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MODEL-INDEPENDENT BOUNDS FOR OPTION PRICES:
A MASS TRANSPORT APPROACH

MATHIAS BEIGLBOCK, PIERRE HENRY-LABORIERE, AND FRIEDRICH PENKNER

AsstrAcT. In this paper we investigate model-independent boundsxXotic options written on a risky asset
using infinite-dimensional linear programming methods.

Using arguments from the theory of Monge-Kantorovich maassport we establish a dual version of the
problem that has a natural financial interpretation in teofremi-static hedging.

1. INTRODUCTION

Since the introduction of the Black-Scholes paradigm, shadternative models which allow to capture
the risk of exotic options have emerged: local volatilitydets, stochastic volatility models, jumpfidision
models, mixed local stochastic volatility models. Thesalals depend on various parameters which can
be calibrated more or less accurately to market prices oaidigptions (such as vanilla options). This
calibration procedure does not uniquely set the dynamiderefard prices which are only required to be
(local) martingales according to the no-arbitrage franmdwdhis could lead to a wide range of prices of a
given exotic option when evaluated usingfdient models calibrated to the same market data.

In practice, it would be interesting to know lower and uppeutds for exotic options produced by
models calibrated to the same market data, and therefdnesimiilar marginals. If bounds are tight enough,
they would be used to detect arbitrage in market prices,igeovthese bounds have an interpretation as
investment strategies. This problem has already beerestindthe case of exotic options written on multi-
assets $1,...,St) observed at the same tinie [BP0Z2, CDDVO08, HLW05a, HLWO05h, LWQ05, [WO04].
Within the class of models with fixed margin#lsaw(s% ,...,Law(S."r)) atT, the search for lowgupper
bounds involves infinite-dimensional linear programmssyies. Analytical expressions have been obtained
in the case of basket optioris [LWQ05, LWO04]. These correspottide determination of optimal copulas.

Here we focus on discrete multi-period models. This problehich has not been extensively considered
in the literature as far as we know (a notable exception isQBI} is much more involved as we have to
impose that the asset pri& is a discrete time martingﬂleThis additional constraint is more restrictive
and therefore allows in principle to obtain tighter bounds.

The problem of determining the interval of consistent @ioéa given exotic option can be cast as a
(primal) infinite-dimensional linear programming problevile propose a dual problem that has a practically
relevant interpretation in terms of trading strategies e that there is no duality gap under rather mild
regularity assumptions.

Setting. In the following, we fix an exotic option depending only on tsdue of a single ass& at discrete
timest; < ... < ty and denote byp(S4,...,Sy) its paydt. In the no-arbitrage framework, the standard
approach is to postulate a model, that is, a probability omeg3 onR" under which the coordinate process
(Si)in:]_

Si:R" >R, Si(s,...,s)=S,i=1,...,n,

Key words and phrasesModel-independent pricing, Monge-Kantorovich transgodblem, option arbitrage.
IFor the sake of simplicity, we assume zero interest rate anzhsliyield dividends. This assumption can be relaxed by consid-
ering the proces$ introduced in[[HLO9] (see equation 14) which has the prgptrbe a local martingale.
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is required to be a (discrete) martingale in its own filtratid he fair value is then given as the expectation
of the paydf

EQ{<D]=Ln®(&,...,&)dQ&,...,&).

Additionally, we impose that our model is calibrated to atommum of call options with payfis @; x (Si) =
(Si - K)*,K € R at each datg and price

@ Ol K) = Bl = | (5= K). dlLavs (9

Plainly (1) is tantamount to prescribing probability me@su,, . .., u, on the real lin@ so that theone
dimensional marginalsef Q satisfy

Q' =Laws, =y foralli=1,....n.

Primal formulation. For further reference, we denote B(u, . . ., un) the set of all martingale measures
Q on (the pathspac®" having marginal®?* = ua, ..., Q" = un,. Equivalently, we hav€® e M(us, . . ., un)
if and only if Eg[SilS1,...,Si-1] = Si-p fori = 2,...,nandEg[®ik] = C(t,K) for all K € R and
i=1...,n

Following the tradition customary in the optimal transpiterature we concentrate on the loviiyound
and consider thprimal problem

) P = inf (Eq[®] : Q@ € Mu, .. .. un)}.

