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CONTINUITY OF THE LYAPUNOV EXPONENT FOR

ANALYTIC QUASI-PERODIC COCYCLES WITH

SINGULARITIES

S. JITOMIRSKAYA AND C. A. MARX

Abstract. We prove that the Lyapunov exponent of quasi-periodic cocyles
with singularities behaves continuously over the analytic category. We thereby
generalize earlier results, where singularities were either excluded completely
or constrained by additional hypotheses. Applications are one-parameter fam-
ilies of analytic Jacobi operators, such as extended Harper’s model describing
crystals subject to external magnetic fields.

Dedicated to Richard S. Palais on the occasion of his 85th birthday.

1. Introduction

Denote by T := R/Z the torus equipped with its Haar measure µ, µ(T) =
1. Given β irrational and a measurable D : T → M2(C) satisfying log |detD| ∈
L1(T, dµ), a cocycle is a pair (β,D(x)), understood as linear skew-product acting
on T× C2 by (x, v) 7→ (x+ β,D(x)v).

Using the sub-additive ergodic theorem, for any cocycle (β,D) one can define
the Lyapunov-exponent (LE) by

(1.1) L(β,D) = lim
n→∞

1

n
log‖D(x+ (n− 1)β) . . . D(x)‖ = lim

n→∞

1

n

∫

‖D(x)‖dµ(x) .

In this paper we would like to analyze the dependence of the LE on the matrix
valued functionD upon variation over the analytic category. In view of the following
definition, given a Banach space X and δ > 0, we denote by Cω

δ (T, X) the analytic
X-valued functions on T with extension to a neighborhood of Tδ := {|Im z| ≤ δ}
(“the δ-strip of T”).

Definition 1.1. Let (β,D(x)) be a cocyle. If D ∈ Cω
δ (T,M2(C)) for some δ > 0,

we call (β,D(x)) an analytic cocyle. An analytic cocycle (β,D(x)) is called singular
if det(D(x0)) = 0 for some x0 ∈ T, in which case x0 is referred to as singularity of
the cocycle (β,D(x)).

We amend that analyticity automatically guarantees
∣

∣

∫

log |detD(x)|dµ(x)
∣

∣ <
∞ (for a simple argument see the proof of Lemma 2.9).

For δ > 0, let D ∈ Cω
δ (T,M2(C)). Setting detD(x) =: d(x), for d(x) not

vanishing identically, analyticity allows for only finitely many zeros. In particular,
for our analysis it will then prove useful to define the renormalization D′(x),

(1.2) D′(x) :=
1

√

|d(x)|
D(x) .
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2 S. JITOMIRSKAYA AND C. A. MARX

To simplify notation, we write

(1.3) L′(β,D) := L(β,D′)

Finally, the space Cω
δ (T,M2(C)) is naturally equipped with a topolgy induced by

the norm ||D(z)||δ := sup|Im z|≤δ‖D(z)‖, where ‖.‖ denotes the usual matrix norm.
As our main result, we establish the following:

Theorem 1.2. Let δ > 0. For fixed Diophantine β, the Lyapunov exponents L(β, .)
and L′(β, .) are continuous on Cω

δ (T,M2(C)) with respect to the topology induced by
||.||δ.

We recall that β is called Diophantine, if there exists 0 < b(β) and 1 < r(β) <
+∞ such that for all j ∈ Z \ {0}

(1.4) |sin(2πjβ)| >
b(β)

|j|r(β)
.

Besides from being a natural question to ask, our motivation for Theorem 1.2
comes from the spectral theory of quasi-periodic analytic Jacobi operators on l2(Z),

(Hθ;βψ)k := v(θ + βk)ψk + c(θ + βk)ψk+1 + c(θ + β(k − 1))ψk−1 .(1.5)

Here, β is a fixed irrational and v, c are Cω
δ (T,C) for some δ > 0. Moreover, v is

taken to be a real-valued function on T, which makes (1.5) a bounded self-adjoint
operator for each θ ∈ T. An important special case of (1.5) is given by c(x) = 1
(Schrödinger operators).

Spectral analysis of (1.5) amounts to the study of solutions to the finite difference
equation Hθ;βψ = Eψ over CZ. It is well known that this problem can be tackled
from a dynamical point of view, defining the transfer matrix,

(1.6) BE(x) :=
1

c(x)

(

E − v(x) −c(x− β)
c(x) 0

)

.

We are particularly interested in operators (1.5) where c(x) is not bounded away
from zero. In this case, the transfer matrix BE(x) is well defined except for finitely
many points determined by the zeros of c(x).

The dynamical system relevant to the spectral analysis of (1.5) is then given by
the cocyle (β,BE). In addition, there is also an associated analytic cocyle (β,AE)
given by

(1.7) AE(x) :=

(

E − v(x) −c(x− β)
c(x) 0

)

.

Obviously, for µ a.e. x the two relevant cocyles are related by BE(x) =
1

c(x)
AE(x).

In particular, for a given Jacobi operator, we obtain the following relation between
the LE of its associated cocyles (β,BE) and (β,AE),

(1.8) L(β,BE) = L′(β,AE) .

