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No-Go Theorem for Energy Surfaces
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Concavity properties prevent the existence of significant landscapes in energy surfaces obtained
by energy minimizations under constraints. The contradiction holds at finite temperatures T as well
as at zero temperature.
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The concept of collective [1] degrees of freedom has
been of central importance in nuclear physics, if only to
generate models involving much fewer degrees of free-
dom than the true number, 3A, needed for a proper mi-
croscopic description of a nucleus of mass number A.
Under adiabatic assumptions, or even proofs, the de-
scription of nuclear dynamics can be compressed into
slow motions of a few collective degrees of freedom B,
while the other degrees, faster, can be averaged out. Of-
ten, such collective degrees can be one-body operators,
B =

∑A
i=1

β(ri,pi, σi, τi), where ri,pi, σi, τi refer to the
position, momentum, spin, and isospin, respectively, of
nucleon i. The summation over all nucleons provides, in-
tuitively at least, a motivation for more inertia in B than
in the individual (nucleonic) degrees of freedom βi.

The concept of energy surfaces [2] has been almost as
important. Given a “coordinate-like” collective opera-
tor B and its expectation value b ≡ 〈B〉, every collec-
tive model accepts the common wisdom that there exists
an energy function, e(b), and an inertia parameter, µ(b),
that drive the collective dynamics. This concept is at the
core of any theory of fission or fusion, for instance. Key-
words like “saddles”, “valleys”, “barriers”, etc., flourish.

Simultaneously, it is implicitly assumed that the func-
tion, e(b), results from an energy minimization under
constraint. Namely, while the system evolves through
various values of b, it is believed to tune its energy to
achieve a local minimum. To illustrate, consider the nu-
clear Hamiltonian, H =

∑

i ti +
∑

i<j vij , where t and v
denote the usual kinetic and interaction operators. Given
a suitable trial set of density operators D in many-body
space, normalized by TrD = 1, a theory for an energy
surface most often reads,

e(b) = inf
D⇒b

Tr {HD} , (1)

where Tr is a trace in the many-body space for A nucle-
ons and the constraint, D ⇒ b, enforces Tr {BD} = b.
In practice, this requires a diagonalization, or at least a
minimization, of the constrained operator, H ≡ H −λB,
where λ is a Lagrange multiplier. The purpose of this

work is to show that this constrained minimization can
only return concave [3] functions e(b). Maxima are
impossible. In the trivial generalization where several
collective operators B1, . . . , BN , are involved, concavity
stills holds, hence saddle points are excluded as well as
maxima, whether local or not. Only an absolute mini-
mum is available.
Consider, indeed, the exact diagonalization at T = 0,

or an exact partition function at finite T . However, if λ is
a positive number and the spectrum of B is not bounded
from above, there is a risk that the spectrum ofH extends
to −∞, hence no ground state of H exists to provide a
minimal energy. A similar risk occurs if λ is negative and
B is not bounded from below. To start, we shall assume
that either H is always bounded from below or both H
and B have been projected in a finite subspace of A-
body basis states; in the latter case, the problem reduces
to handling finite matrices. Let ψ(λ) be the ground state
of H. (For the sake of simplicity, we assume that there
is no degeneracy.) The corresponding eigenvalue, ε(λ), is
stationary with respect to variations of ψ, among which is
the “online” variation, dλ (dψ/dλ), leading to the well-
known first derivative, dε/dλ = −b ≡ −〈ψ |B|ψ〉 . Let
P = |ψ〉 〈ψ| and Q = 1 − P be the projector and the
complementary projector, respectively. Brillouin-Wigner
perturbation theory yields the first derivative of ψ, viz.

d |ψ〉

dλ
= −

Q

ε−QHQ
B |ψ〉 . (2)

This provides the second derivative of ε,

−
db

dλ
≡ −

d

dλ
〈ψ |B|ψ〉 = 2

〈

ψ

∣

∣

∣

∣

B
Q

ε−QHQ
B

∣

∣

∣

∣

ψ

〉

. (3)

Since the operator, (ε − QHQ), is clearly negative-
definite, the energy, ε, is a convex function of λ. It
is trivial to prove that the same convexity holds for
the ground state eigenvalue ε(λ1, . . . , λN ) if several con-
straints, B1, . . . , BN , are used. When a temperature T
is considered, a partition function is calculated from an
H bounded from below, and one obtains a free energy,

http://arxiv.org/abs/1106.4702v1


2

ε(λ1, . . . , λN ;T ), that also contains the entropy contri-
bution, −TS, where S = −Tr {D lnD}. A proof of the
convexity of an exact ε(λ1, . . . , λN ;T ) is also easy [4].