Dual formulation. The dual formulation corresponds to the constructionsdmi-static subhedging strat-
egyconsisting of the sum of a static vanilla portfolio and a aslirategy. More precisely, we are interested
in paydts of the form

n n-1
3) Ppap(St - S) = D U(S) + D Af(st ., )(Si1— ) Si.. S ER,

i=1 =1
where the functions; : R — R arey;-integrable{ = 1,...,n) and the functiong; : RJ — R are assumed
to be bounded measurable<£ 1, ..., (n—1)).

If these functions lead to a strategy which is subhedginpérsense

@ > Yu).a)

we have for every pricing measues M(us, . . ., un) the obvious inequality

n

4) Bol®] > Bg[Puy ] = Bo| D w(S)] = ) Eylul.
i i=1

i=1
This leads us to consider tlgeial problem

n
(5) D= sup{ Z E,lui]: 3A1,..., A1 St Pu).a) < (I)};
i=1

which, by [4), satisfies
(6) P> D.

2The cumulative distribution function @f; can be read b the call prices througl; (K) = lim,jo 1/[C(ti, K — &) — C(ti, K)] for
i=1..., n.

From a financial perspective it doesn’t make much sense wid@nmarginals which give mass to the negative half-lineweler,
as this has nofiect to our arguments, we prefer not to exclude this case.

3Upper bounds can be obtained similarly by replacingvith —®. However, we point out that the assumptions in our Duality
Theorentl are sensible to this sign change and seem ledgiagti§one is interested in obtaining a tight upper bound.
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Semi-static subhedging. The dual formulation corresponds to the construction ofai-static subhedging
portfolio consisting in static vanilla optiong(S;) and investments in the risky asset according to the self-
financing trading strategiAi(Ss, . . ., Si))i"z’ll.

We note the financial interpretation of inequalify (6): sop@ somebodyfters the optionb at a price
p < D. Then there exista(), (Aj) with ¥(y) ;) < ® with price 3,1 E,, [u] strictly larger thanp. Buying
® and going short ity (), the arbitrage can be locked in.

The crucial question is of course ifl (6) is sharp, i.e. if gvgption priced belowP allows for an arbitrage
by means of semi-static subhedging. We show that this isa¢ke ander relatively mild assumptions.

Main result.

Theorem 1. Assume thats, ..., u, are Borel probability measures dR so that M(ug, .. ., un) is non-
empty. Letd : R" — (o0, 0] be a lower semi-continuous function so that

(7) O(sy, ..., ) = —K-(1+]st| +... +snl)

on R" for some constant K. Then there is no duality gap, i.e- . Moreover, the primal vallfep is
attained, i.e. there exists a martingale measre M(u, . . ., 1n) such that P= Eq[®].

Our approach to this result is based on the duality theoryptifr@al transport which is briefly introduced
in Section 2; the actual proof will be given in Section 3 witle thelp of the Min-Max Theorem of decision
theory.

We conclude this introductory section by a short discussfdhe content of Theorefd 1.

The assumptiotM(uy, . .., un) # 0 excludes the degenerate case in which no calibrated madeim
exists. For the existence of a martingale measure havinginasu,, . . ., u, it is necessary and fiicient
that these measures possess the same finite first momentsegabe in theonvex orderi.e.E,, ¢ < ... <
E,,¢ for each convex functiost : R — R (cf. [StrGEL])E

Having financial applications in mind, it is worth noting tHin the setting of Theoreiid 1) the value
D of the dual problem remains unchanged if a smaller set ofeudihg strategie¥ () s is used. Itis
suficient to consider functions,, . . ., uy which are linear combinations of finitely many call optioptué
one position in the bond resp. the stock); at the same Aime ., A,_1 can be taken to be continuous and
bounded.