Oftentimes one studies one-paramter families of quasi-periodic Jacobi matrices.
For instance, a two dimensional crystal layer subject to an external magnetic field
of flux β perpendicular to the lattice plane may be described by an operator of the
form (1.5) with functions c, v given by

(1.9) c(x) := λ3e
−2πi(x+ β

2 ) + λ2 + λ1e
2πi(x+β

2 ) , v(x) := 2 cos(2πx) .
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Here, the parameter λ = (λ1, λ2, λ3) models the lattice geometry as well as the
interactions between the nuclei situated at the lattice points of Z2. The operator
associated with (1.9) is known as extended Harper’s operator [3, 4, 7, 8]. We
mention that a prominent special case of (1.9) arises for λ1 = λ3 = 0, the associated
operator being known as almost Mathieu operator (or Harper’s operator in physics
literature).

For such one-parameter families, it is a natural conjecture to expect continuity
of the LE upon variation of the parameter λ. For extended Harper’s model this
question constitutes an important ingredient for the spectral analysis, which so far
is only known for the almost Mathieu case. Theorem 1.2 answers this question from
a general point of view.

Continuity of the Lyapunov exponent for analytic cocycles has been the sub-
ject of earlier studies. These considerations however imposed restrictions on the
determinant d(x).

In [14], Hölder continuity of the LE was established for Schrödinger cocyles
(thus c=d=1) under a strong Diophantine condition with |j|r(β) in (1.4) replaced

by |j| log |j|r(β).
An analogue of Theorem 1.2 for d(x) = 1 (or more generally for d(x) bounded

away from zero) was proven in [2]. This statement in particular implies continuous
dependence of the LE on the coupling constant for the almost Mathieu operator.

Later, in [1], d(x) was allowed to vanish, however, in order to deal with these
zeros, the space of interest was restricted to analytic cocycles having the same d(x)
(see Theorem 1 in [1]). Applied to extended Harper’s equation, the latter result
already implied continuity of L(β,AE) in the energy, however, since variations of
λ change detAE , it does not yield continuity in the coupling 1.

At this point we mention that when allowing d(x) to vanish, details of the number
theoretic nature of the frequency β come into play. Whereas the earlier result in [2]
is valid for any irrational β, the result in [1] could only be proven for Diophantine
β.

The achievement here is to deal with all non-trivial singular analytic cocycles
(β,D), thus removing the above mentioned constraints on d(x) imposed by previous
studies. Allowing for zeros in d(x) however, results in signatures of the arithmetic
properties of β which manifest themselves in a Diophantine condition on β.

Following, we employ a similar general strategy as in [1] to prove Theorem 1.2.
However, allowing the determinant to vary requires changes in the heart of the proof
of [1] where the authors provide a large deviation bound for analytic non-SL(2,C)
cocycles (Lemma 1 in [1]).

The key to Theorem 1.2 is to appropriately generalize this large deviation bound
to also incorporate a variation of d(x). With this new, uniform, large deviation
bound at hand, the remainder of the proof given in [1] carries over more or less
literally to imply Theorem 1.2.

The paper is organized as follows. As preparation, in Sec. 2 we establish a uni-
form version of the Lojasiewicz inequality, Theorem 2.4, allowing us to deal with

1We correct a false remark in [1] which asserted joint continuity of the Lyapunov exponent
for extended Harper’s equation based on Theorem 1 therein. In [3] (based on [1]), the authors,
however, only used continuity with respect to E which, as mentioned, does indeed follow from
Theorem 1 proven in [1].
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zeros of d(x) upon continuous variation of the cocycle. This enters as crucial ingre-
dient in the proof of the uniform large deviation bound, Theorem 3.1, established
in Sec. 3. Finally, we conclude with some corollaries to the main theorem in Sec.
4.

2. Openness of α-transversality

We start with some preparations exploring basic properties of complex analytic
functions. To deal with possible zeros of d(x), in [1] the authors made use of the
following basic fact valid for every real analytic function f(x):

Theorem 2.1 (Lojasiewicz inequality [5]). Given a real analytic function f(x) on
T, there exist constants 0 < α, ǫ0 ≤ 1 such that

(2.1) µ{|f(x)| < ǫ} < ǫα ,

for every 0 < ǫ < ǫ0.

Note that the exponent α as well as ǫ0 depend on the function f . For our
purposes we would like to be able to choose these constants uniformly over functions
sufficiently close in a suitable topology.

Since in our situation the functions of interest are not only real but even complex
analytic with holomorphic extensions to a neighborhood of some strip |Im z| ≤ δ, for
Cω
δ (T,C) we choose the topology induced by the norm ||f ||δ := supz∈|Im z|≤δ|f(z)|.
More generally, if K ⊂ C compact, we equip the space of functions holomor-

phic on a neighborhood of K with the norm ||f ||K := supz∈K |f(z)|; the resulting
topological space shall be denoted by A(K).

We amend that in [1] the authors chose a weaker topology for Cω
δ (T,C), induced

by ||f ||T := supz∈T
|f(z)| resulting however in the need to fix the determinant d(x)

of the analytic cocycles under consideration.
As we will show for complex analytic functions, (2.1) together with the desired

uniformity of the constants will follow from basic properties of holomorphic func-
tions.

Suggested by (2.1), we introduce:

Definition 2.2. Fix δ > 0. We say that g ∈ Cω
δ (T,C) satisfies an (α, ǫ0)-transversality

condition if (2.1) holds for given exponent 0 < α ≤ 1 and ǫ0 > 0. We denote the
class of such functions in Cω

δ (T,C) by T ǫ0
α .

