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Asymmetric random matrices: what do we need them for?
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1Institute of Nuclear Physics, Polish Academy of Sciences, PL–31-342 Kraków,
Poland

2Faculty of Mathematics and Natural Sciences, University of Rzeszów,
PL–35-310, Rzeszów, Poland

3Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.,

33 Arch. Makarios III Avenue, Nicosia 1065, Cyprus

Complex systems are typically represented by large ensembles of ob-
servations. Correlation matrices provide an efficient formal framework
to extract information from such multivariate ensembles and identify in
a quantifiable way patterns of activity that are reproducible with statis-
tically significant frequency compared to a reference chance probability,
usually provided by random matrices as fundamental reference. The char-
acter of the problem and especially the symmetries involved must guide
the choice of random matrices to be used for the definition of a baseline
reference. For standard correlation matrices this is the Wishart ensemble
of symmetric random matrices. The real world complexity however often
shows asymmetric information flows and therefore more general correlation
matrices are required to adequately capture the asymmetry. Here we first
summarize the relevant theoretical concepts. We then present some exam-
ples of human brain activity where asymmetric time-lagged correlations are
evident and hence highlight the need for further theoretical developments.

1. Complexity and matrices

One of the central concepts in contemporary science is complexity. In
qualitative terms this concept refers to diversity of forms, to emergence of
coherent patterns out of randomness and, at the same time, to an often ob-
served impressive ability of switching among such patterns. In most cases
approaching complex systems, either empirically or theoretically, is based
on analyzing large multivariate ensembles of parameters. Therefore, an effi-
cient formal frame to quantify various effects connected with complexity is
in terms of matrices [1]. Since complexity primarily involves chaos, or even
noise, the random matrix theory (RMT) [2, 3] provides an appropriate refer-
ence. The RMT results provide a reference for quantification of the generic
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properties of a system that can provide clues of the underlying structure
and its relation to chaotic or noisy nature of its dynamics. The system
components that correspond to statistically significant excursions from the
RMT distribution constitute the essence of complexity. These components
reflect a creative and thus also deterministic potential emerging from an
overwhelming noisy background in such systems [4]. Of great relevance in
this context are correlation matrices that represent multivariate empirical
observations or cases [5]. Up to now most of the practical implementations
of such matrices deals with the symmetric cases (symmetric correlation ma-
trices) which in the limit of purely random correlations corresponds to the
Wishart ensemble [6] with the corresponding eigenvalue distribution as rep-
resented by the Marc̆enko-Pastur formula [7]. Complexity in real world
systems often involves asymmetry in long-distance interactions and corre-
lations both in space and in time. For instance, the information flow takes
time, especially on the longer distances, which results in time-delayed cor-
relations. The first in the literature documented attempts to handle such
effects with the use of asymmetric correlation matrices deals with correla-
tions in the human brain [8] and in the financial markets [9, 10]. We present
below new analysis of brain activity that reveals subtle asymmetric effects
that identify the pressing need to extend the formalism of asymmetric ran-
dom matrices and point to the direction such research should follow.

2. Asymmetric correlation matrix

Standard correlation matrix analysis for a system with N degrees of free-
dom can straightforwardly be generalized to the case of two separate systems
Ω1,Ω2 with N degrees of freedom each. Let then the observable Xα account
for each of the degree of freedom α of the system Ω1 and the observable Yβ

for each of the degrees of freedom of the system Ω2. Correspondingly, let
{xα(ti)} and {yβ(ti)} denote the time series of the related measurements at
i = 1, ..., T . In order to allow a full generality, the time series representing
the system Ω2 can be considered shifted in time by an interval τ = m∆t
(m is an integer number) with respect to their Ω1 counterparts. One then
considers two data matrices:

Xα,i =
1

σα
(xα(ti) − x̄α) Yβ,i(τ) =

1

σβ
(yβ(ti + τ) − ȳβ), (1)

which can be used to form a general asymmetric correlation matrix

C(τ) =
1

T
X[Y(τ)]T. (2)

of the size N × N . Its diagonal matrix elements no longer have to equal
unity and thus TrC ≤ N . Determination of the corresponding eigenvalues
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and eigenvectors demands solving the τ -dependent secular equation:

