| dpdq/2π

=

∫

AG−S(p, q) |p, q〉〈p, q| dpdq/2π . (18)

Once again there is a direct connection between the generalization of the
Husimi representation, Aσ(p, q), and the generalization of the Glauber-Sudar-
shan representation, A−σ(p, q). In particular, it follows that

Aσ(r, s) =

∫

A−σ(p, q)Tr(U [r, s]σU [r, s]
†U [p, q]σU [p, q]†)dpdq/2π

=

∫

A−σ(p, q)Tr(U [r − p, q − s]σU [r − p, q − s]†σ)dpdq/2π. (19)
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This equation is a convolution, which just reflects the multiplicative connec-
tion between these two symbols in Fourier space.

3 Derivation of inequalities

Let {|r〉}∞r=1 denote an arbitrary, complete, orthonormal basis. Consider the
expression [cf., Eq. (6)]

f(p, q|r) ≡ 〈r|U [p, q]σ U [p, q)]†|r〉

=
∞
∑

l=1

cl |〈r|U [p, q]|bl〉|2 . (20)

It follows that
∫

f(p, q|r) dpdq/2π = 1 , (21)

and also that

∞
∑

r=1

f(p, q|r) = 1 . (22)

We can interpret these results in two different ways: On the one hand,
f(p, q|r) is a probability density on R

2 for each value of r; on the other
hand, f(p, q|r) forms a discrete probability on {1, 2, 3, . . .} for each phase-
space point (p, q).

3.1 Jensen’s inequality

The Jensen inequality [7] applies to convex functions φ(x)—such as e−βx—
and arbitrary probability distributions on x ∈ R. If 〈(·)〉 denotes an average
over that probability distribution, then the Jensen inequality reads

φ(〈x〉) ≤ 〈φ(x)〉 , (23)

or, in particular,

e−β〈x 〉 ≤ 〈e−βx〉 . (24)
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This equation will be important in what follows.
Let H denote the Hamiltonian with a discrete spectrum {µr}∞r=1 and an

associated set of eigenvectors {|r〉}∞r=1 such that

H|r〉 = µr |r〉 . (25)

It also follows that

H =
∞
∑

r=1

µr |r〉〈r| . (26)

Following Lieb [5], we first observe that

〈r|e−βH |r〉 = exp[−β〈r|H|r〉]
= exp[−β

∫

H−σ(p, q) f(p, q|r) dpdq/2π ]

≤
∫

e−βH−σ(p,q) f(p, q|r) dpdq/2π . (27)

Summing on r leads to

Tr(e−βH ) ≤
∫

e−βH−σ(p,q) dpdq/2π . (28)

Second, we learn that

exp[−βHσ(p, q)] = exp[−βΣrµr f(p, q|r)]

≤
∞
∑

r=1

exp[−βµr] f(p, q|r) . (29)

Integrating over R2 leads to
∫

e−βHσ(p,q) dpdq/2π ≤ Tr(e−βH ) . (30)

Above we have two separate inequalities, one an upper bound, the other
a lower bound. These bounds apply for any choice of σ that fits our re-
quirements, and so we can decouple the choice of σ and assert that σ can
be chosen independently in the two cases. In summary, therefore, we have
established the inequalities

∫

e−βH
σ′(p,q) dpdq/2π ≤ Tr(e−βH ) ≤

∫

e−βH−σ(p,q) dpdq/2π , (31)
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where σ′ and σ may be chosen independently of each other. This possibility
permits optimizing both bounds by taking the supremum over the lower
bound and taking the infimum over the upper bound. The bounds as given
by Eq. (31) now lead to upper and lower bounds, respectively, of the free
energy F (β) ≡ − lnZ(β)/β, where Z(β) denotes the partition function, as
well as bounds on the ground-state energy E0 since E0 = limβ→∞ F (β).