Remark 2.3. (i) Clearly, T ǫ0
α ⊆ T ǫ1

β if β < α and ǫ1 ≤ ǫ0.

(ii) If f ∈ Cω
δ (T,C) has no zeros on T, f ∈ T ǫ0

α for all 0 < α,≤ 1, some ǫ0(α).

For g ∈ A(K) not identically zero, let N (g;K) ∈ N0 denote the number of zeros
of g on K counting multiplicity. Here, N0 is the non-negative integers. We note
the following simple fact about holomorphic functions.

Proposition 2.1. Let K ⊆ C compact with piecewise C1-boundary.

(i) N (.;K) : A(K)\ {0} → N0 is upper-semicontinuous. Moreover, if f has no
zeros on ∂K, then N (g;K) is constant in a neighborhood of f.

(ii) For j ∈ N0, g ∈ A(K) and z ∈ K◦ let

(2.2) aj(g, z) :=
1

2πi

∫

∂K

g(ζ)

(ζ − z)j+1
dζ .

Then, aj(g, z) is jointly continuous on A(K)×K◦.
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Proof. Part (ii) follows trivially from

(2.3) |aj(g, z0)− aj(f, z1)| = j!|g(j)(z0)− f (j)(z1)| .

To prove (i), let f ∈ A(K) \ {0}. It suffices to show N (g;K) ≤ N (f ;K) for g in
a neighborhood of f . We distinguish the following two cases.

Case 1: If f has no zeros on ∂K, it is well known that

(2.4) N (f ;K) =
1

2πi

∫

∂K

f ′(z)

f(z)
dz .

Using holomorphicity, if gα → f also g′α → f ′. Moreover, since f has no ze-
ros on ∂K, the same will eventually hold for gα. In particular, the analogue
of (2.4) eventually expresses N (gα,K). Thus by bounded convergence we
obtain, N (gα;K) = N (f ;K) eventually.

Case 2: If f does have zeros on ∂K, there exists a compact neighborhood U
of ∂K such that f is holomorphic on a neighborhood of U and has no zeros
on U \ ∂K. Applying above considerations separately to K \ U◦ and U we
obtain N (g;K) ≤ N (f ;K) for every g sufficiently close to f .

�

For later use we mention the following simple consequence, easily obtained by
separating zeros by arbitrarily small closed balls.

Corollary 2.1. Let K ⊂ C compact. For f ∈ A(K) \ {0} let Z(f ;K) denote the
set of zeros of f on K. Then, Z(.;K) is continuous in the Hausdorff metric.

For f ∈ Cω
δ (T,C) let l(f) denote the maximal multiplicity of the distinct zeros

of f on T. As we shall argue, Proposition 2.1 implies openness of α-transversality:

Theorem 2.4. For fixed δ > 0,

(i) Suppose f ∈ Cω
δ (T,C) does not vanish identically but possesses zeros on T.

Then, f satisfies an (α, ǫ0)-transversality condition with α =
(

l(f)−1
)−

.

(ii) Let f ∈ Cω
δ (T,C) then for any 0 ≤ α < l(f)−1, there is ǫ0(f, α) such that

f ∈ IntT ǫ0
α wrt Cω

δ (T,C).

Proof. Let f ∈ Cω
δ (T,C) \ {0} be fixed. Clearly, if l(f) = 0 so is l(g) for any

g ∈ Cω
δ (T,C) sufficiently close to f in which case the theorem becomes trivial.

Hence, without loss, we may assume l(f) ≥ 1.
Let x1, . . . , xn be the distinct zeros of f with multiplicities respectively, l1, . . . , ln.

Choose K, a compact neighborhood of T, such that f(z) 6= 0 on K \T. Separating
the zeros by closed balls of some appropriate radius r, there exists η > 0 such
that ||g − f ||δ < η guarantees |g(z)| > 1

2 minK\∪n
j=1B(xj ,r)|f(z)| =: m > 0 on

K \ ∪n
j=1B(xj , r). In particular, possible zeros on K of any such function g will lie

in ∪n
j=1B(xj , r). Using Proposition 2.1(ii), η can be chosen small enough to also

ensure N (g;K) = N (f ;K).
We claim

Lemma 2.5. There exist 0 < η′ < η, 0 < η
′′

< r and κ > 0 such that uniformly
over ||g − f ||δ < η′,

(2.5) |g(z)| ≥ κ|pg,z̃(z)| , |z − xj | < η
′′

,
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for every zero z̃ of g on K, z̃ ∈ B(xj , r), and some monic polynomial pg,z̃(z) of
degree at most lj , with pg,z̃(z̃) = 0. Moreover, as ‖g−f‖δ → 0, pg,z̃(z) → (z−xj)lj

uniformly on compact subsets of C.

Proof. For g with ||g − f || < η using holomorphicity we can write

(2.6) g(z) = (1 + hg,z̃(z))

lj
∑

k=l(g,z̃)

ak(g, z̃)(z − z̃)k ,

locally about a zero z̃ of g, z̃ ∈ B(xj , r), and some holomorphic hg,z̃ with hg,z̃ = o(1)
uniformly as z → z̃, where ak are as in (2.2).

