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Abstract

Exact solvability of brane equations is studied, and a new U(1)×
U(1)× . . . U(1) invariant anzats for the solution of p-brane equations
in D = (2p+1)-dimensional Minkowski space is proposed. The reduc-
tion of the p-brane Hamiltonian to the Hamiltonian of p-dimensional
relativistic anharmonic oscillator with the monomial potential of the
degree equal to 2p is revealed. For the case of degenerate p-torus
with equal radii it is shown that the p-brane solutions are expressed
in terms of elliptic (p = 2) or hyperelliptic (p > 2) functions.

1 Introduction

Membranes and p-branes play an important role in M/string theory [1], and
their quantization is one of current hot problems. Its solution is complicated
by non-linearity of the classical brane equations in contrast to the string
(p=1) case [2]. The question of the membrane (p=2) and p-brane dynamics
and its integrability attracts much attention (see e.g. [3-15] , etc.) One of
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the ways to answer the question lies in study of various classical solutions
of brane equations. However, not so much is known about such solutions.
Studying this problem Hoppe in [16] proposed the U(1) invariant anzats for
closed p-branes and reformulated the membrane equations in D=5 into the
system of 2-dim non-linear equations. The elliptic solution of these equations,
describing a family of closed contracting 2d tori together with the solution
corresponding to a spinning 2d torus were found in [17] as an example of time-
dependent particular solutions. The exact solvability of the static equations
of U(1) invariant membranes in D = (2N +1)-dimensional Minkowski space
was revealed in [17], and their general solution for anyN > 1 was constructed.
A geometric approach to these invariant membranes in D=5 was developed
in [18], where their connection with a two-dimensional generalization of the
nonlinear Abel equation and with the pendulum equations was found.

Here we generalize this approach and propose a new anzats for the solu-
tions of p-branes evolving in D = (2p+1)-dimensional Minkowski space with
any integer p > 1. This rigidly fixed (D, p)-correlation between the space-
time and brane dimensions covers, in particular, interesting cases of globally
invariant 5-branes of M/string theory in D=11 space-time, membranes in
D=5 and 3-branes in D=7. The proposed anzats corresponds to closed com-
pact p-branes with the global rotational symmetry U(1) × U(1) × . . . U(1)
(with p multipliers) of their p-dimensional hypersurfaces Σp. These hyper-
surfaces turn out to be isomorphic to flat p-tori with zero curvatures. The
Hamiltonians and equations of invariant p-branes are constructed, and it is
shown that they describe p-dimensional anharmonic oscillators with the quar-
tic potential for membranes in D=5 and the monomial potential of the degree
2p for the p-brane in D=2p+1. A characteristic feature of these Hamiltonians
is the absence of the quadratic terms which are contained in the Hamiltonian
of the harmonic oscillator 1. The p-brane equations are reformulated into the
equations for elastic relativistic media with the symmetric stress tensor cor-
responding to isotropic pressure. For the case of degenerate p-torus with
all equal radii it is found that the solutions of the corresponding nonlinear
equations are expressed in terms of elliptic cosine for p = 2 or hyperelliptic
functions for higher p > 2.

1Usually the notion of anharmonic oscillator is used in the case when the quartic and
higher terms in the potential energy are small in comparison with its quadratic terms. Here
we use this term despite the absence of the quadratic term in the p-brane Hamiltonians
and do not assume the smallness of the higher monomials.
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2 P-brane dynamics for any (D, p)

The Dirac action for a p-brane without boundaries is defined by the integral
in the dimensionless world-volume parameters ξα (α = 0, . . . , p) 2

S = T

∫

√

|G|dp+1ξ,

where G is the determinant of the induced metric Gαβ := ∂αxm∂βx
m and

T is the p-brane tension with the dimension L−(p+1), because xm has the
dimension of length. After splitting of the world xm = (x0, xi) = (t, ~x) and
internal coordinates ξα = (τ, σr), the Euler-Lagrange equations and p + 1
primary constraints generated by S take the form

∂τPm = −T∂r(
√

|G|Grα∂αx
m), Pm = T

√

|G|Gτβ∂βx
m, (1)

