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EXTREME COMMUTATIVE QUANTUM OBSERVABLES ARE SHARP

TEIKO HEINOSAARI AND JUHA-PEKKA PELLONPÄÄ

Abstract. It is well known that, in the description of quantum observables, positive operator

valued measures (POVMs) generalize projection valued measures (PVMs) and they also turn

out be more optimal in many tasks. We show that a commutative POVM is an extreme

point in the convex set of all POVMs if and only if it is a PVM. This results implies that

non-commutativity is a necessary ingredient to overcome the limitations of PVMs.

1. Introduction

Quantum observables are generally described by positive operator valued measures (POVMs)

[3]. In the more traditional description, observables are identified with projection valued mea-

sures (PVMs). POVMs generalize PVMs in a straightforward way; their elements need not

be projections but only positive operators. PVMs are called sharp observables when there is a

need to emphasize this distinction [1].

Even if PVMs turned out to be a too restrictive idealization to describe actual experimental

settings, they are still consider to have an exceptional role. It seems fair to say that not

all POVMs represent physical quantities, although they all correspond to some measurement

procedures. Also, it is quite clear that not all POVMs are useful. For instance, coin tossing

can be written as a POVM, but this kind of procedure clearly does not give any information

on the input state.

For these reasons, there is a motivation to understand further the structure of the set of

POVMs. In particular, it seems useful to identify those intrinsic properties that any useful or

optimal POVM must have. The most evident structure of the set of POVMs is the convex

structure [5]. A convex combination of two POVMs describes a mixture of the corresponding

measurement apparatuses, similarly as convex combination of two states describes a mixture

of the corresponding preparators.

Analogously to pure states, some observables are extreme in the sense that they cannot be

implemented by mixing some other observables. It is easy to see that every PVM is an extreme

element in the convex set of all POVMs. However, it is also known that there are other extreme

elements than PVMs and this is one the main reasons that motivates one to study POVMs.
1
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Based on earlier works [2], [8], a general characterization of all extreme POVMs was recently

derived in [9]. However, this (quite technical) result does not reveal qualitative properties of

extreme POVMs.

Our contribution in this work is to show that every extreme commutative POVM is a PVM.

Therefore, only non-commutative POVMs can outperform PVMs. This observation explains

why all previously found optimal POVMs are always either PVMs or non-commutative POVMs.

In Section 2 we shortly recall the basics of the convex structure of POVMs. The main result

is stated and proved in Section 3. We give two different proofs of this result. The first one

is a direct proof and applies to discrete POVMs. The second one starts from the structure of

commutative POVMs and applies also to non-discrete POVMs.

2. Convex set of POVMs

Let us briefly recall the mathematical description of quantum observables via POVMs [5, 1].

Consider a quantum system associated with a separable (either finite or infinite dimensional)

Hilbert space H. The possible measurement outcomes form a set Ω, and Σ is any σ-algebra of

subsets of Ω. In typical examples, Ω is the real line R or its subset, and Σ is the Borel σ-algebra

B(Ω). However, we do not assume any extra structure on Ω and Σ.

Let L(H) be the set of bounded operators on H. A quantum state ̺ is a positive trace class

operator of trace one. A POVM is set a function A : Σ → L(H) such that, for every state ̺

the mapping X 7→ tr [̺A(X)] is a probability measure. Especially, A satisfies the normalization

condition A(Ω) = I and each operator A(X) satisfies 0 ≤ A(X) ≤ I; operators satisfying this

inequality are called effects. The number tr [̺A(X)] is the probability of getting a measurement

outcome x belonging to X , when the system is in the state ̺ and the measurement of A is

performed.

We denote by P(Ω,Σ,H) the set of all POVMs with a fixed measurement outcome space Ω,

σ-algebra Σ ⊆ 2Ω, and Hilbert space H. For any pair of POVMs A,B ∈ P(Ω,Σ,H), we can

define their convex combination POVM tA+ (1− t)B (with weight 0 < t < 1) by the formula

(

tA+ (1− t)B
)

(X) = tA(X) + (1− t)B(X) .

The convex combination tA + (1 − t)B corresponds to a classical randomization or mixing

between A and B.
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A POVM A ∈ P(Ω,Σ,H) is called extreme if, for all B,C ∈ P(Ω,Σ,H) and 0 < t < 1, the

condition A = tB + (1 − t)C implies B = C = A. Thus, extreme POVMs are free from any

classical noise arising from this type of randomization.

A POVM A ∈ P(Ω,Σ,H) is a projection valued measure (PVM) if all A(X) are projections,

i.e.,

(2.1) A(X)2 = A(X) for all X ∈ Σ .