In fact, using Cauchy estimates and Proposition 2.1(i), there is 0 < η′ < η and

0 < η
′′

< r such that uniformly over ||g − f ||δ < η′ and for every zero z̃ of g on

K with z̃ ∈ B(xj , r), |hg,z̃(z)| < 1/2 if |z − xj | < η
′′

. By Proposition 2.1(ii) (note
that all zeros of g are in K◦), the polynomial in (2.6) is uniformly close on compact
subsets of C to alj (f, xj)(z−xj)

lj . In particular, this implies that η′ can be chosen
small enough so that |alj (g, z̃)| > 1/2min1≤j≤n|alj (f, xj)| > 0, which yields the
claim. �

To complete the proof of Theorem 2.4 we use the following well-known theorem
due to Pólya [11].

Theorem 2.6 (Pólya). Let pn(z) be a complex monic polynomial of degree at most
n ≥ 1. Then, for ǫ > 0

(2.7) µL ({x ∈ R : |pn(x+ iy)| ≤ ǫ}) ≤ 4ǫ1/n .

Here, µL denotes the Lebesgue mesure.

Remark 2.7. The proof in [11] actually shows that under the hypotheses of Theorem
2.6 one has

(2.8) µL ({x ∈ R : |pn(x+ iy)| ≤ ǫ}) ≤ 22−1/nǫ1/n .

Let ǫ0 := 1
2 minz∈K\∪n

j=1B(xj ,η
′′ )|f(z)| > 0. If ‖g − f‖δ < η′, using Lemma 2.5

we conclude for 0 < ǫ < ǫ0:

{x ∈ T : |g(x)| < ǫ} ⊆
⋃

z̃∈Z(g;K)

{x ∈ T : |pg,z̃(x)| < ǫ/κ} .(2.9)

Applying Theorem 2.6 we thus obtain

(2.10) µL ({x ∈ T : |g(x)| ≤ ǫ}) ≤ 4N (f ;K)
( ǫ

κ

)1/l(f)

,

for 0 < ǫ < ǫ0 for all g with ‖g − f‖δ < η′.
In particular, for 0 < γ < 1/l(f) and 0 < αγ = 1/l(f) − γ, we conclude that

g ∈ T
ǫγ
αγ with ǫγ = min

{

ǫ0,
(

4N (f ;K)
κ1/l(f)

)1/γ
}

. �

Remark 2.8. (1) We mention that Pólya’s Theorem 2.6 was used to deal with
a possible “collapse of zeros” as g → f . If we restrict to functions g having
the same number of distinct zeros as f in some neighborhood of T, then
(2.10) can be obtained directly from Lemma 2.5 since in this case (2.5)
simplifies to

(2.11) |g(z)| ≥ κ|z|l(f) , |z − xj | < η
′′

.
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(2) An alternative proof can be obtained using the Cartan’s estimate.

We conclude this section with the following Lemma closely related to Proposition
2.1, which will come handy in the proof of the uniform large deviation bound:

Lemma 2.9. For f ∈ Cω
δ (T,C), not vanishing identically let

(2.12) I(f) :=
1

2π

∫

log|f(x)|dµ(x) .

Then I is continuous on Cω
δ (T,C) \ {0} w.r.t. ||.||δ.

Proof. Fixing f ∈ Cω
δ (T,C), let x1, . . . xn denote the zeros of f on T counting multi-

plicities. Fix a compact neighborhood U of T such that f extends holomorphically
to a neighborhood of U and f(z) 6= 0 for z ∈ U \ T. Letting

(2.13) g(z) =
f(z)

∏n
j=1(z − e2πixj )

,

we obtain I(g) = I(f) (which is a proof of log|f | ∈ L1(T)). Here, we made use of
the identity,

(2.14)
1

2π

∫ 1

0

log|1− e2πixj |dx = 0 .

If fα → f then eventually fα will have no zeros on ∂U ; hence letting w1, . . . , wm,
denote the zeros of fα on U◦ counting mulitplicities, in analogy to g we can define
gα, dividing out these zeros.

By Proposition 2.1(i), m = n eventually as fα → f ; hence, also making use of
Corollary 2.1 and Proposition 2.1(ii) when treating small neighborhoods of xj , we
deduce gα → g uniformly on U . Finally, note that by Jensen’s formula and (2.14),
I(gα) = I(fα). �

3. Uniform large deviation bound

We first fix some notation. Given an analytic cocycle (β,D(x)) we define its
iterates

(3.1) Dn(x) := D(x+ (n− 1)β) . . . D(x) , n ∈ N .

Moreover, for n ∈ N let

(3.2) Ln(β,D) :=
1

n

∫

log‖Dn(x)‖dµ(x) ,

denote the nth approximate of L(β,D).
We then claim the following uniform version of the crucial Lemma 1 in [1]:

Theorem 3.1 (Uniform large deviation bound for analytic cocycles (ULDB)). Fix
β Diophantine and D(x) ∈ Cω

δ (T,M2(C)) with d(x) not vanishing identically. Let
p/q denote an approximant of β: |β − p

q | <
1
q2 with (p, q) = 1.

There exist γ(D) > 0 and constants 0 < c,C < ∞ such that for 0 < κ <
1, n > (Cκ−2q)η with η = η(β) > 1 and for q sufficiently large, uniformly over

||D̃ −D||δ < γ,

(3.3) µ

{
∣

∣

∣

∣

1

n
log‖D̃n(x)‖ − Ln(β, D̃)

∣

∣

∣

∣

> κ

}

< e−cκq .