Condition [T) could be somewhat relaxed. For instance itificent to demand that the functi@his
bounded from below by the sum of integrable functions. Havew this case it is necessary to allow for
dual strategies that use European options beyond callrgpéind we will not pursue this further.

We conclude this introductory section by noting thatigaperbound for the price of the optio@® can
be given means afemi-static (super)hedgingpplying Theoreni 1l to the function® we obtain that this
bound is sharp:

Corollary 1.1. Assume thats, ..., un are Borel probability measures di so thatM(uy, . . ., un) IS non-
empty. Letd : R" — [o0, o0) be an upper semi-continuous function so that

(8) O(sy,.... ) < K- (L+[st]+... +sal)
onR" for some constant K. Then there is no duality gap

n
sup{EQd) 1 Qe M(ua, . ..,,un)} = inf{ZEﬂi[ui] C3AL LA SE Py ) 2 (D}.
i=1

The supremum is obtained, i.e. there exists a maximizingimgate measure.

“The dual supremum is in general not attained, cf. Exafiiple 4.2
5In more financial terms this means tiit, K) is increasing irt for each fixedK € R.
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2. OpTIMAL TRANSPORT

In the usual theory of Monge-Kantorovich optimal trans[ﬂ)mnhe considers two probability spaces
(X1, 1), (X2, u2) and the problemis to find a “cheap” way of transportiado u,. Following Kantorovich, a
transport plan is formalized as probability measumn X; x X, which hasX;-marginalus andX;-marginal
H2-
We will come back to the two dimensional case in Section 4veefor now we turn to themultidi-
mensional versionf the transport problem which will be the main tool in our gfof Theorenill. Sub-
sequently we consider probability measugs. . ., u, on the real ling which have finite first moments.
The setll(us, ..., un) Of transport plansconsists of all Borel probability measures Bh with marginals
Ui, ..., un. A cost functionis a measurable functioh : R" — (—o0, co] which is bounded from below in
the sense that there exjgtintegrable functionsij, i = 1,...,nin so that

9) O>U®...0 Uy,

whereu; & ... ® Un(Xg, ..., Xy) := U1(X1) + ... + Un(X,). Given a cost functio® and a transport plam the
cost functionals defined as

(10) (@) = [, Ddr.

Note that this integral is well defined (assuming possibly ¥alue+c0) by (3). Theprimal Monge-
Kantorovich problenis then to minimizd,(®) over the set of all transport planse T1(ua, . . ., ).

Givenyi-integrable functions;, i = 1, ..., n, such that

(12) O>U ®...0 Uy,

we have for every transport plan

(12) [odr> [we...eudr= [udui+...+ [Urdup.

Thedual part of the Monge-Kantorovich problem is to maximize théntigide of [12) over a suitable class
of functions satisfying{11).

Starting already with Kantorovich, there has been a lorgdifresearch on the question in which setting
the optimal values of primal and dual problem agree, we refeéhe reader to [ViI09, page 88f] for an
account of the history of the problem. For our intended aayilbn, we need to restrict the dual maximizers
to functions in "

S= {u "Ro>R:u(X)=a+ bx+Zci(x—ki)+, a,b, ¢, ki eR},
i=1
i.e., we will employ the following Monge-Kantorovich dugltheorem.
Proposition 2.1. Let® : R" — (—o0, o0] be a lower semi-continuous function satisfying

(13) O(sy, ..., ) = —K-(1+]st| +... +snl)
onR" for some constant K and Igt, . . ., un be probability measures dhhaving finite first moments. Then

PMK((D)zinf{I,,(CD):nel‘[(pl,...,,un)}zsup{qui dui 1 UL @ ... & Uy < D, Uy € Sf = Dy (®).
i=1

We postpone the proof of Proposition2.1 to the Appendix amtinue with our discussion.

