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Detection of correlations
∗

Ery Arias-Castro† Sébastien Bubeck‡ Gábor Lugosi§

Abstract

We consider the hypothesis testing problem of deciding whether an observed high-

dimensional normal vector has independent components or, alternatively, if it has a

small subset of correlated components. The correlated components may have a certain

combinatorial structure known to the statistician. We establish upper and lower bounds

for the Bayes risk in terms of the size of the correlated subset, the level of correlation,

and the structure of the class of possibly correlated sets. We show that some simple

tests have near-optimal performance in many settings, while the generalized likelihood

ratio test is suboptimal in some important cases.

Keywords: Sparse covariance matrix; minimax detection; Bayesian detection; scan statistic;
generalized likelihood ratio test.

1 Introduction

We consider the following statistical problem: Upon observing a high-dimensional vector, one
is interested in detecting the presence of a sparse, possibly structured, correlated subset of
components of the vector. Such problems emerge naturally in numerous scenarios including
signal processing, remote sensing, finance, image processing, etc.

1.1 Setting and notation

Here we investigate the possibilities and limitations in problems of detecting correlations in
a Gaussian framework. We may formulate this as a general hypothesis testing problem as
follows. An n-dimensional Gaussian vector X = (X1, . . . , Xn) is observed. Under the null
hypothesis H0, the vector X is standard normal, that is, with zero mean vector and identity
covariance matrix. To describe the alternative hypothesis H1, let C be a class of subsets of
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{1, . . . , n}, each of size k, indexing the possible “contaminated” components. One wishes to
test whether there exists an S ∈ C such that

Cov(Xi, Xj) =







1 i = j
ρ i 6= j, with i, j ∈ S;
0 otherwise.

where ρ > 0 is a given parameter. Equivalently, if X = (X1, . . . , Xn) denotes the vector of
observations, then

H0: X ∼ N (0, I), vs. H1: X ∼ N (0,AS), for some S ∈ C,

where I denotes the n× n identity matrix and

(AS)i,j =







1 i = j
ρ i 6= j, with i, j ∈ S;
0 otherwise.

We write P0 for the probability under H0 (i.e., the standard normal measure in R
n) and, for

each S ⊂ C, PS for the measure of N (0,AS).
The goal of this paper is to understand for what values of the parameters (n, k, ρ) reliable

testing is possible. This, of course, depends crucially on the size and structure of the subset
class C. We consider the following two emblematic classes:

• k-intervals. In this example, we consider the class of all intervals of size k of the form
{i, . . . , i+k−1}modulo n—for esthetic reasons. (We call such an interval a k-interval.)
This class is the flagship of parametric classes, typical of the class of objects of interest
in signal processing. We have a fairly complete understanding of this case as described
below in this paper.

• k-sets. In this example, we consider the class of all sets of size k, i.e., of the form
{i1, . . . , ik} where the indices are all distinct in {1, . . . , n}. (We call such a set a k-
set.) This class is the flagship of nonparametric classes, and may arise in multiple
comparison situations, for example, in genetics. We show that when ρ ∈ (0, 1) is a
constant (e.g., ρ = 1/2) then it is possible to have a risk converging to zero (as n → ∞)
when k2/n → ∞ but no test has a vanishing risk when lim supn→∞ k2/n < ∞.

Our theory, however, applies more generally, to other classes, such as:

• k-hypercubes. In this example, the variables are indexed by the d-dimensional lattice,
i.e., X = (Xi : i ∈ {1, . . . , m}d), so that the sample size is n = md, and we consider
the class of all hyperrectangles of the form ×d

s=1{is, . . . , is + ks − 1}—each interval
modulo m—of fixed size

∏d
s=1 ks = k. This class is the simplest model for objects to

be detected in images (mostly d = 2, 3 in applications).

• Perfect matchings. Suppose n is a perfect square with k2 = n. The components
of the observed vector X correspond to edges of the complete bipartite graph on 2k
vertices and each set in C corresponds to the edges of a perfect matching. Thus,
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|C| = k!. In this example C has a non-trivial combinatorial structure, which makes
the problem more interesting. Our results imply that it is impossible to detect the
existence of a “correlated” perfect matching with a risk converging to zero unless
ρ → 1 as n → ∞.

• Spanning trees. In another example, n =
(

k+1
2

)

and the components of X correspond
to the edges of a complete graph Kk+1 on k + 1 vertices and every element of C is a
spanning tree of Kk+1. As we will see, the situation is quite similar to that of the
previous example.

As usual, a test is a binary-valued function f : Rn → {0, 1}. If f(X) = 0 then the
test accepts the null hypothesis H0, otherwise H0 is rejected by f . There are (at least) two
natural ways of measuring the risk of a test f . The first corresponds to a Bayesian point of
view in which under H1, an element S ∈ C is selected at random and X is drawn according
to PS. (We restrict ourselves to the uniform prior on C.) In this case, the average risk of the
test is

R(f) = P0{f(X) = 1}+ 1

N

∑

S∈C
PS{f(X) = 0} = P0{f(X) = 1}+ P1{f(X) = 0}

where we write N = |C| for the cardinality of C and P1 = (1/N)
∑

S∈C PS for the distribution
of X under the alternative hypothesis, which is a mixture over C. The last expression for
the Bayesian risk effectively shows that we are testing P0 versus P1, a simple versus simple
hypothesis testing problem, so that the likelihood ratio test f ∗ is optimal by the Neyman-
Pearson fundamental lemma. Introducing

ZS = exp

(

1

2
XT (I −A

−1
S )X

)

, (1.1)

for all S ∈ C, the likelihood ratio between H0 and H1 may be written as

L(X) =
1

N

∑

S∈C

ZS

E0ZS
, (1.2)

and the optimal test becomes

f ∗(x) = 1 if and only if L(x) > 1 .