4 Symbols for the lower bound

We focus on the symbol

Hσ(p, q) = Tr(U [p, q]σU [p, q]†H(P,Q))

= Tr(H(P + p,Q+ q)σ) . (32)

For simplicity, we introduce the shorthand notation that

(·) ≡ Tr((·)σ) . (33)

In that case we find, e.g., that

(q)σ ≡ Tr((Q+ q)σ) ≡ q +Q , (34)

where the notation (q)σ is the symbol Hσ(p, q) when the operator H is simply
Q. Below we list a table of symbols needed for our present purposes:

(q)σ = q +Q ,

(p)σ = p+ P ,

(q2)σ = q2 + 2qQ+Q2 ,

(p2)σ = p2 + 2pP + P 2 ,

(qp)σ = qp+ qP + pQ +QP ,

(pq)σ = pq + pQ+ qP + PQ ,

(q4)σ = q4 + 4q3Q+ 6q2Q2 + 4qQ3 +Q4 ,

(p4)σ = p4 + 4p3P + 6p2P 2 + 4pP 3 + P 4 ,

(q2p2)σ = q2p2 + 2pq2P + 2qp2Q + q2P 2 + p2Q2 + 4qpQP

+2qQP 2 + 2pQ2P + Q2P 2 ,

(p2q2)σ = p2q2 + 2pq2P + 2qp2Q + q2P 2 + p2Q2 + 4pqPQ

+2qP 2Q+ 2pPQ2 + P 2Q2 . (35)
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Note that on the left-hand side the order matters, i.e., (qp)σ 6= (pq)σ, etc.
We also notice that for the quadratic symbols

(q2)σ = (q +Q)2 +∆(Q) ,

(p2)σ = (p+ P )2 +∆(P ) ,
1
2
[(qp)σ + (pq)σ ] = (q +Q)(p+ P ) + ∆(Q,P ) , (36)

in terms of the variances ∆(O) ≡ O2−O2
and ∆(O1,O2) ≡ (O1O2 +O2O1)/2−

O1 O2. For a conventional minimal uncertainty state, e.g., ∆(Q)∆(P ) = 1/4
and ∆(Q,P ) = 0.

We also introduce a special-case table based on a symmetry we shall
impose on σ, and to be made use of below, namely, that all odd-order averages
vanish, i.e., Q = Q3 = P = P 3 = Q2P = 0, etc. This special-case table reads

(q)σ = q ,

(p)σ = p ,

(q2)σ = q2 +Q2 ,

(p2)σ = p2 + P 2 ,

(qp)σ = qp+QP ,

(pq)σ = pq + PQ ,

(q4)σ = q4 + 6q2Q2 +Q4 ,

(p4)σ = p4 + 6p2P 2 + P 4 ,

(q2p2)σ = q2p2 + q2P 2 + p2Q2 + 4qpQP +Q2P 2 ,

(p2q2)σ = p2q2 + q2P 2 + p2Q2 + 4pqPQ+ P 2Q2 . (37)

5 Symbols for the upper bound

The construction of the upper limit is somewhat more involved than that for
the lower limit. We start with Eq. (17), which is

A =

∫

A−σ(p, q)U [p, q]σU [p, q]
† dpdq/2π . (38)

For reasons of clarity we limit ourselves to a a number-operator diagonal form
for σ, i.e. σ = Σ∞

n=0cn |n〉〈n|, cn ≥ 0, and Σ∞
n=0cn = 1, where N |n〉 = n|n〉
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for the number eigenstates {|n〉}. We learn that in general

A = Σ∞
n=0cn

∫

A−σ(p, q)U [p, q]|n〉〈n|U [p, q]† dpdq/2π

≡ Σ∞
n=0cn

∫

A−σ(p, q) |p, q;n〉〈p, q;n| dpdq/2π , (39)

in terms of the so called semi-coherent states or displaced coherent states
|p, q;n〉 ≡ U [p, q]|n〉 (see, e.g., [8]). To see what this means, let us take a
simple example with A = P 2 + Q2. Since an operator is determined by its
expectation value in canonical coherent states, it is sufficient to consider the
Husimi symbol AH(p, q) as given by Eq. (2), i.e.,

〈r, s; 0|(P 2 +Q2)|r, s; 0〉 = 〈0| [(P + r)2 + (Q+ s)2 ]|0〉 = (r2 + s2) + 1

≡ Σ∞
n=0 cn

∫

[(p+ r)2 + (q + s)2 + k2] pn(p, q) dpdq/2π , (40)

where

pn(p, q) ≡ |〈0|p, q;n〉|2 = e−(p2+q2)/2(p2 + q2)n/2nn! . (41)