The set of transport plad®(u, . . ., 4n) carries a natural topological structure: itis a compantesx sub-
set of the space of finite (signed) Borel measures equipptdie weak topology induced by the bounded
continuous function€,(R"). (Compactness dfl(us, ..., un) is essentially a consequence of Prohorov's
theorem, for a proof we refer the readerito [Vil09, Lemma 3.4]

bsee [Vil03 [ Vil0g] for an extensive account on theory of ol transportation.
"Most of the basic results are equally true for polish proligtspaces Xi,u1), . . ., (Xn, un), but we don't need this generality
here.
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Subsequently we want to study the set of transport planshadrie also martingales. Therefore we will
assume from now on that the measuytes. ., u, are in convex order so thatl(us, . . ., un) is @ non-empty
subset ofiT(us, . .., un). It will be crucial for our purposes that als®l(us, . . ., un) is compact in the weak
topology. To establish this we need two auxiliary lemmas.

Lemma2.2. Letc: R" — R be continuous and assume that there exists a constant K lsath t
[e(X1, ..., X))l < KL+ [Xq] + ...+ [Xql)

forall x; € Xq,..., X, € Xn. Then the mapping

71»—>f cdr
Rl’l

Proof. Since we assume that, ..., u, have finite first momentsﬁ{n\[_aa]n cdr converges to 0 uniformly
in e (ug,...,un) asa — . |

is continuous ofl(uy, . . ., un).

Lemma 2.3. Letnr € IT(us, . .., un). Then the following are equivalent.

(1) Q € M(ua,....pn).

(2) For 2 < k < n and for every continuous bounded functioni<* — R we have

f(X1, ..o, Xie1) (X — Xk-1) drr(Xa, ..., %) = 0.
Rn

Proof. Plainly, (1) asserts that whenewsc R, k= 1,...,(n - 1) is Borel measurable, then

[ a0 %) ) = O
Using standard approximations techniques one obtainstisas equivalent to (2). m|

Proposition 2.4. The setM(us, . .., un) iIs compact in the weak topology.

Proof. Since M(us, . .., un) is contained in the compact s8tu,, . . ., un) it is sufficient to prove that it is
closed. By LemmB 213\ (us, . . ., un) is the intersection of the sets

(14) {neH(,ul,...,yn) , Ln f(X, ey XKk — %) A (Xe, .o vy Xn) = 0},

wherek = 1,...,n—-1 andf : R - R runs through all continuous bounded support functions. Byina
[2.2 the sets i (14) are closed. o

3. Proor oF THeorREM[]]

Our argument combines a Monge-Kantorovich duality thed(iarthe form of Proposition 211) with the
following Min-Max theorem of decision theory which we citere from [Str85, Theorem 45.8].

Theorem 2. Let K T be convex subsets of vector spacesegp. \4, where \ is locally convex and let
f:KxT >R If

(1) Kis compact,
(2) f(.,y)is continuous and convex on K for everg ¥,
(3) f(x .)isconcave on T for everyxK

then
supinf f(x,y) = inf supf(x,y).
yeT XeK xeK yeT
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Proof of Theorerhl1As we want to show that the subhedging portfolios can be fdromgng just call
options, we will restrict ourselves to dual candidaigs, ;) satisfyingu; € S,i = 1,...,n (andA; €
Co(R)),j=1,...,n=1).

If the assertion of Theoref 1 holds true for a functiband ifuy, ..., u, € S then the assertion carries
overtod’ = ® + u; @ ... ® U, Therefore we may assume without loss of generality dhatO.

Moreover we make the additional assumption that C,(R").

We will apply TheoremR to the compact convexKet I1(us, . .., un), the convex seE = Cp(R) X. .. X
Cp(R™1) of (n — 1)-tuples of continuous bounded functions®h j = 1, ..., (n— 1) and the function

n-1
(15) f(m, (A)) = f(l)(xl, ey Xn) — ZAJ’(XJ_, oo X)) (X = Xj) d(Xg, .. ., Xn).
=1

Clearly the assumptions of Theoréin 2 are satisfied, theraitytiof f(., (Aj)) on (s, ..., un) being a
consequence of Lemrha2.2.