Note that E0ZS =
√

det(AS). The risk R∗ = R(f ∗) of the optimal test is called the Bayes
risk and it satisfies

R∗ = 1− 1

2
E0|L(X)− 1| = 1− 1

2
E0

∣

∣

∣

∣

∣

1

N

∑

S∈C

ZS

E0ZS

− 1

∣

∣

∣

∣

∣

.

A natural alternative measure of the risk corresponds to a “worst-case” point of view.
We may define

Rmax(f) = P0{f(X) = 1}+max
S∈C

PS{f(X) = 0} .
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Clearly, for any test, R(f) ≤ Rmax(f) and in many cases when C and f are sufficiently
symmetric, the two risk measures coincide. In this paper we restrict our attention to R(f)
but most results carry through without any difficulty to Rmax(f). In fact, the uniform prior
is the least favorable for k-sets, and nearly so for k-intervals.

We focus on the case when n is large and formulate some of the results in an asymptotic
language with n → ∞ though in all cases explicit non-asymptotic inequalities are available.
Of course, such asymptotic statements only make sense if we define a sequence of integers
k = kn and classes C = Cn. This dependency in n will be left implicit. In this asymptotic
setting, we say that reliable detection is possible (resp. impossible) if R∗ → 0 (resp. → 1)
as n → ∞.

Remark. (monotonicity of the bayes risk.) One may intuitively expect that the
larger the class C, the more difficult the detection problem becomes. This is obvious when
one considers the worst-case risk Rmax(f) but it is not necessarily true for the average risk
R(f) in general. However, it is the case for sufficiently symmetric classes as the following
little argument shows. To emphasize the dependence on the class C, write RC(f) and Rmax

C (f)
for the average and worst-case risks of a test f and let f ∗

C denote the optimal test for C. Let
A ⊂ C and suppose that C is symmetric in the sense that RC(f

∗
C ) = Rmax

C (f ∗
C ). In this case,

we have
RC(f

∗
C ) = Rmax

C (f ∗
C ) ≥ Rmax

A (f ∗
C ) ≥ RA(f

∗
C ) ≥ RA(f

∗
A)

and therefore the Bayes risk is indeed monotone. See (Addario-Berry et al., 2010), which
displays an example of a non-symmetric class for which monotonicity does not hold in the
detection-of-means setting.

Remark. (covariance structure.) In this paper we assume that, under the alternative
hypothesis, the correlation between any two variables in the “contaminated” set is the same.
While this model has a natural interpretation (see Lemma 1 below), it is clearly a restrictive
assumption. Most results of the paper have an easy generalization. Let 0 < ρmin < ρmax ≤ 1.
Then we may modify the description alternative hypothesis such that tho covariance matrix
is any matrix such that

(AS)i,j







= 1 i = j
∈ (ρmin, ρmax) i 6= j, with i, j ∈ S;
= 0 otherwise.

Then for any prior on the class of such alternatives, the lower bound that we establish for the
Bayes risk (Theorem 1) applies when ρ is replaced by ρmax, and the detection performances
we derive for the various tests we consider remain valid when ρ is replaced with ρmin. To keep
the notation and the framework simple, we do not detail these trivial modifications. How-
ever, dealing with more general correlation structures remains an interesting and important
challenge.

1.2 Relation to previous work

The vast majority of the literature on detection is concerned with the detection of a signal
in additive (often Gaussian) noise, which would correspond here to an alternative where
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Xi ∼ N (µ, 1) for i ∈ S, where µ > 0 is the (per-coordinate) signal amplitude. We call
this the detection-of-means setting. The literature on this problem is quite comprehensive.
Indeed, the detection of k-intervals and k-hypercubes is treated extensively in a number
of papers, see, for example, (Arias-Castro et al., 2011, 2005; Boutsikas and Koutras, 2006;
Desolneux et al., 2003; Perone Pacifico et al., 2004). A more general framework that includes
the detection of perfect matchings and spanning trees is investigated in (Addario-Berry et al.,
2010), and the detection of k-sets is studied in a number of papers, e.g., (Baraud, 2002;
Donoho and Jin, 2004; Hall and Jin, 2010; Ingster, 1999; Jin, 2003). In the literature on de-
tection of parametric objects, the phrase ‘correlation detection’ usually refers to the method
of matched filters, which consists of correlating the observed signal with signals of interest.
This is not the problem we are interested in here. That said, there is a close relationship be-
tween the detection-of-means setting and our detection-of-correlations setting, particularly
in view of the representation theorem of Berman (1962)—stated here for the case Gaussian
random variables.

Lemma 1 (Berman (1962)) Let X1, . . . , Xk be standard normal with Cov(Xi, Xj) = ρ
for i 6= j. Then there are i.i.d. standard normal random variables U, U1, . . . , Uk such that

Xi =
√
ρU +

√
1− ρUi for all i.