8 S. JITOMIRSKAYA AND C. A. MARX

Proof. For ||D̃ − D||δ < γ we set ũn = ũn(β, D̃;x) := 1
n log‖D̃n(x)‖, n ∈ N. By

hypotheses, ũn extends to a subharmonic function on the δ-strip about T. Notice
that due to possible zeros of d̃(x), in general, ũn will not be bounded.

We shall deal with the unboundedness of ũn, introducing appropriate cut-offs.
To this end choose 0 < A <∞ such that inf ||D̃−D||δ<γ I(d̃) > −2A (which is finite

by a compactness argument). Here, I(.) is defined as in Lemma 2.9. For n ∈ N, let
w̃n(z) := max{ũn(z),−A}; thereby we obtain a family {w̃n, n ∈ N} of subharmonic

functions on the δ-strip of T, uniformly bounded in n and over ||D̃ −D||δ < γ.
The strategy to prove the ULDB is to estimate deviations of the individual terms

in

|
1

n
log‖D̃n(x)‖ − Ln(β, D̃)| < |ũn(x) − w̃n(x)| +

|w̃n(x)− 〈w̃n〉|+ |〈w̃n〉 − Ln(β, D̃)| .(3.4)

Here, and following we use the notation 〈f〉 to denote the 0th Fourier coefficient of
a function f ∈ L1(T).

We start by estimating the 2nd contribution in (3.4). For any R > 0 we can
write

|w̃n(x)− 〈w̃n〉| ≤

∣

∣

∣

∣

∣

∣

w̃n(x) −
∑

|j|<R

R− |j|

R2
w̃n(x+ jβ)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

|j|<R

R − |j|

R2
w̃n(x+ jβ)− 〈w̃n〉

∣

∣

∣

∣

∣

∣

=: |(I)|+ |(II)| .(3.5)

R will be suitably chosen later.
Contribution (II) is readily controlled using the following result [2],

Lemma 3.2 (Large deviation bound for bounded subharmonic functions [2]; see
also[1], p. 1888). Let v(x) be a bounded 1-periodic subharmonic function defined
on a neighborhood of R. Let |β − p

q | <
1
q2 , (p, q) = 1 and 0 < κ < 1. Then for

appropriate 0 < C1, c1 <∞ and for R > C1κ
−1q we have,

(3.6) µ







∣

∣

∣

∣

∣

∣

∑

|j|<R

R − |j|

R2
v(x+ jβ)− 〈v〉

∣

∣

∣

∣

∣

∣

> κ







< e−c1κq .

Remark 3.3. For a uniformly bounded family of subharmonic functions, the con-
stants c1, C1 can be chosen uniformly over this family [1]. This in particular, applies

to the family {w̃n, n ∈ N and ||D̃ −D||δ < γ}.

To estimate contribution (I) in (3.5), we establish the following

Proposition 3.1. Uniformly over ||D̃−D||δ < γ, there exists 0 < c2 such that for
any 0 < ǫ < 1 there is 0 < C2 <∞ with

(3.7) µ

{

|w̃n(x) − w̃n(x + β)| >
C2

n1−ǫ

}

< e−c2n
ǫ

,

for sufficiently large n (only depending on d(x) and ǫ).
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Proof. Let B := γ + ||D||δ whence sup||D̃−D||δ<γ ||D̃||δ < B. By definition of w̃n

we have

(3.8) |w̃n(x) − w̃n(x + β)| <
1

n

∣

∣

∣

∣

∣

log
‖D̃n(x)‖

‖D̃n(x+ β)‖

∣

∣

∣

∣

∣

.

For any M ∈ GL2(C),

(3.9) ‖M−1‖ =
‖M‖

|detM |
,

whence

(3.10) max

{

‖D̃n(x)‖

‖D̃n(x+ β)‖
,
‖D̃n(x+ β)‖

‖D̃n(x)‖

}

< B2 max

{

1

|d̃(x+ nβ)|
,

1

|d̃(x)|

}

.

Let 0 < ǫ < 1. If |d̃(x + jβ)| ≥ e−nǫ

for both j = 0, n using (3.10) we obtain

(3.11) |w̃n(x)− w̃n(x+ β)| <
2 logB

n
+ nǫ−1 <

C2

n1−ǫ
.

Hence, using Theorem 2.4 we estimate

µ

{

|w̃n(x)− w̃n(x+ β)| >
C2

n1−ǫ

}

≤

µ
{

|d̃(x+ jβ)| < e−nǫ

, some j ∈ {0, n}
}

≤ 2e−αnǫ

,(3.12)

for n sufficiently large uniformly over ||D̃ −D||δ < γ. Here and in the following, α
is the exponent for d(x) determined by Theorem 2.4 by the maximal multiplicity
of the zeros of d(x) on T. Finally choosing c2 < α we obtain the claim of the
Proposition. �

We are now ready to estimate µ{x : |w̃n(x)− 〈w̃〉| > κ}: Let X := {x : |w̃n(x)−
w̃n(x+β)| >

C2

n1−ǫ }, where C2, ǫ are as in Proposition 3.1. Denote by T the rotation
by β on T.