Here, we have made use of the Ansatz

(P 2 +Q2)−σ(p, q) = p2 + q2 + k2 , (42)

where k2 is a constant to be determined, and we immediately learn that

k2 ≡ −1− 2Σ∞
n=0cnn ≡ −1− 2n , (43)

where we have defined mean-values f(n) ≡ Σ∞
n=0cnf(n). It now, e.g., follows

that the right-hand side of Eq. (17), with the upper symbol as given by
Eqs. (42) and (43), has |n〉 as an eigenstate with eigenvalue 2n+1. It is not
entirely trivial to verify this explicitly, but it follows using the properties of
displaced coherent states as well as properties of the conventional associated
Laguerre polynomials Lm

n :

Lm
n (x) =

n
∑

k=0

(−1)k
(n+m)!xk

(n− k)!k!(m+ k)!
. (44)
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In like fashion, it follows for A = (P 2+Q2)2 and the corresponding Husimi
symbol that

〈r, s; 0|(P 2 +Q2)2 |r, s; 0〉 = 〈0|[(P + r)2 + (Q+ s)2]2|0〉 = (r2 + s2 + 1)2

≡ Σ∞
n=0cn

∫

[((p+ r)2 + (q + s)2)2 + k4((p+ r)2 + (q + s)2) + k6]

×pn(p, q) dpdq/2π , (45)

expressed in terms of the (assumed) symbol

((P 2 +Q2)2)−σ(p, q) = (p2 + q2)2 + k4(p
2 + q2) + k6 . (46)

One now finds, making use of Eq. (41), that

k4 = 2− 8Σ∞
n=0cn(n + 1) = −6− 8n , (47)

and

k6 = 1− 4Σ∞
n=0 cn(n + 1)(n+ 2)− 2k4Σ

∞
n=0 cn(n + 1)

= 5 + 16n+ 16n2 − 4n2 . (48)

In a similar manner and for A = Q4, we can write

(Q4)−σ(p, q) = q4 + a2q
2 + a4 , (49)

where

a2 = −3(1 + 2n) , (50)

and

a4 = 3( 1
4
+ 3

2
n + 2n2 − 1

2
n2 ) . (51)

The expressions above now relate the standard symbols to the generalized
symbols. Extension of these expressions to other polynomials in P and Q is
straightforward.
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6 Examples

With the special choice for σ considered above, i.e., σ = Σ∞
n=0cn |n〉〈n|, cn ≥ 0,

and Σ∞
n=0cn = 1, we will now consider some specific examples in order to

illustrate the use of the generalized upper and lower symbols. We first remark
that in the trivial case of an harmonic oscillator with H = (P 2+Q2)/2, such
that Z(β) = 1/[2 sinh(β/2)], the lower symbol Eq. (36) and the upper symbol
Eq. (42), together with the bounds Eq. (31), lead to the expression

e−β(∆(P )+∆(Q))/2/β ≤ Z(β) ≤ eβ(1/2+n)/2/β, (52)

which, obviously, is true. We can optimize this expression in the form

e−β/2/β ≤ Z(β) ≤ eβ/2/β . (53)

From the corresponding lower bound we then obtain an upper bound on the
ground-state energy E0 ≤ 1/2 since E0 = − limβ→∞ lnZ(β)/β. In the high-
temperature limit, i.e., β → 0, the bounds in Eq. (53) exactly reproduce the
classical Gibbs partition function Zcl(β)/2π = 1/β taking the fundamental
phase-space volume 2π into account and making use of

Zcl(β) =

∫

e−βHcl(p,q) dpdq , (54)

with, of course, Hcl(p, q) = (p2 + q2)/2.