Thus, given U , the problem becomes that of detecting a subset of variables with nonzero
mean (equal to

√
ρU) with a variance equal to 1− ρ (instead of 1). This simple observation

will be very useful to us later on. When U is random, the setting is similar to that of
detecting a Gaussian process (here equal to

√
ρU for i ∈ S, and equal to 0 otherwise) in

additive Gaussian noise. However, the typical setting assumes that the Gaussian process
affects all parts of the signal (Kailath and Poor, 1998). In our setting, the signal (the subset
of correlated variables) will be sparse. Since we only have one instance of the signal X ,
the problem cannot be considered from the perspective of either multivariate statistics or
multivariate time series. If indeed we had multiple copies of X , we could draw inspiration
from the literature on the estimation of sparse correlation matrices (Bickel and Levina, 2008;
Cai et al., 2010), from the literature on multivariate time series (Ramı́rez et al., 2010), or
on other approaches (Devroye et al., 2011); but this is not the case as we only observe X .
Closer in spirit to our goal of detecting correlations in a single vector of observation is the
paper of Anandkumar et al. (2009), which aims at testing whether a Gaussian random field
is i.i.d. or has some Markov dependency structure. Their setting models communication
networks and is not directly related to ours.

It transpires, therefore, that ρ in the detection-of-correlations setting plays a role anal-
ogous to µ2 in the detection-of-means setting. While this is true to a certain extent, the
picture is quite a bit more subtle. The detection-of-means problem for parametric classes
such as k-intervals are well understood. In such cases, µ2 needs to be of order at least
(1/k) log(n/k) for reliable detection of k-intervals to be possible. This remains true in the
detection-of-correlations setting. On the other hand, the generalized likelihood ratio test
(GLRT), which rejects for large values of maxS∈C

∑

i∈S Xi, is near-optimal for the detection-
of-means problem, see, for example, (Arias-Castro et al., 2005). In this paper, we show that
this statement is no longer true in the detection-of-correlations setting, see Theorem 2.

Our inspiration for considering k-sets comes from the line of research on the detection of
sparse Gaussian mixtures. Very precise results are known on (n, k, µ) that make detection
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possible (Baraud, 2002; Ingster, 1999; Jin, 2003) and optimal tests have been developed,
such as the “higher criticism” (Donoho and Jin, 2004; Hall and Jin, 2010). For example, it
is known that, when n = O(k2) (resp. k2 = o(n)), µ2 needs to be of order at least n/k2

(resp. log(n)) for reliable detection of k-sets to be possible, and the test based on
∑

i Xi

(resp. maxiXi) is near-optimal. Though more precise results are available when k2 = o(n),
these cannot be translated immediately to our case via the representation theorem of Lemma
1.

1.3 Contribution and content of the paper

This paper contains a collection of positive and negative results about the detection-of-
correlation problem described above. In Section 2 we derive lower bounds for the Bayes risk.
The usual route of bounding the variance of the likelihood ratio, that is very successful in the
detection-of-means problem, leads essentially nowhere in our case. Instead, we develop a new
approach based on Lemma 1. We establish a general lower bound for the Bayes risk, in terms
of the moment generating function of the size of the overlap of two randomly chosen elements
of the class C. This quantity also plays a crucial role in the detection-of-means setting and
we are able to use inequalities worked out in the literature in various examples. In Section
3 we study the performance of some simple and natural tests such as the squared-sum test
(based on (

∑

iXi)
2) and the generalized likelihood ratio test, as well as some variants. We

show that, in the case of parametric classes such as k-intervals and k-hypercubes, the GLRT
is essentially optimal. The squared-sum test is shown to be essentially optimal in the case
of k-sets when k2/n is large, while the GLRT is clearly suboptimal in this regime. This
is an interesting example where the GLRT fails miserably. When k2/n is small, detection
is only possible when ρ is very close to 1. The fine details of this case are not completely
understood yet, though the case ρ ≈ 1 is perhaps less interesting from the point of view
of applications. The analysis of tests such as the squared-sum test and the GLRT involve
handling quadratic forms in X . This is technically more challenging than the analogous
problem for the detection-of-means setting in which only linear function of X appear (which
are normal random variables).

2 Lower bounds for the Bayes risk

In this section we investigate lower bounds on the Bayes risk. First we consider the special
case when C contains only one element as this example will serve as a benchmark for other
examples.

Then we consider the standard method based on bounding the variance of the likelihood
ratio under the null hypothesis. However, this approach involves rather complicated compu-
tations and it results in rather weak conclusions. We then develop a new bound based on
Lemma 1 that has powerful implications, leading to sharp bounds in a number of examples.

6



2.1 The case N = 1

As a warm-up, and to gain insight into the problem, consider first the simplest case where
C contains just one set, say S = {1, . . . , k}. In this case, the alternative hypothesis is simple
and the likelihood ratio (Neyman-Pearson) test may be expressed by

f ∗(X) = 0 if and only if XT (I −A
−1
S )X ≤ 1

2
log det(AS) .

This follows by the fact that EZS =
√

det(AS) which is easy to check by straightforward
calculation.

The next simple lemma helps understand the behavior of the Bayes risk:

Lemma 2 Under P0, X
T (I −A

−1
S )X is distributed as

− ρ

1− ρ
χ2
k−1 +

ρ(k − 1)

1 + ρ(k − 1)
χ2
1

and under the alternative PS, it has the same distribution as

−ρχ2
k−1 + ρ(k − 1)χ2

1

where χ2
1 and χ2

k−1 denote independent χ2 random variables with degrees of freedom 1 and

k − 1, respectively.