At T = 0, the traditional Legendre transform ex-
presses the energy, e ≡ 〈ψ |H |ψ〉, in terms of the con-
straint value(s) rather than the Lagrange multiplier(s).
For simplicity, set one constraint only, the generalization
to N > 1 being easy. Since e ≡ ε+ λb, and dε = −bdλ,
then de = λdb, giving de/db = λ, a most traditional re-
sult for conjugate variables. Furthermore, the second
derivative, d2e/db2, reads, dλ/db = 1/(db/dλ). From
Eq. (3), the derivative, db/dλ, is positive-definite. Ac-
cordingly, e is a concave function of b. Now, if T > 0,
the Legendre transform instead generates a reduced free
energy, η ≡ (e − TS), which is a concave function of the
constraint value(s). An additional Legendre transform,
between T and S, returns e alone, as a concave function
of both the constraint(s) and S.

Let b− and b+ be the lowest and highest eigenvalues of
B, respectively. It is expected that b spans the interval,
[b−, b+], when λ runs from −∞ to +∞. In every exact
diagonalization of H, or exact partition function calcula-
tion, concavity sets a one-to-one mapping between b in
this interval and λ. More generally, with exact calcula-
tions, there is a one-to-one mapping between the set of
Lagrange multipliers, {λ1, . . . , λN}, and that of obtained
values, {b1, . . . , bN}, of the constraints. Concavity, in

the whole obtained domain of constraint values, imposes
a very poor landscape: one valley only.

Consider, now, situations where the energy surface
does not result from a diagonalization, or the exact cal-
culation of a partition function. Typically, the min-
imization could be estimated from a Hartree-Fock(-
Bogoliubov) approximation, whether at zero or finite T .
The trial states involved in such nonlinear approxima-
tions do not correspond to a linear manifold; indeed, for
instance, a sum of two determinants usually does not
make a determinant. Let D(λ) denote one A-body den-
sity operator where, within such nonlinear approxima-
tions, a minimum of Tr {HD} or, at finite T, a minimum
of (Tr {HD} − TS) is reached. Let ε(λ) denote this min-
imum value. It may be degenerate, incidentally, because
of symmetry breaking but, whether degenerate or not,
this value is stationary with respect to arbitrary varia-
tions δD within the manifold of trial states. As a con-
sequence of this stationarity, the first derivative again
reads, dε/dλ = −b ≡ −Tr {BD}. Then, if a Legendre
transform is possible, defining η ≡ ε + λb, in terms of
b, the same argument that was used for the exact case
again yields, dη/db = λ. With several constraints, the
gradient of η in the vector space spanned by {b1, . . . , bN}
is again the vector {λ1, . . . , λN}.

There remains to discuss second derivatives. Con-
sider, for instance, Hartree-Fock (HF) calculations, where
A-body density operators are dyadics of Slater deter-
minants, D = |ϕ〉 〈ϕ|. Norm-conserving variations of

an HF solution, ϕ, can be parametrized as, |δϕ〉 =
exp(iXδα) |ϕ〉 , with X an arbitrary particle-hole Her-
mitian operator, and δα an infinitesimal coefficient. Un-
der such a variation in the neighborhood of an HF solu-
tion, the first and second order variations of the energy,
ε ≡ Tr {H exp(iXδα)D exp(−iXδα)}, read,

δε = iδαTr {[H, X ]D} = 0, (4)

and

δ2ε = −
(

δα2/2
)

Tr {[[H, X ] , X ]D} ≥ 0, (5)

respectively. Since we are dealing with an HF solution,
the first order vanishes ∀X , and since only those solutions
that give minima are retained, the second order variation
of ε is semi-positive-definite, ∀X again. Now, when H
receives the variation, −Bdλ, there exists a particle-hole
operator Y , a special value of X , that, with a coeffi-
cient dλ, accounts for the modification of the HF solu-
tion. This reads |Φ〉 = exp(iY dλ) |ϕ〉. Simultaneously,
those particle-hole operators that refer to this new Slater
determinant Φ become X = exp(iY dλ)X exp(−iY dλ).
The new energy is thus,

E = Tr {exp(−iY dλ)(H−Bdλ) exp(iY dλ)D} . (6)

The stationary condition, Eq. (4), becomes,

0 = Tr {exp(−iY dλ) [(H−Bdλ),X ] exp(iY dλ)D}

= Tr {[exp(−iY dλ)(H−Bdλ) exp(iY dλ), X ]D} . (7)

The zeroth order in dλ of this, Eq. (7), reads,
Tr {[H, X ]D}, and vanishes ∀X , because of Eq. (4).
Then the first order in dλ gives, again ∀X ,

Tr {[B,X ]D} = iTr {[[H, Y ] , X ]D} . (8)

The second derivative is,

d2ε/dλ2 = −(d/dλ)Tr {exp(−iY dλ)B exp(iY dλ)D}

= −iTr {[B, Y ]D} . (9)

Upon taking advantage of Eq. (8), for Y as a special case
of X, this becomes,

d2ε/dλ2 = Tr {[[H, Y ] , Y ]D} , (10)

the right-hand side of which is semi-negative-definite, see
Eq. (5). The solution branch obtained when λ runs is,
therefore, convex. Its Legendre transform is concave.
Beyond HF, the proof can be generalized as follows.