6.1 A non-linear oscillator

Here we consider Hamiltonians of the form H = H(N), where N is the usual
number operator. We study this example more for its ease of analysis and
pedagogical value. We choose as our example H = (N − a)(N − b). Such a
form of an Hamiltonian has its roots in, e.g., the description of a single-mode
non-linear Kerr-medium in quantum optics or a single vibrational mode be-
yond the harmonic approximation. We make the choice a = 1 and b = 5.
We observe that the partition function Z(β) =

∑∞
n=0 exp[−β(n− 1)(n− 5)]

then has the form Z(β) ≃ exp(4β) for large values of β. A straightforward
application of Poisson re-summation techniques also leads to the behavior
Z(β) ≃

√

π/β/2 for small values of β, which corresponds to the high-
temperature limit of the classical partition function Zcl/2π using Eq. (54)
with Hcl = (p2 + q2)2/4− 7(p2 + q2)/2 + 33/4.
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We may then combine these factors for H = (N − 1)(N − 5) at hand by
noting that

(N − 1)(N − 5) = 1
4
(P 2 +Q2 − 1)2 − 6 1

2
(P 2 +Q2 − 1) + 5

= 1
4
(P 4 +Q4 + P 2Q2 +Q2P 2)− 7 1

2
(P 2 +Q2) + 33/4 . (55)

Consequently,

Hσ(p, q) = 1
4
[(p4)σ + (q4)σ + (p2q2)σ + (q2p2)σ]− 7 1

2
[(p2)σ + (q2)σ] + 33/4

= 1
4
[ p4 + 6p2P 2 + P 4 + q4 + 6q2Q2 +Q4 + q2p2 + q2P 2 + p2Q2

+4qpQP +Q2P 2 + p2q2 + q2P 2 + p2Q2 + 4pqPQ+ P 2Q2 ]

−7 1
2
[ p2 + P 2 + q2 +Q2 ] + 33/4 . (56)

Since we have restricted our choice of σ so that it is only a function of
N , i.e., σ = σ(N), σ has now a symmetry that makes Q2 = P 2 ≡ C2,
P 4 = Q4 ≡ C4, Q2P 2 = P 2Q2 ≡ C22, and importantly that QP + PQ = 0.
The three constants C2, C4, C22 are the only remnant of σ in Hσ(p, q), and
of necessity, they satisfy C2 ≥ 1/2, C4 ≥ C2

2 , and C4 ≥ C22. With the
restriction σ = σ(N) we can actually be more precise and write

C2 =
1
2
+ n̄ , C22 =

1
2
(n2 + n̄+ 1

2
) , C4 =

3
2
(n2 + n̄+ 1

2
) . (57)

Putting this information together, we find that

Hσ(p, q) =
1
4
(p2 + q2)2 +K1 (p

2 + q2) +K2 , (58)

where

K1 ≡ 7
4
(C2 − 2) = 7

4
(n̄− 3

2
) ,

K2 ≡ C4 +
1
2
C22 − 7C2 +

33
4
= (n− 3)2 − 4 . (59)

We note the fact that Hσ(p, q) is a function only of the combination
(p2 + q2) on the basis of our restriction that σ = σ(N). It follows, therefore,
that the lower bound of interest is given by

∫

exp{−βHσ(p, q)} dpdq/2π = 1
2

∫∞

0
exp{−β[1

4
s2 +K1s+K2 ]}ds , (60)
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where we have passed to polar coordinates and set s ≡ (p2 + q2). The upper
bound integral is a function of β as well as the σ-parameters, C2, C4, and
C22, i.e., the independent mean-value n̄ and dispersion (n− n̄)2 parameters.

The lower bound of Eq. (31) together with Eq. (60) now leads to the lower
bound

√

π/β/2 ≤ Z(β) as β → 0. This lower bound again corresponds to
the high-temperature limit for the classical partition function Zcl(β)/2π. By
making use of E0 = − limβ→∞ lnZ(β)/β, Eq. (60) leads to the upper limit
E0 ≤ −4 using the state σ = |3〉〈3|. We observe that such a state will not
strictly satisfy the restriction imposed by Eq. (7) since Tr(U [k, x] σ) then
will be zero at isolated points away from the origin k = x = 0. But, in fact,
the restriction Eq. (7) is then not required if A is a polynomial in P and
Q since the symbol Ã(k, x) as defined in Eq. (9) will involve derivatives of
delta-functions with support at the origin [9, 6].