If x ∈ T is such that ∪R+1
j=−R+1T

jx ⊆ T \ X, then referring to (3.5) we obtain

(3.13) |(I)| = |w̃n −
∑

|j|<R

R− |j|

R2
w̃n(x+ jβ)| <

C2

n1−ǫ
R .

In particular, choosing R < κn1−ǫ

2C2
implies that for such x we have |(I)| < κ/2.

The largeness condition on R from Lemma 3.2 will also be taken care of when

letting C1κ
−1q < R < κn1−ǫ

2C2
; this is accommodated choosing n > N with

(3.14) N :=
(

2C1C2κ
−2q
)

1
1−ǫ .

Thus fixing

(3.15) R :=
1

2

(

κN1−ǫ

2C2
+ C1κ

−1q

)

,

and using Lemma 3.2 and Proposition 3.1, we have for n > N

µ{x : |w̃n(x) − 〈w̃n〉| > κ} ≤ µL{x : |(I)| > κ/2,∪R
j=−R+1T

jx ⊆ T \X}+

µ{x : |(I)| > κ/2, T jx ∈ X some −R+ 1 ≤ j ≤ R}+ µL{x : |(II)| > κ/2} ≤

e−c1
κ
2 q + 2Re−c2

κ
2 q ≤ e−c3κq ,(3.16)
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for suitable c3 > 0. This completes the estimate of the 2nd contribution in (3.4).
Consider now the third term in in (3.4). Set

Ỹn := {x : w̃n(x) 6= ũn(x)} = {x : ‖D̃n(x)‖ < e−nA}(3.17)

⊆ {x : (

n−1
∏

j=0

|d̃(x+ jβ)|)
1
2 < e−nA} .(3.18)

In order to analyze the product of analytic functions occurring in (3.18) we
establish the following:

Proposition 3.2. Let f ∈ Cω
δ not vanishing identically and let β be fixed satisfying

the Diophantine condition (1.4). Then, there exist 0 < C3 = C3(β) and 0 < C4 =
C4(f) such that for n ∈ N we have
(3.19)

|
1

n

n
∑

j=1

log|f(x+jβ)|−〈log|f |〉| ≤ C3N (f ;T)n−1/r(β) log2(n)

∣

∣

∣

∣

min
1≤j≤n

log|f(x+ jβ)|

∣

∣

∣

∣

+
C4

n
.

The constant C4(f̃) can be chosen uniformly over ||f̃−f ||δ < ǫ for ǫ > 0 sufficiently
small.

Remark 3.4. (i) It is through this Proposition that a Diophantine condition is
imposed on β in Theorem 3.1.

(ii) Using upper-semicontinuity of N (.;T) established in Proposition 2.1,

N (f̃ ;T) can be chosen uniformly over ||f̃ − f ||δ < ǫ for sufficiently small
ǫ > 0.

We mention that Proposition 3.2 improves on and provides a uniform version
of Proposition C from [1], originally proven in [12]. The statement given here was
inspired by estimates on trigonometric products which played an important role in
[13] (see Sec. 9.2 therein).

Proof. First, write f as

(3.20) f(z) = g(z)

N (f ;T)
∏

j=1

(e2πixj − z)

on a compact neighborhood U where f is holomorphic and exhibits its only zeros
{xj , 1 ≤ j ≤ N (f ;T)} on T (counting multiplicities). In particular g is holomorphic
on a neighborhood of U and N (g;U) = 0.

We first establish the zero free version of Proposition 3.2.

Lemma 3.5 (Zero-free version of Proposition 3.2). Let β ∈ [0, 1) be a fixed Dio-
phantine number satisfying condition (1.4) and g a zero free function on a compact
neighborhood U of T. Then for n ∈ N,

(3.21) |
1

n

n
∑

j=1

log|g(x+ jβ)| − 〈log|g|〉| ≤
C4

n
.

Here, C4 = C4(g) can be chosen uniformly over ||g̃ − g||U < ǫ for ǫ > 0 sufficiently
small (only depending on minz∈U |g(z)|).

Remark 3.6. (i) The main purpose here is to convince the reader that C4 can
be chosen uniformly; the mere rate of convergence for the zero free situation
is a standard fact from harmonic analysis.
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(ii) Uniformity of C4(f̃) follows from Lemma 3.5 since fα → f uniformly on
U implies uniform convergence of the respective zero-free functions (for a
simple argument see the proof of Lemma 2.9).

Proof. Find ǫ0 > 0 such that |g̃(z)| > 1/2minz∈U |g(z)| > 0 for ||g̃ − g||U < ǫ0. In

particular, ||g̃−g||U < ǫ0 implies N (g̃;U) = N (g;U) = 0 whence letting G̃ := log|g̃|
we obtain that G̃ is harmonic on a neighborhood of U . Hence, G̃ =

∑

k∈Z
G̃ke

2πikx

converges absolutely and uniformly on T and for n ∈ N

(3.22)
1

n

n−1
∑

j=0

G̃(x+ jβ)− G̃0 =
1

n

∑

k∈Z\{0}

G̃ke
2πikx 1− e2πiknβ

1− e2πikβ
.