T̃r := Pm∂rxm ≈ 0, Ũ := PmPm − T 2| detGrs| ≈ 0, (2)

where Pm is the energy-momentum density. Then we use the orthogonal
gauge simplifying the metric Gαβ

Lτ = x0 ≡ t, Gτr = −L(~̇x · ∂r~x) = 0, (3)

grs := ∂r~x · ∂s~x, Gαβ =

(

L2(1− ~̇x
2
) 0

0 −grs

)

with ~̇x := ∂t~x = L−1∂τ~x. The solution of the constraint Ũ (2) takes the form

P0 =

√

~P2 + T 2|g|, g = det(grs) (4)

and becomes the Hamiltonian density H0 of the p-brane since Ṗ0 = 0 in view
of Eq. (1). Using the definition of P0 (1) and Gττ = 1/L2(1− ~̇x2) we find
the expression of P0 as a function of the p-brane velocity ~̇x

P0 := TL
√

|detG|Gττ = T

√

|g|
1− ~̇x2

. (5)

Taking into account this expression for P0 and the definition (1) one can

present ~P and its evolution equation (1) as

~P = P0~̇x, ~̇P = T 2∂r

( |g|
P0

grs∂s~x

)

. (6)

2Here the D-dimensional Minkowski space has the signature ηmn = (+,−, . . . ,−).
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Then Eqs. (6) yield the second-order PDE for ~x

~̈x =
T

P0

∂r

(

T

P0

|g|grs∂s~x
)

. (7)

These equations may be presented in the canonical Hamiltonian form

~̇x = {H0, ~x}, ~̇P = {H0, ~P}, {Pi(σ), xj(σ̃)} = δijδ
(2)(σr − σ̃r)

using the integrated Hamiltonian density (4) H0(= P0)

H0 =

∫

dpσ

√

~P2 + T 2|g|. (8)

The presence of square rout in (8) shows that the orthonormal gauge (3) has
a residual symmetry

t̃ = t, σ̃r = f r(σs) (9)

generated by the constraints T̃r reduced to the form

Tr := ~P∂r~x = 0 ⇔ ~̇x∂r~x = 0, (r = 1, 2, . , p). (10)

The freedom allows to put p additional time-independent conditions on ~x and
its space-like derivatives. The above description of brane dynamics is valid
for any space-time and brane world-volume dimensions (D, p) (with D > p).

3 U(1)× U(1)× . . . U(1) invariant p-branes

Here we consider p-branes evolving in D = (2p + 1)-dimensional Minkowski
space-time and assume that their shape is invariant under the direct product
U :=

∏p

a=1 Ua(1). Each of these U(1) symmetries is locally isomorphic to
one of the O(2) subgroups of the SO(2p, 1) group of rotations. Thus the
p-dimensional hypersurface Σp of U invariant p-brane has the group U as
its isometry with the p Killing vectors. This points to the existence of a
parametrization of the p-brane hypersurface Σ with the metric tensor grs
independent of σr. Our analysis will be restricted by the case of U invariant
p-branes without boundaries. The invariant p-branes with boundaries are
treated similarly taking into account additional boundary terms.
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To construct U invariant p-brane hypersurface we introduce the following
anzats for its vector ~x

~xT = (q1 cos θ1, q1 sin θ1, q2 cos θ2, q2 sin θ2, . . . , qp cos θp, qp sin θp), (11)

qa = qa(t), (a = 1, . . . , p); θr = θr(σ
s), (r, s = 1, . . . , p),

where T is the transposition of the column usually used for vector com-
ponents. This space vector lies in the 2p-dimensional Euclidean subspace
of (2p + 1)-dimensional Minkowski space and automatically satisfies the or-
thogonality constraints (10): ~̇x∂r~x = 0. The anzats (11) originates from
the realization of a 2p-dimensional vector ~x describing any p-brane, and is
defined by p pairs of its ”polar” coordinates

~xT (t, σr) = (q1 cos θ1, q1 sin θ1, . . . , qp cos θp, qp sin θp) (12)

with the coordinates qa, θa depending on all parameters (t, σ1, ..., σp) of the p-
brane world volume: qa = qa(t, σ

r), θa = θa(t, σ
r). Thus, the proposed anzats

(11) is obtained from the general representation (12) by excluding the time
dependence for all ”polar” angles θa = θa(σ

r) as well as the σr dependence
for all ”radial” coordinates ma = ma(t). As a result, at any fixed moment t
the vector ~xT (11) is produced from the ~x0

T = (q1, 0, q2, 0, . . . , qp, 0) by the
rotations of the diagonal subgroup U ∈ SO(2p), parametrized by the angles
θa and rotating the planes x1x2, x3x4 ,...,x2p−1x2p.