Consider a solution branch D(λ), and expand D(λ) up
to second order, assuming that the manifold of solutions
is suitably analytic,

D(λ + dλ) = D(λ) + dλ(dD/dλ) + (dλ2/2)(d2D/dλ2).
(11)
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Let λ receive a variation dλ in D(λ) alone, not in H. The
stationarity and minimality of Tr {HD} with respect to
any variation of D induce,

Tr {HdD/dλ} = 0,

Tr
{

Hd2D/dλ2
}

≥ 0. (12)

There is also a stationary property for the solution,
D(λ + dλ), but the Hamiltonian is now, H(λ) − Bdλ,
and the derivative of the state becomes, dD/dλ +
dλ(d2D/dλ2) +O(dλ2), and therefore,

0 = Tr
{

(H−Bdλ)
[

dD/dλ+ dλ(d2D/dλ2) +O(dλ2)
]}

.
(13)

The zeroth order of this, Eq. (13), reads, Tr {HdD/dλ}.
It vanishes, because of the first of Eqs. (12). The first
order, once divided by dλ, gives,

− Tr {BdD/dλ} = −Tr
{

Hd2D/dλ2
}

. (14)

The left-hand side of Eq. (14) is nothing but the the
second derivative, d2ε/dλ2. The right-hand side is semi-
negative-definite, because of the second of Eqs. (12).
Concavity of e(b) is again a property of such approxi-
mations with strict minimizations.
A landscape can be recovered, however, in a some-

what contrived way, if one accepts the crossing of var-
ious solution branches. Exact diagonalization normally
prevents level crossing, unless distinct quantum numbers
are considered, but approximations, usually nonlinear,
often generate multiple solutions corresponding to local
minima. Special solutions may also occur if, in special
cases, variational spaces have edges because the energy
gradient does not need to vanish: it just has to be or-
thogonal to the edge. We assume, without proof, that
such exceptional edge solutions occur either only for iso-
lated values of λ or, if they make true functions ε(λ), that
they retain enough analyticity for a concavity of the cor-
responding e(b). All told, various branches of e(b) may
intersect, and the pattern formed by their lowest parts
is, piecewise, concave. This is schematically illustrated
by Figs. 1 and 2. Fig. 1 shows the plots of three convex
parabolas, with equations, ε = −2−6λ−λ2, ε = −1−λ2,
and ε = −2 + 4λ − λ2, respectively. Then Fig. 2 shows,
from their Legendre transforms, the plots of e(b), namely
e = 7 + 3b + b2/4, e = −1 + b2/4, e = 2 − 2b+ b2/4, re-
spectively. Their lowest segments make a pattern with
interesting structures. The physical significance of the
spikes, however, is doubtful. A further theory for the
rounding of such singularities seems to be in demand.
A calculation of collective inertia parameters smoothly
through them does not seem to be obvious either. One
would have to face the contradiction with the “one valley
syndrome” of an exact solution. How could an approxi-
mation yield better physics than the exact solution?
One may argue that the zoo of stationary solutions

of such approximate methods is usually rich enough to
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FIG. 1: Toy example with three branches ε(λ), as discussed
in the text.
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FIG. 2: Legendre transforms, e(b), of the branches in Fig. 1.

accommodate inflections, where the curvature signature,
Tr

{

Hd2D/dλ2
}

, can change sign. “Phase transitions”,
a somewhat incorrect wording for a finite system, are
sometimes advocated to accept continuing branches of
energy minima into metastable branches. But this means
dropping the hypothesis of strict energy minimization.