Proof. If Y = (Y1, . . . , Yn) denotes a standard normal vector, then under H0, the quadratic
form XT (I −A

−1
S )X is distributed as Y T (I −A

−1
S )Y , and under the alternative, it has the

distribution of Y T (AS − I)Y , since X is distributed as A
1/2
S Y .

Now, observe that for any symmetric matrix B with eigenvalues λ1, . . . , λn, the quadratic
form Y T

BY has distribution

Y T
BY ∼

n
∑

i=1

λiY
2
i . (2.1)

This follows simply by diagonalizing B and using the rotational invariance of the standard
normal distribution.

The lemma follows from this simple representation and the fact that AS has eigenvalue
1−ρ with multiplicity k, 1+ρ(k−1) with multiplicity 1, and the eigenvalue 1 with multiplicity
n− k.

Now it is straightforward to analyze the Bayes risk. In particular, we immediately have
the following:

Proposition 1 In the setting where C is a singleton, limk→∞R∗ = 0 if and only if ρk → ∞.

Similarly, limk→∞R∗ = 1 if and only if ρk → 0.

Proof. Suppose ρk → ∞. It suffices to show that there exists a threshold τk such that
P0{XT (I −A

−1
S )X ≥ τk} → 0 and PS{XT (I −A

−1
S )X < τk} → 0. We use Lemma 2 and

the fact that, by Chebyshev’s inequality,

P
{

|χ2
k − k| > tk

√
k
}

→ 0, k → ∞,
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for any sequence tk → ∞, and the fact that

P
{

t−1
k < χ2

1 < tk
}

→ 1, as k → ∞.

We choose tk = log k and define τk := −ρk + ρtk
√
k + tk. Then under the null,

P0

{

XT (I −A
−1
S )X ≥ τk

}

→ 0,

and under the alternative, setting ηk := −ρk − ρtk
√
k + ρkt−1

k ,

PS

{

XT (I −A
−1
S )X < ηk

}

→ 0 .

We then conclude with the fact that, for k large enough, τk < ηk.
If ρk is bounded, the densities of the test statistic under both hypotheses have a significant

overlap and the risk cannot converge to 0.
The proof of the second statement is similar.

Clearly, the role of n is immaterial in this specific example as the optimal test ignores all
components whose indices are not in S = {1, . . . , k}.

2.2 The moment method

When the class C contains more than one element, the likelihood ratio with uniform prior
on C is given by (1.2). A common approach for deriving a lower bound on the Bayes risk is
via an upper bound on the variance of L(X) under the null. Indeed, by the Cauchy-Schwarz
inequality,

R∗ = 1− E0|L(X)− 1|
2

≥ 1−
√

E0[L(X)2]− 1

2
.

Therefore, an upper bound on E0[L(X)2]− 1 = Var0(L(X)) leads to a lower bound on R∗.
Let Λ = det(AS) = (1− ρ)k−1(1 + ρ(k− 1)), which is independent of S ∈ C. By Fubini’s

theorem, we have

E0L(X)2 =
1

Λ

1

N2

∑

S,S′∈C
E0(ZSZS′) ,

where ZS is defined in (1.1). We focus on terms of the double sum for which S = S ′.
The following result is a straightforward consequence of the representation (2.1) and the

well-known expression for the moment generating function of χ2
1.

Lemma 3 Suppose X is standard normal vector in R
n and M is an n×n symmetric matrix

with eigenvalues strictly less than 1/2. Then

E exp
(

XT
MX

)

= det(I − 2M)−1/2 .

If M has an eigenvalue exceeding 1/2, then E exp
(

XT
MX

)

= +∞.

8



Since M := I − A
−1
S has eigenvalue −ρ/(1 − ρ) with multiplicity k, eigenvalue ρ(k −

1)/(1 + ρ(k − 1)) with multiplicity 1, and eigenvalue 0 with multiplicity n − k, E0[Z
2
S] =

E0 exp
(

XT
MX

)

= +∞ unless ρ(k − 1) < 1. The implications are rather insubstantial. It
only shows that, when ρ(k − 1) is bounded away from 1 from above, the Bayes risk does
not tend to zero. This lower bound is grossly suboptimal, except in the case where C is a
singleton (as in Section 2.1) or does not grow in size with n.

A refinement of this method consists in bounding the first and second truncated moments
of L(X), again under the null hypothesis. This trick is used in (Ingster, 1999; Jin, 2003) in
the detection-of-means setting for the case of k-sets to obtain sharp bounds. Unfortunately,
in our case this method only provides a useful bound when the class C is not too large (i.e.,
has size polynomial in k) while it does not seem to lead anywhere in the case of k-sets. In any
case, the computations are rather intricate and we do not provide details here, as we were
able to obtain a more powerful general bound that applies to both k-intervals and k-sets.
This is presented in the next section.

2.3 A general lower bound

In this section we derive a general lower bound for the Bayes risk. As in the detection-
of-means problem (Addario-Berry et al., 2010; Arias-Castro et al., 2011, 2008), the relevant
measure of complexity is in terms of the moment generating function of the size of the
overlap of two randomly chosen elements of C. In the detection-of-means setting, this is a
consequence of bounding the variance of the likelihood ratio. We saw in Section 2.2 that
this method is useless here. Instead, we make a connection between the two problems using
Lemma 1.