So, the anzats (11) describes one of the representatives of the family
of U invariant hypersurfaces embedded in the 2N dimensional Euclidean
space. Each of the members of the family has the U symmetry as its inherent
symmetry. The membrane world-volume metric Gαβ corresponding to (11)
has the form similar to (3) with the non-zero components

Gtt = 1− q̇2, q := (q1, .., qp), grs =

p
∑

a=1

q2aθa,rθa,s, (13)

where θs,r := ∂rθs and q̇ ≡ ∂tq and yields the following interval ds2 on Σ

ds22p+1 = (1− q̇2)−
p
∑

a=1

q2a(t)dθadθa (14)

independent of σr. We find that the change of σr by the new parameters
θa(σ

r) of Σp makes the transformed metric independent of σr. The above
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mentioned Killing vectors on Σ take the form of the derivatives ∂
∂θa

in the θa
parametrization. All that shows that U invariant hypersurface (11) has zero
curvature and is isomorphic to a flat p-dimensional torus S1 × S1 × . . . S1

(with p cirles S1) at any fixed moment of time t.

The canonical momentum components πa = ∂L
∂q̇a

= ~P ∂~̇x
∂q̇a

, (a = 1, 2, .., p),

π := (π1, ..., πp) conjugate to the coordinates q (11) may be presented in the
explicit form as

π = P0q̇, P0 =

√

|g|
1− q̇2

, (15)

after using (6) and the relations

~x2 = q2, ~̇x2 = q̇2, g = det(

p
∑

a=1

q2aθa,rθa,s). (16)

Then the Hamiltonian density (4) in the (q,π) phase space takes the form

H0 = P0 =
√

π
2 + T 2|g|, Ṗ0 = 0 (17)

and yields the following representation for P0 through the velocities q̇

P0 = T

√

|g|
1− q̇2

. (18)

The corresponding Hamiltonian equations of motion are transformed in Eqs.

q̇ = {H0,q} =
1

P0

π, π̇ = {H0,π}, (19)

where the non-zero canonical Poisson bracket and the Hamiltonian are de-
fined by

{πa, qb} = δab, H0 =

∫

dpσ
√

π
2 + T 2|g|. (20)

In the next section we study the equations of motion for the q coordinates.

4 Equations of U invariant p-branes

To simplify the equations of motion of U invariant p-brane we can simplify
the representation (11) for its q coordinates. This can be done by fixing the
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residual gauge symmetry (9) with the help of the conditions: θa = δarσ
r 3

θ1(σ
r) = σ1, θ2(σ

r) = σ2, . . . , θp(σ
r) = σp. (21)

In the gauge (21) the anzats (11) and grs (13) are expressed as follows

~xT (t) = (q1 cosσ
1, q1 sin σ

1, . . . , qp cosσ
p, qp sin σ

p), (22)

grs(t) = q2r(t)δrs, g = (q1q2...qp)
2 (23)

with the diagonalized metric grs(t) depending on only the time t. In the
gauge (21) the interval (14) and the inverse metric tensor grs take the form

ds2 =

p
∑

r=1

q2r(t)(dσ
r)2, grs(t) =

1

q2r
δrs. (24)

This gauge clarifies the physical sense of the coordinates q(t) = (q1, q2, . . . , qp)
as the time dependent radii R(t) = (R1, R2, . . . , Rp) of the flat hypertorus
Σ. Moreover, in the gauge (21) the Hamiltonian density H0 becomes inde-
pendent of the hypertorus parameters σr and reduces to a constant C

H0 = P0 =

√

√

√

√

π
2 + T 2

p
∏

r=1

q2r = C, Ṗ0 = 0,
∂

∂σr
P0 = 0. (25)

This property yields the condition for the initial data generated by the rep-
resentation (18)