C(τ)v(k)(τ) = λk(τ)v(k)(τ). (3)

In general the matrix C(τ) is asymmetric and thus the eigenvalues λk(τ)

and the expansion coefficients v
(k)
γ (τ) are complex. This matrix remains

however real therefore the eigenvalues and the expansion coefficients form
the complex conjugate pairs. The real part of the spectrum is related to
the symmetric component of the matrix C(τ) and the imaginary part of the
spectrum to its asymmetric component. Ordering of eigenvalues is deter-
mined by the condition: |λk| ≥ |λk+1|, with the supplementary condition
Imλk > Imλk+1 for a pair of the complex conjugate values.

3. Random matrix reference

A standard way to identify the real information content of the correlation
matrix is to test it against a null hypothesis of completely random correla-
tions characteristic for independent signals. The most appropriate ensemble
of random matrices that can serve as reference for the above asymmetric
correlation matrices is generated by products of two different rectangular
N × T matrices (counterparts of X i Y) with the Gaussian distribution of
elements. Up to now there exists no derivation of the analytically closed
formula describing distribution of eigenvalues as a function of Q = T/N for
such an ensemble. Some preliminary investigations in this direction [10] indi-
cate a characteristic enhanced density of eigenvalues along the real axis and
for the eigenvalues that are dispersed on the complex plane their ’cluster-
ing’ around the origin. This ’clustering’ gets however dissolved for N → ∞
and T → ∞ such that Q remains a constant. Similar effect of clustering
and its asymptotic disappearance is also observed [11] for the complex val-
ued correlation matrices. In the later case however no enhanced density
of eigenvalues along the real axis takes place. Temporarily thus, for suffi-
ciently large values of N and T parameters, the real asymmetric correlation
matrices as defined by Eq. 2 can be considered to have properties deviating
least from those of the orthogonal Ginibre ensemble (GinOE) of asymmet-
ric random matrices [12] for which the spectral distribution of eigenvalues
is known analytically. For this reason the Ginibre ensemble can be used as
a first approximation reference for the empirical matrices (2).

GinOE matrices G, being generalization of the GOE matrices, are de-
fined by the Gaussian distribution of elements:

p(G) = (2π)−N2/2 exp[−Tr(GGT)], (4)

where G is of the N × N dimension, and a variance of the distribution
σ2 = 1. Spectrum of eigenvalues of such matrices decomposes itself into
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N − L complex values and L real values where the expectation value of L
asymptotically behaves as [13]:

lim
N→∞

E(L) =

√

2N

π
. (5)

For finite values of N it can be approximated by:

E(L) = 1/2 +

√

2N

π

(

1 − 3

8N
− 3

128N2
+ O(N−3)

)

. (6)

The distribution of eigenvalues λ = λx + iλy on the complex plane is de-
scribed by the following expression [14, 15]:

ρG(λ) = ρcG(λ) + δ(λy) ρrG(λ), (7)

in which:

ρcG(λ) =
2|λy|√

2π

(

1 − erf(
√

2|λy|)
)

e2λ
2
y

∫ ∞

|λx|2
du e−u uN−2

Γ(N − 1)
, (8)

ρrG(λ) =
1√
2π

∫ ∞

|λx|2
du e−u uN−2

Γ(N − 1)
(9)

+
1√
2π

|λx|N−1 e−λ2
x
/2

∫ λx

0
du e−u2/2 uN−2

Γ(N − 1)
.

The function erf(x) in Eq. (8) denotes the Gaussian error function. In the
limit N → ∞ the above expression simplifies such that the λ values form
a uniform circle on the complex plane and a uniform interval on the real
axis [16, 17, 18]:

ρcG(λ) =
1

π
Θ(

√
N − |λ|), (10)

ρrG(λ) =
1√
2π

Θ(
√
N − |λx|), (11)

where Θ(·) denotes a Heaviside function.
One numerically generated example of the eigenvalue distribution of the

random matrix G with the structure defined by Eq. (2) is shown in Fig. 1
for N = 10 drawn from 106 samples. Both, the circular shape of this
distribution with its monotonically decreasing radial component ρG(r) [10]
as well as a strip of enhanced density along the real axis are consistent with
the Eqs. (8) and (10). The results obtained from the empirical correlation
matrix can be compared to such a GinOE ensemble after scaling λ 7→ λ/σ,
where σ denotes the mean standard deviation of the distribution of matrix
elements of C (if this distribution does not differ much from a Gaussian.
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Fig. 1. Theoretical eigenvalue distribution of 10×10 GinOE matrices in the complex

plane. (7). Darker regions correspond to higher eigenvalue density ρG(z).