We then find
n
@) 0> s Y [ad
¢i€S,Ai€Cb(Rj),‘P((,x,i)v(Aj)S(D =1
n
(17) = sup sup > f ¢i dui
Aj€Ch(R)) ¢ieS, XLy i) <SP, X0) = ZIT Aj (e X)) (Xj12-X) =1
n-1
18 = su inf fd)x,...,x - Ai(Xg, ..o Xi)(Xip1 — X)) d(Xq, ..., %
( ) A,-ecb(%i) eI, ptn) (1 n) ]z; J( 1 J)( j+1 J) (1 n)
n-1
(29) = inf sup f(l)(xl,...,xn)— Aij(Xg, o5 X)) (X412 — Xj) A (X, . . ., Xn)
7€ (U1,...oftn) AjeCo(R]) ]z:; J 1A+ J
20 = inf ffl)x,..., = P,
(20) sl (X1 Xn) = Pwm

where Propositiof 211 (with the cost functidrfx, ..., X)) — Z';j Aj(X1, ..., %)(Xj+1 — Xj)) was used to
show the equality between {17) and](18) and the equality & 4bhd [I9) is guaranteed by Theorgm 2.

Next assume thab : R" — [0, oo] is merely lower semi-continuous and pick a sequence of dedn
continuous function®; < ®, < ... such thatd = sup,, P«. In the following paragraph we will write
P(®), D(®), P(®y), resp.D(®k) to emphasize the dependence on the cost function. Forlepichk Qx €
(uy, .. ., un) So that

P(®y) > fq) dQk — 1/k.

Passing to a subsequence if necessary, we may assum@dhadiiverges weakly to sonf@e I(ua, . . ., n)-
Then

P(@)sf@dQ=mmf®mdQ=nLian(llmf‘Dmko)

@1 < lim (Iim f <1>dek)=|jiggo P(®0).

m—oo \k—oo
SinceP(®y) < P(®) it follows thatD(®) > D(dk) = P(®k) T P(D).

It remains to prove that the optimal value of the primal penbis attained. To establish this, we use the
lower semi-continuity oﬂ ®dronIl(u,...,un): ifasequence of measureg)in IT(u, . .., un) cOnverges



MODEL-INDEPENDENT BOUNDS FOR OPTION PRICES: A MASS TRANSRD APPROACH 7

weakly to a measure, then
(22) IiLninf D dny > f(l)dn.

We refer the reader to [Vil09, Lemma 4.3] for a proof of thisexsion.

If P = 0, the infimum is trivially attained, so assurRe< co and pick a sequenc@() in M(ua, . . ., tn)
such thatP = Iimkftl)ko. As M(ua, ..., un) is compact, Qx) converges to some measugealong a
subsequence ar@is a primal minimizer byl(Z22). m|

4. FURTHER OBSERVATIONS IN THE TWO DIMENSIONAL CASE.

As far as we know, martingale transport plans have not beariqarsly considered in the optimal trans-
port literature. In this section we collect some observetion the primal resp. dual optimization problem
which relate to know facts in the classic theory of optimahsport. There the main interest lies in the two
dimensional case, hence we focus on the case of just two nahrgeasures;, u, throughout this section.

For most applications of the theory of optimal transpors idliso customary to specify the cost function
to be the squared Euclidean distance,®éx,y) = (y — X)? in the present setting of probability measures
on the real line. We emphasize that this cost function hadgmificance if one is interested in transport
plans that are also martingaleﬁ‘z (y - X)? dQ(x, y) is constantly equal t% y2 dv(y) — & x? du(x) for every
martingale measui@ € M(uz, u2).

4.1. A c-convex approach. In the dual part of usual transport problem it igfgtes to maximize over all
pairs of functionsii, u,) whereu; is the conjugate atfi, with respect tad, i.e., satisfies

Us(X) = inf &(x.y) - Ua(y).

(We refer the reader t0 [Vil03, Section 2.4], [Vil09, Chapbéfor details on this topic.)