Theorem 1 For any class C and any a > 0,

R∗ ≥ P {|N (0, 1)| ≤ a}
(

1− 1

2

√

E exp (νaZ)− 1

)

,

where νa = ρa2/(1 + ρ) − 1
2
log(1 − ρ2) and Z = |S ∩ S ′|, with S, S ′ drawn independently,

uniformly at random from C. In particular, taking a = 1,

R∗ ≥ 0.6− 0.3
√

E exp (ν1Z)− 1,

where ν1 = ρ/(1 + ρ)− 1
2
log(1− ρ2).

Proof. The starting point of the proof is Lemma 11, which enables us to represent the vector
X as

Xi =

{

Ui if i /∈ S√
ρ U +

√
1− ρ Ui if i ∈ S

where U, U1, . . . , Un are independent standard normal random variables.
We consider now the alternative H1(u), defined as the alternative H1 given U = u. Let

R(f), L, f ∗ (resp. Ru(f), Lu, f ∗
u) be the risk of a test f , the likelihood ratio, and the

1In fact, we only need to assume that X is as described, since what matters is the distribution of X .
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optimal (likelihood ratio) test, for H0 versus H1 (resp. H0 versus H1(u)). For any u ∈ R,
Ru(f

∗
u) ≤ Ru(f

∗), by the optimality of f ∗
u for H0 vs. H1(u). Therefore, conditioning on U ,

R∗ = R(f ∗)

= EURU (f
∗)

≥ EURU (f
∗
U)

= 1− 1

2
EUE0|LU(X)− 1| .

(EU is the expectation with respect to U ∼ N (0, 1).) Using the fact that E0|Lu(X)− 1| ≤ 2
for all u, we have

EUE0|LU(X)− 1| ≤ 2P{|U | > a}+ P{|U | ≤ a} max
u∈[−a,a]

E0|Lu(X)− 1| ,

and therefore, using the Cauchy-Schwarz inequality,

1− 1

2
EUE0|LU(X)− 1| ≥ P{|U | ≤ a}

(

1− 1

2
max

u∈[−a,a]
E0|Lu(X)− 1|

)

≥ P{|U | ≤ a}
(

1− 1

2
max

u∈[−a,a]

√

E0L2
u(X)− 1

)

.

Since

Lu(x) =
1

N

∑

S∈C

1

(1− ρ)k/2
exp

(

−
∑

i∈S

(xi −√
ρu)2

2(1− ρ)
−
∑

i 6∈S

x2
i

2

)

exp

(

n
∑

i=1

x2
i

2

)

=
1

N

∑

S∈C

1

(1− ρ)k/2
exp

(

∑

i∈S

x2
i

2
− (xi −√

ρu)2

2(1− ρ)

)

,

we get

E0L
2
u(X)

=
1

N2

∑

S,S′∈C

1

(1− ρ)k
E0 exp

(

∑

i∈S∩S′

X2
i −

(Xi −√
ρu)2

1− ρ
+
∑

i∈S∆S′

X2
i

2
− (Xi −√

ρu)2

2(1− ρ)

)

=
1

N2

∑

S,S′∈C

1

(1− ρ)k(2π)n/2

×
∫ +∞

−∞
exp

(

∑

i∈S∩S′

x2
i

2
− (xi −√

ρu)2

1− ρ
−
∑

i∈S∆S′

(xi −√
ρu)2

2(1− ρ)
−
∑

i 6∈S∪S′

x2
i

2

)

dx.

It is easy to check that

x2
i

2
− (xi −√

ρu)2

1− ρ
=

ρu2

1 + ρ
− 1 + ρ

2(1− ρ)

(

xi −
2
√
ρu

1 + ρ

)2

,
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which implies

E0L
2
u(X)

=
1

N2

∑

S,S′∈C

exp
(

ρu2

1+ρ
|S ∩ S ′|

)

(1− ρ)k(2π)n/2

×
∫ +∞

−∞
exp

(

−
∑

i∈S∩S′

1 + ρ

2(1− ρ)

(

xi −
2
√
ρu

1 + ρ

)2

−
∑

i∈S∆S′

(xi −√
ρu)2

2(1− ρ)
−
∑

i 6∈S∪S′

x2
i

2

)

dx

=
1

N2

∑

S,S′∈C

exp
(

ρu2

1+ρ
|S ∩ S ′|

)

(1− ρ)k

(

1− ρ

1 + ρ

)|S∩S′|/2
(1− ρ)k−|S∩S′|

≤ 1

N2

∑

S,S′∈C
exp

((

ρu2

1 + ρ
− 1

2
log(1− ρ2)

)

|S ∩ S ′|
)

,

which concludes the proof.

We apply Theorem 1 to a few examples. The theorem converts the problem into a
purely combinatorial question and Addario-Berry et al. (2010) offer various estimates for
the moment generating function of Z which we may use for our purposes.

2.3.1 Non-overlapping sets

Consider first the simplest case when C contains N disjoint sets of size k.

Corollary 1 Let C be the class of all sets of size k. If

ν = ρ/(1 + ρ)− 1

2
log(1− ρ2) ≤ log(N)

k
,

then the Bayes risk satisfies R∗ ≥ 0.3, and R∗ → 1 if ρ = o((1/k) logN) and is bounded

away from 1.