4. Time-lagged correlations in the visual cortex

Information transfer within the brain is associated with weak electric
currents which generate an electric potential and magnetic field. When
such currents in many nearby neuronal cells act coherently, the potential
and fields grow large enough to be detected outside the skull. The cor-
responding techniques are known as Electroencephalography (EEG) and
Magnetoencephalography (MEG), respectively. MEG [19] is particularly
appropriate for studying the spatiotemporal patterns activity within the
brain, including high-frequency ones; MEG has the same temporal resolu-
tion as the more conventional EEG allowing monitoring of neuronal activity
down to the scale of 1 ms [19]. MEG and EEG are completely non-invasive
methods of measuring the distribution and time dependence of the electric
and magnetic fields outside the skull. Furthermore, the main advantage
of MEG over scalp-EEG is that the skull and the scalp are transparent to
the magnetic field and, therefore, an external measured magnetic field is
only minimally distorted by the resistivity profile between the generators
and sensors. In addition, the magnetic fields outside the skull are generated
predominantly by the currents tangential to the surface of the head. The
cortical currents are perpendicular to the surface of the cortex but almost
70% of the human cortex is folded into fissures which makes these cur-
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rents effectively tangential to the skull and, thus, accessible to MEG. The
above aspects of MEG make it particularly attractive for studying the high-
frequency spatiotemporal characteristics of the brain dynamics especially
with the modern helmet-shaped probes [20].

Here, we extend our previous asymmetric correlation matrix analysis [8]
of the time-lagged correlation between the left and right auditory cortices to
a more challenging case of processing complex visual stimuli. Specifically,
we present exemplary results from the analysis of MEG data recorded while
a subject performed a visual object recognition task. In the experiment 30
different images were used, for each one of 5 categories (horses, trucks, birds,
chairs, flowers). Each image was displayed for 0.5 s in front of a subject
wearing an MEG helmet. His task was to recognize the seen object and
select the proper name from a list presented to him a second later. During
the whole presentation the magnetic activity of the subject’s cortex was
recorded with 510 Hz frequency by a 148-channel MEG apparatus (more
technical details can be found in ref. [21]). Trials in which the displayed
object was incorrectly named were removed, so out of all the 150 trials
there were 140 trials left for further analysis.

Numerous Positron Emission Tomography (PET) and functional Mag-
netic Resonance Imaging (fMRI) studies have identified the relevant regions
of activation in similar experiments. Out of many such regions, for further
analysis we select three pairs of homologous areas in each hemisphere that
showed prominent activations in our experiment and corresponded to areas
identified by PET and fMRI. These are: posterior calcarine sulcus (PCS),
fusiform gyrus (FG) and the amygdaloid complex (AM). PCS is located in
the medial part of the occipital lobe and it takes a vital part in low-level
processing of visual stimuli. It comprises both V1 and V2 areas that are
the first cortical areas in the visual hierarchy. The FG, located between
the temporal and occipital lobes, is involved in processing and selectivity of
object images within specific categories. AM is an almond-shape structure
located in the medial temporal lobe which is known to be crucial in the
processing of emotions, especially fear, and in the recognition of emotional
expressions in human faces. The PCS and FG are expected to be strongly
involved in the processing of the stimuli used in the experiment; we expect
also that the activity in the PCS and FG to be statistically correlated in
each trial because the processing of stimuli requires exchange of information
between such specialized areas. In contrast the AM is not expected to be
particularly involved in the processing of the emotionally neutral objects
used in the experiment. We will nevertheless investigate the temporal cor-
relations in the activity from these regions of interest (ROIs) in the two
hemispheres to test whether or not the above expectations are confirmed.