To establish an analogue result for the dual problem in atingeve introduce some notation. Given a
functiong : R — (—o0, o0], we write g° for its convex envelo& ForG:R? — R, letG® : R> — R be the
function satisfying

Go(x,.) = (G(x. .))*
for everyx € R. (It is straight forward to prove th&® is Borel measurable resp. lower semi-continuous
wheneveiG is.)

Proposition 4.1. Let® : R? — (—co, 0] be a lower semi-continuous function such thék, y) > —K(1 +
X + VD), X,y € R and assume that there is soaes M(uz, 1) satisfyingftl)dQ < 0. Then

(23) P=  sup { [@-wrtxdu + [ wo) dﬂz()’)}-

U RSR, [ up] dup<oo

(In the course of the proof we will see that for every choicethe first integral in[(2B3) is well defined,
assuming possibly the valuex.)

Proof. We start to show that the primal valleis greater or equal than the right hand side[of (23). Let
Uy : R - R be ay-integrable function. FidxQ € M(uz, u2) satisfyingfd)dQ < oo and let Qy)xer be a
disintegration of) with respect toR, u). Using the abbreviationd{ — uy)(X, y) := ©(X, y) — uz(y), we obtain

(24) f@d@:f(d)—uz)dQ+fu2dp2

(25) > f (® - U2)°(x. ) dOx(Y) dua(¥) + f Uz
(26) > f (@ - U2)(x ) () + f Uz O,

8I.e.ge : R — R is the largest convex function smaller or equal tgen
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wheref(tl) — W)¥(%, y) dQx(y) = (@ — up)¥(x, X) holds due to Jensen’s inequality. This proves the first
inequality.

To establish the reverse inequality, we make a simple oberv Letx € R and a functiorg: R — R
be fixed. Suppose that foi € R there exists\ € R such that

up+A-(y—x <g(y)

for ally € R. Thenuy < g&(X).
Applying this forx € R to the functiory — g(y) = ®(x, y) — uz(y) we obtain

@7 sup{ (@ -9 dan9+ [ v}
Uz R R
(28) > SUp{ sup [ w9 due+ [ ua) dﬂz(Y)}
Uz | upi AU (X)+AX) (Y- X)<D(XY) - U2(Y)
(29) = sup {fl.hd/,ll + fUZ d/,tz} =D=P,
Ug,Up @ JA, kP“le'Z'A <®
where we tacitly assumed that the suprema are takenugietegrable functions; : R —» R,i = 1,2 and
thatA : R — R is bounded measurable. m]

A Hamilton-Jacobi-Bellman formulationMe conclude this subsection neuristicallyrewriting the dual
problem in terms of (viscosity) solutions of Hamilton-Jae8ellman equations. A similar Hamilton-Jacobi
formulation of the Kantorovich duality can be found lin [M80Proposition 5.48]. Let us consider the local
martingale
dSy = ot dW,

whereW is a scalar Brownian motion defined on a filtered sp&xe(, P) ando-. € A, the set off;-adapted
processes valued iR with finite L2(Q x [0, 1))-norm. Then we introduce the (singular) stochastic @nt
problem defined by

u(x,t) = (Lrg; EX[®(x, ST) — u(SYy, 1))

We have (see [Tou02, Section 2.4.3])
u(x, 0) = (® - u(-, 1))%(x, X).

So Equation[(23) can be written as
(30) P = sup{ [ 009+ [ un 1ty

4.2. The dual supremum is not necessarily attained. In the classic optimal transport problem, the op-
timal value of the dual problem is attained provided thatdbst function is bounded[([Kel84, Theorem
2.14]) or satisfies appropriate moment conditions ([AP08rérem 2.3]).

This is not the case in our present setting where the subsefuampld 4.2 shows that the dual supre-
mum [B) is not necessarily attained eveiis bounded ang, v are compactly supported. However, it may
be an interesting task for further research to finflisient conditions which guarantee dual attainment.