Proof. Clearly, the size Z of the overlap of two randomly chosen elements of C equals zero
with probability 1− 1/N and k with probability 1/N . Thus,

EeνZ − 1 = (1/N)(eνk − 1) ≤ (1/N)eνk,

which is bounded by 1 if ν ≤ (1/k) log(N). The first part then follows from the second part of
Theorem 1. For the second part, we need to find a → ∞ such that νa = o((1/k) logN). (note
that in this case the upper bound above tends to zero). First note that under the assumptions
that ρ = o((1/k) logN) and is bounded away from 1, one always has −1

2
log(1 − ρ2) =

o((1/k) logN) (consider separately the cases when (1/k) logN) remains bounded and when
it is unbounded). Thus one can simply take a → ∞ such that ρa2 = o((1/k) logN), and the
result follows from the first part of Theorem 1.
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2.3.2 k-intervals

Consider the class of all k-intervals. The situation is similar to that of non-overlapping sets.
(In fact, since this class of k-intervals contains [n/k] non-overlapping sets of size k and the
class is sufficiently symmetric, we could use the monotonicity property of the Bayes risk,
mentioned at the end of Section 1.1, to immediately deduce a lower bound on the worst-case
risk via Corollary 1.)

Corollary 2 Let C be the class of all k-intervals. If

ν = ρ/(1 + ρ)− log(1− ρ2) ≤ log(n/(2k))

k

then the Bayes risk satisfies R∗ ≥ 0.3, and R∗ → 1 if ρ = o((1/k) log(n/k)) and is bounded

away from 1.

Proof. For two k-intervals chosen independently and uniformly at random,

P {|S ∩ S ′| = ℓ} =
2

N
, ∀ℓ = 1, . . . , k.

Thus,

EeνZ − 1 =
2

N

(

k
∑

ℓ=1

eνℓ − k

)

≤ 2k

N
eνk,

which is bounded by 1 if ν ≤ (1/k) log(N/(2k)) and tends to zero if ν = o((1/k) log(N/(2k))).
Reasoning as in the proof of Corollary 1, the result follows from Theorem 1 and the fact
that N ≤ n.

2.3.3 k-sets

Consider the class of all sets of size k.

Corollary 3 Let C be the class of k-sets. Denote ν = ρ/(1 + ρ)− log(1− ρ2). If

k2

n
≤ ln 2

eν − 1

then the Bayes risk satisfies R∗ ≥ 0.3. Also, R∗ → 1 if either k2/n → ∞ and ρk2/n → 0,
or (1− ρ)−1k2/n → 0.

The result implies that, if k2/n → 0, reliable detection is impossible is ρ is remains
bounded away from 1.

Proof. By (Addario-Berry et al., 2010, Proposition 3.4), which uses negative association,

EeνZ ≤
(

(eν − 1)
k

n
+ 1

)k

≤ exp

(

(eν − 1)
k2

n

)

,

which is bounded by 2 under the postulated condition, and tends to one if either k2/n → ∞
and νk2/n → 0, or k2/n → 0 and eνk2/n → 0. The result follows from Theorem 1—for the
case k2/n → 0 and eνk2/n → 0, we use the fact that ν ∼ −(1/2) log(1− ρ) as ρ → 1.

12



2.3.4 Perfect matchings

Consider now the example of perfect matchings described in the introduction. Here k =
√
n.

Once again, Theorem 1 applies and implies that testing is impossible for moderate values
of ρ.

Corollary 4 Let C be the class of all perfect matchings. If ρ ≤ 1/2 the Bayes risk satisfies

R∗ ≥ 0.3. Also, R∗ → 1 if ρ → 0.

Proof. The random variable Z for this class is considered by Addario-Berry et al. (2010),
who prove that

EeνZ ≤
(

(eν − 1)
1√
n
+ 1

)

√
n

≤ ee
ν−1 .

This is bounded by 2 whenever ν ≤ 1 + ln ln 2, which is satisfied whenever ρ ≤ 1/2, and
tends to one if ν → 0. We then apply Theorem 1.

2.3.5 Spanning trees

A similar argument applies for the class of all spanning trees of a complete graph with k+1
vertices (and n = (k + 1)k/2 edges) as described in the introduction.

Corollary 5 Let C be the class of all spanning trees. If ρ ≤ 0.4 then the Bayes risk satisfies

R∗ ≥ 0.15. We also have R∗ → 1 if ρ → 0.

Proof. It is shown in (Addario-Berry et al., 2010) that

EeνZ ≤
(

(eν − 1)
2

k + 1
+ 1

)k

≤ e2(e
ν−1),

which is bounded by 13/4 whenever ν ≤ 1 + ln((ln(13/4))/2), which is satisfied whenever
ρ ≤ 0.4, and tends to one if ν → 0. We then apply Theorem 1.

3 Some near-optimal tests

We already know that the likelihood ratio test is optimal in the Bayesian setting. We study
here other tests for two reasons. First, the likelihood ratio test seems difficult to compute
in most situations. Second, the likelihood ratio test is heavily dependent on the prior we
choose—here, the uniform distribution on the class. We consider the squared-sum test,
which corresponds to the ANOVA test in the detection-of-means setting, and the generalized
likelihood ratio test, as well as some variants. We say that a test is near-optimal for a certain
setting if it achieves the information bound for that setting to first order.
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3.1 The squared-sum test

One of the simplest test is based on the observation that the magnitude of the squared-sum
(
∑n

i=1Xi)
2 may be substantially different under the null and alternative hypotheses due to

the higher correlation under the latter.
Indeed, under P0, (

∑n
i=1Xi)

2 is distributed as nχ2
1, while for any S ⊂ {1, . . . , n} with

|S| = k, under PS, (
∑n

i=1Xi)
2 has the same distribution as (n + ρk(k − 1))χ2

1. This imme-
diately leads to the following result.

Proposition 2 Let C be an arbitrary class of sets of size k and suppose that ρk2/n → ∞.