All PVMs are extreme since the projections are the extreme elements of the convex set of all

effects [3].

There are also extreme POVMs that are not PVMs. A physically interesting extreme POVM

is the canonical phase observable [4]. It is not a PVM, but is consider to be related to the

optimal measurement of the phase of an optical field.

3. Extreme commutative POVMs

Suppose A ∈ P(Ω,Σ,H) is a PVM. From (2.1) we obtain

(3.1) A(X)A(Y ) = A(X ∩ Y ) for all X, Y ∈ Σ .

It follows that any PVM satisfies

(3.2) A(X)A(Y ) = A(Y )A(X) for all X, Y ∈ Σ .

Generally, a POVM A satisfying (3.2) is called commutative.

In summary, every PVM is commutative and extreme. Actually, these two properties char-

acterize PVMs completely. Our main result is the following.

Theorem 1. A commutative POVM is extreme if and only if it is PVM.

We present two proofs that use totally different techniques. The first proof is a direct proof

and requires no previous results, while the second proof starts from the structure of commutative

POVMs.

First proof. In the first proof restrict to POVMs that are discrete. Let Ω = {x1, x2, . . .} be a

finite or a countably infinite set withN elements (hence N ∈ N orN = ∞), Σ = 2Ω = {X ⊆ Ω},
and A : Σ → L(H) a POVM. We denote An := A({xn}), and the normalization of A then reads
∑

N

n=1
An = I. Without restricting generality, we can assume that An 6= 0 for all n = 1, . . . , N .
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Let (Dn)
N

n=1 be a sequence of bounded selfadjoint operators such that ‖Dn‖ ≤ 1 and

N
∑

n=1

√

AnDn

√

An = 0 .

If A is extreme then
√
AnDn

√
An = 0 for all n = 1, . . . , N . Indeed, assume that, for some k,

√
AkDk

√
Ak 6= 0 and define POVMs A± by

A
±

n
:=

√

An(I ±Dn)
√

An = An ±
√

AnDn

√

An .

Then A = 1

2
(A+ + A

−) and Ak 6= A
±

k
, hence yielding a contradiction.

Let k 6= l. If A is commutative then AkAl = AlAk, and it follows that

Ak(Al)
2
Ak − Al(Ak)

2
Al = 0 .

We can write this in an equivalently form

N
∑

n=1

√

AnDn

√

An = 0

where Dk :=
√
Ak(Al)

2
√
Ak, Dl := −

√
Al(Ak)

2
√
Al, and Dn := 0 if n 6= k and n 6= l. Note that,

for all n, Dn = D∗

n
and ‖Dn‖ ≤ 1.

Hence, if A is extreme and commutative then, for all k 6= l,

Ak(Al)
2
Ak = (AkAl)

2 = 0

implying AkAl = 0. It follows that An = AnI = An(
∑

m
Am) = A

2
n
and A is therefore a PVM.

Second proof. This second proof works for arbitrary POVMs, but requires some background

results. The main ingredient is a representation theorem for commutative POVMs in terms of

PVMs. This type of result is known in many forms, but for our purposes the form presented

in [7] is most useful.

Let A ∈ P(Ω,Σ,H) be commutative. By Theorem 4.4 of [7] there exist a PVM E : B(R) →
L(H) and a weak Markov kernel ν : R× Σ → R with respect to E such that

(3.3) A(X) =

∫

R

ν(y,X)E(dy)

for all X ∈ Σ. The fact that ν is a weak Marko kernel w.r.t. E means that y 7→ ν(y,X) is

measurable for each X ∈ Σ, ν(y, ∅) = 0 and ν(y,R) = 1 for E-almost all y ∈ R, and for each

sequence Xn ∈ Σ of disjoint sets, we have ν(y,∪nXn) =
∑

n
ν(y,Xn) for E-almost all y ∈ R.

Physically, (3.3) means that A is a smearing or a coarse-graining of E.
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Let us then add the assumption that A is extreme. As proved in [6, Theorem 3.3], an extreme

POVM A can be written in the form (3.3) only if ν(y,X) ∈ {0, 1} for E-almost all y ∈ R. Fix

X ∈ Σ and define YX := {y ∈ R | ν(y,X) = 1}. Then A(X) = E(YX) is a projection. Therefore,

A is sharp.

4. Conclusions

We have proved that every extreme commutative POVM is a PVM. This observation in-

dicates that optimal POVMs fall into two quite different classes; they are either PVMs or

non-commutative POVMs.

Our investigation is a step towards understanding the more general question which POVMs

are useful.
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