In order to extract a record of activity of the selected regions, a rather
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Fig. 2. Exemplary single-trial signals analyzed in this work. The top row corre-

sponds to fusiform gyrus and the bottom row to posterior calcarine sulcus, while

the columns refer to the left and right hemispheres. Stimuli were presented from 0

to 500 ms. There is no evident stimulus-evoked activations of the regions.

sophisticated and time-demanding procedure known as Magnetic Field To-
mography (MFT) was applied [22, 23]. Output of this procedure were
N = 140 signals describing the total activity of the investigated regions
during single trials. For the purposes of the illustrative examples of this pa-
per we shall not distinguish between the categories presented in each trial
in order to have better statistics, so we will use all (140) available clean
trials. Each signal started 100 ms before the image presentation and ended
100 ms after the image had been switched off, therefore it covered 700 ms
(the signal’s length was T = 357 data points, implying Q = 2, 55). A few
exemplary signals are shown in Figure 2. After preparing the signals we
employed them to construct a family of τ -lagged correlation matrices of size
N × N . For a given value of τ from the range −50 ≤ τ ≤ 50, each signal
representing ROI1 was projected on each τ -lagged signal representing ROI2,
so the resulting matrices were asymmetric (Eq. (2)). We note that by con-
sidering the stimulus-locked time axis, we emphasize the activity evoked by
the stimulus and de-emphasize the spontaneous activity of the ROIs. The
matrices were then diagonalized and the complex eigenvalue spectra were
derived for each value of τ (τ > 0 denotes retarding of the second region
in a pair, while τ < 0 denotes the opposite). Figure 3 shows real part of
the τ -dependent largest eigenvalue λ1(τ) for four different pairs of ROIs.
Six pairs are unilateral (both the homologous pairs are considered in each
case): PCS-FG (a), PCS-AM (b), FG-AM (c), and the last two pairs shown
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are formed across the hemispheres: PCS(LH)-PCS(RH) and FG(LH)-FG(RH)

(d). As it is evident from Figure 3, λ1(τ) for both the homologous PCS-FG
pairs behaves distinctly from its counterpart for the other pairs. For the
PCS-FG pair a broad excursion above the threshold of ρrG(λ) = 0.01ρrG(0)
(dashed horizontal line) is observed for positive and negative lags up to 70
ms. The pattern is sharper around the peak that is very nearly at the zero-
lag origin for both the left and right hemispheres. This means that across
single trials the activity in OCS and FG ROIs is strongly correlated with
bi-directional flow of information in each hemisphere. The flow of informa-
tion is evenly distributed in each direction over the time range of latencies
considered (-100 to 600 ms from stimulus onset). It is noteworthy that
the correlations exceed the GinOE threshold (denoted by horizontal belts
in Figure, Q = 2.55) over a significant range of τ which can be explained
by contributions from a range of frequencies that include the low-frequency
oscillation observed in the signals (Figure 2). On the other hand, no such
prominent maximum is seen in other pairs of ROIs; they hardly exceed the
RMT threshold for PCS-AM and FG-AM. This suggests that during the
experiment AM had a drastically different pattern of activity not related to
the activation of the visual cortex (as expected). Yet another situation can
be found for the pairs of homologous regions (Figure 3(d)): there are values
of τ which seem to be statistically significant (especially for -70 ms < τ < 20
ms) but they are of a rather moderate magnitude. This result suggests that
the activity in each FG ROI is linked to that of the homologous FG ROI in
the other hemisphere, but the link is not as strong as that with the PCS on
the same side. In the context of Figure 3(b) and 3(c), a question emerges to
what extent the maximum values of λ1(τ) can be considered non-random if
they are placed near (slightly below or slightly above) the GinOE threshold.
It should be recalled from the previous section, however, that the GinOE
is not a fully relevant matrix ensemble for being a reference for the asym-
metric correlation matrices, so the thresholds used in Figure 3 might not be
exactly appropriate. This problem indicates the urgent need for developing
the exact analytic results for the asymmetric Wishart ensemble of random
matrices.