If tn is such that tn → ∞ but tn = o(ρk2/n), then the test which rejects the null hypothesis

if (
∑n

i=1Xi)
2 > ntn has a risk converging to zero. However, any test based on (

∑n
i=1Xi)

2 is

powerless if ρk2/n → 0.

In Corollary 3, we saw that reliable detection of k-sets is impossible if k2/n → ∞ and
ρk2/n → 0. Here we see that, when ρk2/n → ∞, the squared-sum test is asymptotically
powerful. Hence, the squared-norm test is near-optimal for detecting k-sets in the regime
k2/n → ∞. A similar phenomenon occurs in the detection-of-means setting, where the test
based on

∑n
i=1Xi is optimal for detecting k-sets in the same regime. In the regime k2/n → 0,

the squared-sum test is powerless even if ρ = 1.

3.2 The generalized likelihood ratio test

In this section we investigate the performance of the generalized likelihood ratio test (GLRT).
We show that for parametric classes such as k-intervals, the test is near-optimal. However,
for nonparametric classes such as the class of all k-sets, the test performs poorly in some
regimes.

By definition, the GLRT rejects for large values of maxS∈C ZS/E0ZS, or simply maxS∈C ZS

when all the sets in the class C are of same size, since E0ZS only depends on the size of S.
Hence, the GLRT is of the form

f(X) = 1 if and only if max
S∈C

XT (I −A
−1
S )X > t

for some appropriately chosen t.
Our analysis of the GLRT is based on Lemma 2, which provides the distribution of the

quadratic form XT (I −A
−1
S )X under the null P0 and under the alternative PS. Under the

null we need to control the maximum of such quadratic forms over S ∈ C, which we do using
exponential concentration inequalities for chi-square distributions.

3.2.1 The GLRT for k-intervals and other parametric classes

Recalling Corollary 2, when detecting k-intervals all tests are asymptotically powerless when
ρk/ log(n/k) → 0, while ρ remains bounded away from 1. We assume for concreteness that
k/ logn → ∞, for otherwise detecting k-intervals for very small k is almost equivalent to
detecting k-sets—and exactly the same when k = 1. We state a general result that applies
for classes of small cardinality.
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Proposition 3 Consider a class C of size N → ∞ such that (1/k) logN → 0. When

ρk/ logN → ∞, the GLRT with threshold value t = −ρk + ρ
√
5k logN + 3 logN has Bayes

risk tending to zero.

Proof. We first bound the probability of type I error. Indeed, under the null, by Lemma 2
and its proof, we can decompose

XT (I −A
−1
S )X = − ρ

1− ρ
CS +

ρ(k − 1)

1 + ρ(k − 1)
DS,

where CS ∼ χ2
k−1 and DS ∼ χ2

1. Hence,

max
S∈C

XT (I −A
−1
S )X ≤ −ρmin

S∈C
CS +max

S∈C
DS.

It is well-known that the maximum of N standard normals is bounded by
√
3 logN with

probability tending to one as N → ∞. Hence, the second term on the right-hand side is
bounded by 3 logN with high probability. For the first term, we combine the union bound
and Chernoff’s bound to obtain, for all a ≤ 1,

P0

{

min
S∈C

CS < a(k − 1)

}

≤ NP
{

χ2
k−1 < a(k − 1)

}

≤ N exp

(

−(k − 1)

2
(a− 1− log a)

)

. (3.1)

Using the fact that a− 1− log a ∼ 1
2
(1− a)2 when a → 1, the right-hand side tends to zero

when a = 1 −
√

(5/k) logN . We arrive at the conclusion that the GLRT with threshold
t = −ρk + ρ

√
5k logN + 3 logN has probability of type I error tending to zero.

Now consider the alternative under PS. By Lemma 2 and Chebyshev’s inequality,

XT (I −A
−1
S )X ≥ −ρk − ρsk

√
k + ρk/sk,

with high probability when sk → ∞. We then conclude by the fact that the right-hand side
is larger than t when sk → ∞ sufficiently slowly.

Comparing the performance of the GLRT in Proposition 3 with the lower bound for
k-intervals in Corollary 2, we see that the GLRT is near optimal for detecting k-intervals.
This is actually the case for all parametric classes we know of.

3.2.2 The GRLT for k-sets and other nonparametric classes

Consider now the example of the class of all k-sets. Compared to the previous section, the
situation here is different in that N , the size of the class C, is much larger. For example, for k-
sets, N =

(

n
k

)

, and therefore (1/k) logN → ∞ with n → ∞. The equivalent of Proposition 3
for this regime is the following:

Proposition 4 Consider a class C of size N → ∞ such that (1/k) logN → ∞. When

η := (1− ρ)N2/k(logN)/k → 0, the GLRT with threshold value t = −(logN)/
√
η has Bayes

risk tending to zero.
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Proof. We follow the proof of Proposition 3. The only difference is in (3.1), where we now
need a → 0 and that right-hand side tends to zero when log a+ 2(logN)/k → −∞. Choose
a = N−2/k√η, obtaining that, with high probability,

max
S∈C

XT (I −A
−1
S )X ≤ − ρ

1 − ρ
N−2/kk

√
η + 2 logN. (3.2)

As before, with high probability under PS,

XT (I −A
−1
S )X ≥ −ρk, (3.3)

so we only need to check that the threshold t is larger than the right-hand side in (3.2) and
smaller than the right-hand side in (3.3), which is the case by the assumptions we made.