Making use of Eq. (1.4), results in

(3.23)

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

G̃(x+ jβ)− G̃0

∣

∣

∣

∣

∣

∣

≤
2b(β)

n

∑

k∈Z

|G̃k|k
M ,

where M =M(β) := ⌈r(β)⌉.
As in Katznelson [9], let A(T) ⊂ L1(T) denote the class of 1-periodic func-

tions with absolutely converging Fourier series equipped with the norm ‖f‖A(T) :=
∑

k∈Z
|fk|. A(T) is a homogeneous Banach space of L1(T) isomorphic to l1(Z).

We employ the following standard fact :

Proposition 3.3. [9] Let f ∈ L1(T) be absolutely continuous with f ′ ∈ L2(T).
Then f ∈ A(T) and

(3.24) ‖f‖A(T) ≤ ‖f‖L1(T) +

(

2
∞
∑

n=1

1

n2

)1/2

‖f ′‖L2(T) .

In summary, Proposition 3.3 and (3.23) imply

(3.25)

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

G̃(x + jβ)− G̃0

∣

∣

∣

∣

∣

∣

≤
4b(β)

n

(

‖G̃(M)‖T + ‖G̃(M+1)‖T
)

.

Finally, it is a basic property of harmonic functions that G̃ → G uniformly on U
implies G̃(m) → G(m) for any m ∈ N [10], which yields the claim. �

Thus we are left with analyzing the rate of convergence of the terms log|e2πixj−z|
in a Caesaro mean. We employ the following Lemma proven in [13]

Lemma 3.7. Let β be irrational. For n ∈ N, let pn/qn denote the nth approximant
of β. Then, if 1 ≤ k0 ≤ qn is determined by

(3.26)

∣

∣

∣

∣

sin

(

2π(x− x0) + k0β

2

)∣

∣

∣

∣

:= min
1≤k≤qn

∣

∣

∣

∣

sin

(

2π(x− x0) + kβ

2

)∣

∣

∣

∣

,
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we have:
∣

∣

∣

∣

∣

∣

∣

qn
∑

k=1

k 6=k0

log

∣

∣

∣

∣

sin

(

2π(x− x0) + kβ

2

)∣

∣

∣

∣

+ (qn − 1) log(2)

∣

∣

∣

∣

∣

∣

∣

=(3.27)

∣

∣

∣

∣

∣

∣

∣

qn
∑

k=1

k 6=k0

log
∣

∣

∣
e2πi(x+kβ) − e2πix0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< C5 log(qn) .(3.28)

Here, C5 = C5(β).

Fix 1 ≤ j ≤ N (f ;T). For n ∈ N arbitrary let s = s(n) ≥ 0 such that qs ≤ n <
qs+1. By successive division represent n as n =

∑s
k=0 lkqk. Recall that by (1.4)

[14],

(3.29) qk+1 ≤
2π

b(β)
q
r(β)
k , k ∈ N0 .

In particular, this allows to control the divisors

(3.30) lk ≤
qk+1

qk
≤

(

2π

b

)1/r

qk+1 , k < s , and ls ≤
n

qs
≤

(

2π

b

)1/r

n1−1/r .

Let 1 ≤ k0 ≤ n such that

(3.31)

∣

∣

∣

∣

sin

(

2π(x− xj) + k0β

2

)∣

∣

∣

∣

:= min
1≤k≤qn

∣

∣

∣

∣

sin

(

2π(x− xj) + kβ

2

)∣

∣

∣

∣

.

Making use of Lemma 3.7 and (3.30) yields
∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

k 6=k0

log
∣

∣

∣
e2πi(x+kβ) − e2πixj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ C5

s
∑

k=0

log qk
qk+1

qk
≤

C5 log qs

(

(

2π

b

)1/r

q1−1/r
s

2

log 2
log qs + log qs

(

2π

b

)1/r

n1−1/r

)

≤

C6(β) log
2(n)n1−1/r .(3.32)

Here, we also used a general fact that allows to control s by s(n) ≤ 2 log qs
log 2 (valid

for any irrational β) [14].
Finally, combining (3.20), (3.21), and (3.32) implies the claim of Proposition

3.2. �

We can now estimate µ{Ỹn} (see (3.17)). To this end, suppose x ∈ Ỹn, then
employing Proposition 3.2 results in

min
0≤j≤n−1

|d̃(x + jβ)| < e−nǫ

(3.33)

for n sufficiently large and any 0 < ǫ < r(β)−1 ≤ 1. Hence, by theorem 2.4

(3.34) µ{Ỹn} ≤ µ{x : min
0≤j≤n−1

|d̃(x+ jβ)| < e−nǫ

} ≤ ne−nǫα ≤ e−nǫc2 ,

for α determined by d, γ = γ(d) sufficiently small and n sufficiently large, uniformly

over ||D̃ −D||δ < γ.
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Since ‖M‖2 ≥ |detM | for M ∈M2(C),
(3.35)

|〈w̃n〉−Ln(β, D̃)| ≤
1

n

∫

Ỹn

log

∣

∣

∣

∣

e−nA

‖D̃n(x)‖

∣

∣

∣

∣

dx ≤
1

n

∫

Ỹn

log

(

e−nA

∏n−1
j=0 |d̃(x+ jβ)|

1
2

)

dx .

Lemma 3.8. Uniformly over ||D̃ −D||δ < γ there exists α = α(d) and 0 < C7 =
C7(α) <∞ such that for i, j ∈ {0, . . . , n− 1},

(3.36)

∣

∣

∣

∣

∣

∫

|d̃i(x)|<ǫ

log|d̃j(x)|dx

∣

∣

∣

∣

∣

≤ C7ǫ
α|log ǫ| ,

for sufficiently small ǫ > 0.