Figure 4 exhibits the exemplary full spectra of complex eigenvalues cor-
responding to the two pairs of regions (left hemisphere): PCS-FG (left col-
umn) and FG-AM (right column). In both cases we chose two characteristic
values of τ representing the maximum of λ1(τ) and a typical value related
to lack of significant correlations. A typical deviation from the GinOE case
is seen in all panels, where the eigenvalues have strikingly inhomogeneous
distribution tending to concentrate around the (0,0) point.

Our results raise another question, whether the activation of the ana-
lyzed ROIs is repeatable, i.e., whether the corresponding patterns of the
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horizontal belt denotes the asymptotic (N → ∞) eigenvalue zone for the GinOE

ensemble of random matrices (|λx| ≤
√
N), while horizontal dashed lines denote

value for which ρr
G

(λ) = 0.01ρr
G

(0) for N = 140. Statistically significant non-

random values of λ1(τ) are purely real.

stimulus-evoked activity are similar in different trials or they are variable.
This issue might be addressed owing to the fact that the same pattern of
activity in signals associated with different trials can produce correlations
of comparable strength no matter if one looks at the correlations between
the simultaneous signals or one looks at correlations between the signals
representing different trials (e.g., signal 12 from ROI1 and signal 35 from
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metric Wishart matrices whose spectra are radially inhomogeneous in contrast to

the GinOE matrices.

ROI2). If this is the case, we will obtain statistically similar distributions
of matrix elements on the diagonal (extracting the timecourses of each ROI
from the same trials) and off-diagonal (extracting the time courses of each
ROI from different trials). We note that this conclusion involves the implicit
assumption that the spontaneous activity differs in different ROIs, which is
close to reality. Figure 5 shows four exemplary distribution pairs for the di-
agonal and the off-diagonal elements calculated for four different ROI pairs.
For at least one of the cases in this Figure there is strong evidence that
these distributions differ significantly. In fact, for τ corresponding to the
maximum value of λ1(τ) in the left PCS-FG pair (top left panel) the typical
diagonal elements are much larger than the typical off-diagonal elements.
This indicates that simultaneous correlations are considerably stronger than
the cross-trial ones. It comes straightforward thus that the patterns of each
ROI activity may be different in consecutive trials. This can be partly ac-
counted for by the fact that the subject was presented with the images of
different objects which can also be processed differently by the ROIs. A
more detailed analysis is required where the correlation matrices are con-
structed separately within each category of objects. This, however, exceeds
the scope of the present work intended to be only an illustration of the
methods. The other examples in Figure 5 clearly support the random char-
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with complex (GinOE) λ1 (bottom left and right). In each case the distributions

were derived either from N diagonal or N(N − 1) off-diagonal elements, which

explains smoother shapes of the distributions for the latter.

acter of correlations in the FG-AM pair and in the PCS-FG pair outside
the correlation-related τ range (bottom panels) and suggests the existence
of small but possibly significant differences between the distributions for the
FG(L)-FG(R) pair (top right panel). Interpretation of the latter results is
similar to the above one related with the top left panel of Figure 5.

5. Summary

Need for a theory of non-Hermitian ensembles of random matrices with
complex eigenvalues has so far been identified in such diverse areas like
random networks [24], quantum chaos [25, 26], quantum scattering phe-
nomena [27] or quantum chromodynamics [28, 29, 30], among others. In
the present contribution, we offer another example where real but explicitly
asymmetric matrices emerge out of empirical multivariate data. The fur-
ther development of the theory for asymmetric correlation matrices therefore
seems to have many potential and significant applications. In principle any
really complex system is at least partly driven by time-lagged correlations
as the ones detected in the brain or in the financial markets. The use of the
Wishart type matrices for the derivation of reference baseline distributions is
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therefore limited. The necessary generalization of the theory is even more
subtle than for the complex non-Hermitian matrices. Here, even asymp-
totically, the distribution of eigenvalues on the complex plane, especially
at the edge where relevant departures from randomness in the empirical
correlation matrices may occur, depends on the ratio between the num-
ber of observations (degrees of freedom) and their length in time similarly
as the Marc̆enko-Pastur [7] distribution does for the ensembles of random
symmetric correlation matrices. Deriving its counterpart for the asymmet-
ric correlation matrices emerges as a necessary but demanding intellectual
challenge.
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