For unbounded constraint operators, a further paradox
may occur, as seen from the following example. Assume
that the interaction v present in H has a strictly finite
range, namely vij = 0 if |ri − rj| > r0. Consider a set
of orbitals, ϕ1, . . . , ϕA, with wave functions ϕi(r, σ, τ) =
ci exp [−1/(r −Ri)− 1/(Si − r)] /r if Ri < r < Si, and
ϕi = 0 otherwise. Here r ≡ |r|, and ci is the normal-
ization coefficient. Given a large positive number L,
set S1 = R1 + L, . . . , SA = RA + L, so that such or-
bitals are very flat, and, therefore, carry a minuscule
kinetic energy, ∝ 1/L2, as small as wanted. Set, also,
R2 ≥ S1 + r0, . . . , RA ≥ SA−1 + r0, so that such orbitals
are so separated that, not only their orthogonality is triv-
ial, but also any antisymmetrized interaction matrix ele-
ment, 〈ϕiϕj |v|ϕkϕℓ〉, vanishes. The Slater determinant
χ made of such orbitals has an energy, 〈χ |H |χ〉, as close
to zero as wanted. Simultaneously, for a collective oper-
ator such as, Bν =

∑A

i=1
rνi , with, typically, ν ≥ 2, it is

trivial to show that ARν
1 < 〈χ |Bν |χ〉 < ASν

A. The situa-
tion is illustrated in Fig. 3 for a chosen set of parameters.
Now, given the ground state Ψ0 of H , with its eigenvalue
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FIG. 3: Example, with R1 = 20 fm, L = 23 fm and r0 = 2 fm,
see text, of orbitals ϕi for a Slater determinant χ that, if
mixed with the ground state, can leave the energy hardly
changed while allowing a very large collective moment. True
ground state nuclear densities, halos and tails included, oc-
cupy the first 10 fm at the very most.

E0, define an A-body state by the normalized mixture of
density matrices, Dmix = (|Ψ0〉 〈Ψ0 |+ω|χ〉 〈χ|) /(1 +ω),
where the positive number ω will eventually become in-
finitesimal. When L → +∞, the energy of this mix-
ture can be made as close to E0/(1 + ω) as wanted.
Simultaneously, if R1 → +∞, the expectation value,
bν ≡ Tr {BνDmix}, of the collective operator diverges
at least as fast as ωARν

1/(1 + ω). Maintain constant the
product, ωR1, and the ratio, L/R1, while R1 grows to in-
finity. It is clear that the limit of the energy is E0, while
bν can grow arbitrarily, like ∝ Rν−1

1
at least. This makes

the right-hand side of the energy surface, e(bν), flat.
The paradox still holds with interactions v that do not

strictly vanish beyond r0. For any tail of v, the separa-
tions, R2 − S1, . . . , RA − SA−1 can be adjusted to make
the matrix elements, 〈ϕiϕj |v|ϕkϕℓ〉, as small as wanted.
For traditional nuclear multipole operators, a spherical

harmonic multiplies the radial factor, rν . We insert the
same harmonic in the ϕ’s to extend the paradox; an arbi-
trary value of a multipole is compatible with the ground
state energy. A choice of collective operators that are
bounded seems to be mandatory if the concept of a non-
flat landscape for a collective energy has to be salvaged.
Even under such a precaution, this work shows that

concavity, piecewise at least, is a major property of any
energy surface obtained by a strict minimization of the
energy under constraint(s). If an energy landscape with
“mountains” and “saddles” is needed, this concavity con-
tradicts the intuition that energy transits through local
minima. The success of collective models that use a non
trivial landscape is too strong to be rejected as physically
and/or mathematically unsound, but its validation must
now be searched through other methods such as, likely,

resonating group methods [5], generator coordinate ones
[6], Born-Oppenheimer approximations, influence func-
tionals [7], deconvolutions of wave packets in collective
coordinate spaces [8], etc. Except for anharmonic vibra-
tions, where one valley is sufficient, one might have to
accept that metastability may be as important as en-
ergy minimization. Or could it happen that collective
operators have to be λ-dependent, in order to convert
metastable branches for constant operators into strict
minimization branches for λ-dependent ones? Since fluc-
tuations are important at “phase transitions”, combina-
tions of the form, K = H−λB−f(λ)B2, with at first very
simple forms of f(λ), deserve some attention. Such oper-
ators K govern both a constraint and its fluctuation, but
obviously differ from a double constraint form, H = H −
λ1B − λ2B

2, with two independent parameters, λ1, λ2.
A one-dimensional path with non trivial structures, be-
cause of an additional term, −d2f/dλ2

〈

(B +B2df/dλ)
〉

,
in the second derivative, d2ε/dλ2, might be induced by K
inside that more trivial two-dimensional landscape corre-
sponding to H. It must be kept in mind that H is often
not very well suited to ensure a localisation of B’s, a
necessary condition for the exploration of an energy sur-
face parametrized by b’s. A review of those landscapes
obtained by constrained Hartree-Fock and/or Hartree-
Bogoliubov, whether at zero or finite temperature, is in
order, if only to analyze the role of fluctuations and also
verify whether edges of variational spaces, and additional
solutions, trapped by such edges, might exist.
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