The upper bound of Eq. (31), using Eqs. (42) and (46), now leads to

Z(β) ≤ 1
2

∫∞

0
exp{−β[1

4
(s2 + k4s+ k6)− 7

2
(s+ k2) +

33
4
]}ds , (61)

where the parameters k2, k4 and k6 are given by the equations (43), (47)
and (48), respectively. It is now evident again that Eq. (61) reproduces the
high-temperature limit of the classical partition function Zcl(β) ≃

√

π/β/2.
The upper bound of Eq. (31) gives unfortunately now a rather poor lower
bound on the ground state energy E0 ≥ −12− 9n̄− n2, i.e. E0 ≥ −12.

6.2 An anharmonic oscillator

We next consider the Hamiltonian H = (P 2 +Q2)/2 + λQ4/2 ≥ 0, λ > 0, to
define the partition function. With the lower and upper symbols as given by
Eqs. (37), (42), and (49), we now find that

Z(β) ≤ 1

β
√
2π
e−β(k2+λa4)/2

∫

e−(x2+λ(x4/β+a2x2))/2dx , (62)

and

Z(β) ≥ 1

β
√
2π
e−β(∆(P )+∆(Q)+λQ4)/2

∫

e−(x2+λ(x4/β+6x2Q
2
))/2dx . (63)

In the limit of large β, the lower bound on Z(β) and the fact that H ≥ 0 then
lead to 0 ≤ E0 ≤ (1 + λQ4)/2. With σ = |0〉〈0| one finds the upper bound
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E0 ≤ (1 + 3λ/4)/2 which, e.g., can be compared to the “exact” numerical
value of 2E0 = 1.392351641530... for λ = 1 [10]. We expect that this upper
bound could be improved with a different choice of σ.

A consequence of the upper and lower bounds Eqs. (62) and (63) now is
that for sufficiently small β the upper and lower bounds converge to the well
studied (see, e.g., Refs. [11] ) classical and asymptotic form

Z(β) =
1

β
√
2π

∫

e−x2/2−λx4/2βdx ≡ Zcl(β)/2π

=
1

2λ
√
2π

√

λ

β
eβ/16λK1/4(β/16λ) (64)

using Eq. (54) withHcl(p, q) = (p2+q2)/2+λq4/2. The expression in Eq. (64)
involves all the energy states of the anharmonic oscillator in a highly non-
trivial manner. In our case we are specifically interested in the limit β → 0,
i.e., Z(β) ≃ Γ(1/4)(2β/λ)1/4/2β

√
2π.

7 Comments

For clarity, we have mainly focused on matrices σ = σ(N) which meant that
σ = Σ∞

n=0 cn |n〉〈n|. More general matrices of course would involve expansions
of the form

σ = Σ∞
n,n′=0cn,n′|n〉〈n′| (65)

expressed in terms of a general matrix {cn,n′} that still ensures that σ has all
the properties of a partition function. The use of such more general choices
for σ will inevitably lead to expressions involving the matrix elements [8]

〈n|U [p, q]|n′〉

=

√

2n′n!

2nn′!
exp[−1

4
(p2 + q2)] (q + ip)n−n′

Ln−n′

n (1
2
(p2 + q2)) , (66)

for n ≥ n′ expressed in terms of the associated Laguerre polynomials Eq. (44);
instead, when n < n′, use 〈n|U [p, q]|n′〉 = 〈n′|U [−p,−q]|n〉∗. The simple
example where H = P 2 + ω2Q2, ω 6= 1, shows that the optimal choice of
σ is not always given by |0〉〈0|, where (Q + iP )|0〉 = 0, but in the present
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case by σ = |0;ω〉〈0;ω|, where (ωQ + iP )|0;ω〉 = 0. This remark serves
to confirm that the generalized representations have the possibility to make
better bounds. It may be true that choices for σ of the form |ψ〉〈ψ| (analogues
of pure states) may be optimal, and that perhaps choosing |ψ〉 as the ground
state of the Hamiltonian under examination may lead to optimal bounds.
Those are interesting questions for the future.

8 Conclusion

We have developed new, classical, phase space bounds to deal with special-
ized (i.e., the partition function) questions that arise in quantum mechanics,
and which, by their very nature, are technically easier to deal with than in
their original form. It is quite likely that the generalized phase-space sym-
bols we have introduced may have additional applications both in quantum
mechanics and in time-frequency analysis.
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