P0 = C → T

√

|g|
1− q̇2

≡ T

√

(q1q2 . . . qp)2

1− q̇2
= C. (26)

Then Eqs. (6) for the vector ~x are simplified to the form

~̈x− (
T

C
)2ggrs∂rs~x = 0. (27)

Taking into account the relation

ggrs =
δrs
q2r

p
∏

t=1

q2t , (28)

3 To cover the case of p-brane with windings one can fix the gauge conditions as
θa = naδarσ

r, where (n1, n2, ..., np) are the integer numbers corresponding to the winding
numbers on the circles 0 ≤ σr ≤ 2π parametrized by σr.
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following from (23), we present the system (27), equivalent to the Hamilto-
nian Eqs. (19), in terms of the q components

q̈r + (
T

C
)2(q1 . . . qr−1qr+1 . . . qp)

2qr = 0, r = (1, 2, . . . , p). (29)

Multiplication of the r-th equation of the system (29) by qr and subsequent
summing in r results in the first integral of (29)

q̇2 + (
T

C
)2(q1q2...qp)

2 = c (30)

which coincides with the initial data (26) if the integration constant c = 1.
It is easily seen that Eqs. (29) may be present in a condenced form as

Cq̈ = −∂V

∂q
, (31)

where the elastic energy density V (q) turns out to be proportional to the
determinant g of the U invariant hypersurface of p-brane

V (q) :=
T 2

2C
g ≡ T 2

2C
(q1...qp)

2. (32)

Below we shall use this representation to explain the physics described
by the U(1)× U(1)× . . . U(1)(:≡ U) invariant p-branes.

5 U invariant p-branes and p-dimensional an-

harmonic oscillators

To clarify the physical sense of Eqs. (31) let us remind the general equations
of motion of elastic non relativistic media [19] with the mass density ρ

ρüi =
∂σik

∂xk

, (33)

where üi and σik are the media acceleration and stress tensor, respectively.
Then we observe that Eqs. (31) have a form of relativistic generalization of
Eqs. (33)

Cq̈r = − T 2

2C
δrs

∂g

∂qs
(34)
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with the symmetric stress tensor σrs given by

σrs := −pδrs, p :=
T 2

2C
g ≡ T 2

2C

p
∏

s=1

q2s , r = (1, 2, . . . , p). (35)

The representation (35) shows that p is an isotropic pressure per unit area
of its p-brane hypersurface, and C is a relativistic generalization of the mass
density ρ in accordance with (18). The pressure p is created by the internal
forces Fr

Fr(t) := −∂V

∂qr
≡ −T 2

C
(q1 . . . qr−1qr+1 . . . qp)

2qr (36)

associated with the p-brane elastic potential V (32).
It is instructive to note that the discussed equations may be generated

by a Hamiltonian H free from the square root present in H0 (20). Such a
possibility is a consequence of our fixing the residual gauge symmetry that
reduces P0 to the constant C. Then C can be used to write the square root
free Hamiltonian H accompanied with the standard PB’s

H :=

∫

dpσH, H =
1

2C
(π2 + T 2

p
∏

s=1

q2s ), (37)

{πa, qb} = δab, {qa, qb} = 0, {πa, πb} = 0.

The Hamiltonian (37) and equations (29) that it generates describe p-
dimensional anharmonic oscillators for every p > 1, but without the quadratic
terms typical of harmonic oscillators. These Hamiltonians contain the quartic
(for p=2) potential energy and higher degree monomials in the componets of
q for p > 2. A characteristic feature of the non-linear system (29) is that the
r-th coordinate qr under the force Fr evolves with the cyclic ”frequency” ωr

proportional to the products of the remaining coordinates at any moment t0

ωr(t) =
T

C
|q1 . . . qr−1qr+1 . . . qp|, r = (1, 2, . . . , p). (38)

as it follows from (29). These frequences ωr can not be infinitely large because
of the initial data constraint (30) with c = 0

√

1− q̇2 =
T

C
|q1q2...qp| (39)
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Taking into account the condition (39) one can transform (38) to the relations

ωr(t) =

√

1− q̇2

|qr|
(40)

which shows finiteness of ωr(t. On the other hand if ωr(t) goes to zero
then |q̇| → 1 which means that the p-brane velocity goes to the velocity of
light. This limit corresponds to the case of tensionless p-branes [9, 11], i.e.
the brane tension T = 0, as it follows from (40) or, equivalently from the
demand of P0 (18) finiteness. In the limit T = 0 the nonlinear system (29)
reduces to the equations of p massless particles

T = 0 : ⇒ q̈ = 0, |q̇| = 1. (41)

In the general case the system (29) is rather complicate because of the
monomial character of the interaction potential V (37). However, there is a
special solvable case that we discuss below.