Proof. Take α, ǫ0 as in Theorem 2.4 with f = d. Take γ(d) such that the γ(d)-

neighborhood of d is contained in Int T ǫ0
α . Set di(x) = d(x + iβ) and define Ãi :=

{x : |d̃i(x)| < ǫ} and B̃j
k := {x : 1

2k
ǫ < |d̃j(x)| <

1
2k−1 ǫ} for k ∈ N.

Then, for γ < γ(d) sufficiently small and ǫ sufficiently small determined uni-

formly for ||D̃ −D||δ < γ, by Theorem 2.4,
∣

∣

∣

∣

∣

∫

|d̃i(x)|<ǫ

log|d̃j(x)|dx

∣

∣

∣

∣

∣

≤
∑

k∈N

∣

∣

∣

∣

∣

∫

Ãi∩B̃j
k

log|d̃j(x)|dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Ãi\∪k∈NB̃
j
k

log|d̃j(x)|dx

∣

∣

∣

∣

∣

≤ C7ǫ
α|log ǫ| .(3.37)

�

Fix ǫ < r(β)−1. Equation (3.35) together with Lemma 3.8 , (3.17) and (3.34)
imply, for uniformly large n:

|〈w̃n〉 − Ln(β, D̃)| ≤
1

n

n−1
∑

i=0

∫

|d̃i(x)|<e−nǫ
log

(

e−nA

∏n−1
j=0 |d̃(x+ jβ)|

1
2

)

dx ≤

Ane−αnǫ

+
1

2
C7n

ǫe−αnǫ

< e−c4n
ǫ

, 0 < c4 < α .(3.38)

Thus,

µ{x ∈ T : |ũn(x)− Ln(β, D̃)| > κ} ≤ µL{x : |ũn(x) − w̃n(x)| >
κ

2
−

e−c4n
ǫ

2
}+

µ{x : |w̃n(x) − 〈w̃〉n(x)| >
κ

2
−

e−c4n
ǫ

2
} ≤ µL{Ỹn}+ µL{x : |w̃n(x) − 〈w̃n〉| > κ/3}

(3.39)

for n sufficiently large.
Finally, making use of (3.16) and (3.34) we obtain Theorem 3.1. �

4. Concluding remarks

In [1] the authors also obtain a continuity statement in the frequency (Theorem
2, [1]). Repeating their proof we obtain an analogous statement here: To this end
we denote the set of numbers satisfying the Diophantine condition (1.4) for a given
r > 1 by DC(r).
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Theorem 4.1. Both L′(., .), L(., .) : DC(r) × Cω
δ (T,M2(C)) → R are jointly con-

tinuous.

Note that Theorem 4.1 does not give continuity of the LE under rational ap-
proximants of the frequency due to the Diophantine condition imposed.

If however the detD(x) is bounded away from zero Theorem 4.1 can be strength-
ened using the continuity statement from [2]. For δ > fixed, define the space

(4.1) Bω
δ (T,M2(C)) := {D ∈ Cω

δ (T,M2(C)) : N (detD; |Im(z)| ≤ δ) = 0} .

By Proposition 2.1 Bω
δ (T,M2(C)) is open in Cω

δ (T,M2(C)).

Theorem 4.2. If β0 is irrational, L′(., .), L(., .) : R×Bω
δ (T,M2(C)) → R are jointly

continuous at (β0, .).

Proof. The statement is known for L(., .) [2]. To prove continuity for L′, let β be
irrational and fix a D ∈ Bω

δ (T,M2(C)). It suffices to show that if rn = pn

qn
is a

sequence of rational approximants of β, (pn, qn) = 1, and ‖Dn −D‖δ → 0 we have
L′(rn, Dn) → L′(β,D).

First, notice that for any n, rn ∈ Q implies

(4.2) L(rn, D
′
n) = L(rn, D)−

1

2qn

qn−1
∑

j=0

log|detD(x+ jrn)| .

Thus, the claimed continuity property of L′(., .) is reduced to establishing

(4.3)
1

qn

qn−1
∑

j=0

log|detD(x+ jrn)| →

∫

T

log|detD(x)|dx ,

as n→ ∞.
Using harmonicity of log detD(x) on |Im|(z) ≤ δ,

(4.4)
1

qn

qn−1
∑

j=0

log|detD(x+ jβ)| →

∫

T

log|detD(x)|dx ,

uniformly on T as n→ ∞.
Hence, (4.3) follows by successive approximation also making use of Lemma 2.9:

∣

∣

∣

∣

∣

∣

1

qn

qn−1
∑

j=0

log|detDn(x+ jrn)| −

∫

T

log|detDn(x)|dx

∣

∣

∣

∣

≤
1

qn

qn−1
∑

j=0

∣

∣ log |detDn(x+ jrn)|

− log |detD(x+ jβ)|
∣

∣+

∣

∣

∣

∣

∣

∣

1

qn

qn−1
∑

j=0

log|detD(x+ jβ)| −

∫

T

log|detD(x)|dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

T

log|detD(x)|dx −

∫

T

log|detDn(x)|dx

∣

∣

∣

∣

.

(4.5)

�
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