Example 4.2. Letu; = up = A | [0,1] and defined : R? — R by ®(x,y) = max(|x —y|,-1). Then
M(u1, p2) contains a single eleme@twhich is concentrated on the diagonal of [P [0, 1] and trivially is
optimal. Striving for a contradiction, we assume that thedistu,, u, andA which form a dual maximizer.
It follows that

u1(X) + Uz(y) + AX)(y - X) < —[x - yi
for all x,y € [0, 1] and that equality hold®-a.s. Thus

ur(X) + Uz(x) = 0
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for all x € | wherel C [0, 1] is a set of measure 1. Note that
J={xeR:x+n/melUJ0,1]°forallne Z me N}
satisfiesi(J) = 1 andJ + q = J for all rationalg. Forx € [0, 1] ands > O we have

(31) Ur(X) + Up(X = 6) — A(X)d < =6
(32) U1(X) + Uz(X + 6) + A(X) < 6.
Adding these inequalities, we obtain

(33) 2U3(X) + Up(X = &) + Up(X + 6) < —26.

Hence, if6 € Q* andxg, Xo + 6, Xo — 6 € I N [0, 1] then
Uz(Xo + 6) < 2Up(X0) — Ua(Xo — ) — 26.

Applying thisn times with¢§ = %] X=X+ 5m,1 = 1,...,nand adding the resulting inequalities we obtain
Up(X + Nz) < U2(X)] + Uz(X + 55:)| = NP 5
provided thanzt € [0, 1]. Note also that
C(¥) = liminf uy(x+ ) < 00
for 2-almost allx € R. (This holds true for any measurable function.) Consedyefor almost allx €
(0,1/2) N J there are infinitely manyn € N so that
Up(X + 1/2) = tp(X + 2) < [up(X)] + [Up(X + )] — NP < Jup(X)| + C(X) + 1 - 2.
As the right hand side can be made arbitrarily small, we agiethat,(X) = —co almost surely on [12, 1].
This yields the desired contradiction.

APPENDIX

As a special case df [Kel84, Theorem 2.14] we have the duadjtiation
n

Pumk (@) = inf{l(®) : 7 € T(ua, ..., un)} = sup{ Z fui dyi U ®...0uU, <O, U is;zi-integrablé
i=1

for every lower semi-continuous cost functién: R" — [0, o0]. The main task in the subsequent proof of
Propositio 2.1l is to show that the duality equation pesgtéione restricts to functions in the claSsn the
dual problem.

Proof of Theorerh 211As in the proof of Theorefl 1, it is flicient to prove the duality equation in the case
® > 0.

Given a bounded continuous functibrande > 0, then for every = 1, ..., nthere is somea € S such
thatf > u andf f —udy; < e. Therefore we may change the class of admissible functions$ to C,(R),
i.e. it sufices to prove

(34) Puk (@) = sup{zn:fui dyj - @...0euU <0,y € Cb(R)}.
i=1

We will first show this under the additional assumption tirat C;(R"). By [Kel84, Theorem 2.14] we
have that for each > 0 there exisp;-integrable functionsi, i = 1,...,n so that

PMK(d))—zn:fUi dui <7
=

andu; @ ... ® u, < ®@. Note that the latter inequality implies thay, . . ., u, are uniformly bounded since
is uniformly bounded from above.
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To replaceau; by a function inC, we consideH = ® — (u; @ ... ® u,) and define
(35) U1(xq) := inf RH(xl,...,xn)

X200 Xn€

for x; € R. We claim thatuj is (uniformly) continuous. Indeed, asis uniformly continuous, for every
& > 0 there exist$ > 0 so that whenevex, X' € R, |[x — X| < ¢, then

[H(X, X2, ..., Xn) = H(X', X2, ..., Xn)| = [D(X, X2, . .., Xn) — P(X, X2, ..., Xn)| < &.
Thus we obtain

wheneverx — x| < §. By definitiony; is also bounded from below and satisfigs>"u; as well as
hows...eou, <.
Iteratively replacing the functions, .. ., u, in the same fashion, we obtaln {34) in the cdse C;(R").

Using precisely the same argument as in the proof of Theblene Jobtain the duality relation in the
case of a general, lower semi-continuous functionR" — [0, oo].
mi
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