6 Elliptic and hyperelliptic solutions

In the degenerate case characterized by the coincidence of all components
q1 = q2 = ... = qp ≡ q the system (29) reduces to the following nonlinear
differential equation

q̈ + (
T

C
)2q(2p−1) = 0 (42)

equivalent to the initial data constraint (39) for the single function q(t)

pq̇2 + (
T

C
)2q2p = 1. (43)

After the change of q by the new variable y = Ω
1

p

√
pq, and the introduction

of a dependent frequency Ω := T
C
p−

p

2 , equation (43) takes the form

(
dy

dt̃
)2 =

1

2
(1− yp)(1 + yp), (44)

where a new variable t̃ :=
√
2Ω

1

p t is used.
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In the membrane case (p = 2) Eq. (44) coincides with the equation
defining the Jacobi elliptic cosine cn(x; k)

(
dy

dx
)2 = (1− y2)(1− k2 + k2y2), (45)

if the elliptic modulus k = 1√
2
. Thus, y(t) = cn(

√
2ωt; 1√

2
) with 2ω = T/C.

Using the relation q ≡ y/
√
2ω we obtain the elliptic cosine solution for the

desired coordinate q(t)

q(t) =
1√
2ω

cn(
√
2ω(t + t0);

1√
2
) ≡

√

C

T
cn(

√

T

C
(t+ t0);

1√
2
) (46)

that is similar to the elliptic solution for the U(1) invariant membrane earlier
obtained in [17]. If the initial data are q̇(t0) > 0 then the solution (46)
describes an expanding torus which at some point reaches the maximal size

qmax =
√

C
T

and then shrinks to a point after a finite time K(1/
√
2)
√

C
T

(where K(1/
√
2) = 1, 8451 is the quarter period of the elliptic cosine).

The explicit equation of surface Σ2(t) of the contracting torus (46) in
D = 5 is

x2
1 + x2

2 + x2
3 + x2

4 = 4
C

T
cn

(

√

T

C
(t+ t0),

1√
2

)2

, x1x4 = x2x3.

For the case p > 2 integration of Eq. (44) defines the implicit dependence
of q on time

t̃ = ±
√
2

∫

dy
√

1− y2p
+ const. (47)

The integral (47) is an hyperelliptic integral, thus the general solution of Eq.
(43) is expressed in terms of hyperelliptic functions which are well known
generalizations of elliptic functions. So, the study of the degenerate p-torus
with the coinciding radii reveals connection of the p-brane equations with
hyperelliptic curves.

7 Summary

A new anzats describing a set of closed p-brane hypersurfaces Σp immersed
in the D = (2p + 1)-dimensional Minkowski spaces and invariant under
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U(1) × U(1) × . . . U(1), which is a subgroup of the rotational symmetry
SO(2p), is studied. It is shown that each of the compact hypersurfaces
Σp is isomorphic to a flat p-torus with zero curvature immersed into the
(2p + 1)-dimensional Minkowski space. The Hamiltonians and equations of
these toroidal p-branes are derived. It is shown that they coincide with the
Hamiltonian and equations of p-dimensional relativistic anharmonic oscilla-
tor with the monomial potential of the degree 2p and without the quadratic
terms. The p-brane equations are presented as the equations of an elastic
relativistic media subjected to isotropic pressure dependent of time. It is
found that the solutions of the equations of degenerate p-torus with all coin-
ciding radii are given by elliptic cosine (for p=2) and hyperelliptic functions
for higher p > 2. The obtained results shed a new light on the characteristic
nonlinearities associated with the p-brane dynamics and, in particular, with
the 5-branes of 11-dimensional M/string theory.

The considered anzats may be generalized to the case of curved spaces
for obtaining new information on AdS/CFT correspondence.
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