Notice that in Proposition 4 the condition on ρ implies that ρ → 1, an assumption that
may not be realistic in most applications. For k-sets, the requirement is that 1−ρ = o(n/k)2,
which does not match the lower bound obtained in Corollary 3. If we restrict ρ to be bounded
away from 1, then the GLRT may be powerless, as we show next.

Theorem 2 Let C be the class of all k-sets. If ρ < 0.6 and k = o(n0.7), the GLRT has a

risk bounded away from zero.

Proof. The proof is divided in three steps. The first step formalizes the fact that we want
to prove that (under H1), the contaminated set has no influence (with high probability) on
the GLRT statistic. The second step exhibits a useful high probability event. Finally in the
third step we show that on this high probability event, the contaminated set has no influence
on the GLRT.

It can easily be seen that for every S of size k,

XT (I −A
−1
S )X =

ρ

(1 + ρ(k − 1))(1− ρ)

(

∑

i,j∈S,i 6=j

XiXj − ρ(k − 1)
∑

i∈S
X2

i

)

.

Introduce the function g : Rk → R defined by

g(u) =
∑

i 6=j

uiuj − ρ(k − 1)
∑

i

u2
i =

(

n
∑

i=1

ui

)2

− (1 + ρ(k − 1))
n
∑

i=1

u2
i .

for u = (u1, . . . , uk) ∈ R
k. Denoting, for x ∈ R

n and S ⊂ {1, . . . , n}, the vector of compo-
nents of x belonging to S by x|S, we may write the GLRT as

f(x) = 1 if and only if max
S∈C

g(x|S) > t .

Note that by the symmetry of C and the test,

R(f) = P0

{

max
S∈C

g(X|S) ≥ t

}

+
1

N

∑

S′⊂C
PS′

{

max
S∈C

g(X|S) < t

}

= P0

{

max
S∈C

g(X|S) ≥ t

}

+ P{1,...,k}

{

max
S∈C

g(X|S) < t

}

.
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Given X ∼ N (0, I), define the coupling X ′ as follows: Xi = X ′
i for i 6∈ {1, . . . , k}, and

Xi, X
′
i are independent for i ∈ {1, . . . , k}. Note that X ′ ∼ N (0,A{1,...,k}). Then, no matter

what the threshold t is, we have

R(f) = P

{

max
S∈C

g(X|S) ≥ t

}

+ P

{

max
S∈C

g(X ′|S) < t

}

≥ P

{

max
S∈C

g(X|S) ≥ max
S∈C

g(X ′|S)
}

.

In the following we show that, with probability tending to 1, we have maxS∈C g(X|S) =
maxS∈C g(X

′|S), which then implies that the GLRT is asymptotically powerless.

By the Lemma 1, there exists U, U1, . . . , Uk independent standard normal such that for
all i ∈ {1, . . . , k},

X ′
i =

√
ρ U +

√

1− ρ Ui.

Using the fact that maxi=1,...,k |Ui| ≤
√
2 log k with high probability, with probability tending

to one, we have
X ′

1, . . . , X
′
k ∈ [−ζ, ζ ] ,

where ζ :=
√

2(1− ρ) log(ωkk) and ωk is any sequence such that ωk → ∞.
Fix γ > 1 to be determined later and define p = P {ζ ≤ U ≤ γζ} where U ∼ N (0, 1). By

the fact that X1, . . . , Xn are i.i.d. standard normal, Z := #{i : ζ ≤ Xi ≤ γζ} ∼ Bin(n, p),
so that P {Z ≥ k} → 1 if k = o(np). When γ is bounded away from 1, this is the case if√
log k k2−ρ = o(n).
In conclusion, we proved that the event

Ω = {X ′
1, . . . , X

′
k ∈ (−ζ, ζ) , and ∃α1, . . . , αk, β1, . . . , βk ∈ {1, . . . , n} distinct :

Xα1
, . . . , Xαk

,−Xβ1
, . . . ,−Xβk

∈ (ζ, γζ)}

has a probability that tends to 1 if
√
log k k2−ρ = o(n) as long as γ is bounded away from 1.

We specify γ = 1/
√

ρ+
(

1
k−1

+ ρ
)2
. Note that, as required, γ exceeds and is bounded

away from 1. Assume that we are on the event Ω. First note that

g (Xα1
, . . . , Xαk

) ≥ k(k − 1)ζ2 − ρ(k − 1)kγ2ζ2

= k(k − 1)ζ2
(

1− ργ2
)

, (3.4)

and the same holds for g(Xβ1
, . . . , Xβk

).
Let S ∈ C be such that S ∩ {1, . . . , k} 6= ∅. We want to show that there exists S ′

such that g(X|S′) ≥ g(X ′|S). This entails that maxS∈C g(X|S) ≥ maxS∈C g(X
′|S), since for

S ∩ {1, . . . , k} = ∅ we have g(X|S) = g(X ′|S). First remark that we can assume that

(

∑

i∈S
X ′

i

)2

≥ ζ(k − 1)
√

1− ργ2 , (3.5)
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since otherwise by (3.4) we can simply take S ′ = {α1, . . . , αk}. To simplify notation, we may
assume that 1 ∈ S ∩ {1, . . . , k}. By definition of Ω and the fact that S contains at least one
index in {1, . . . , k}, there exist u, v ∈ {1, . . . , k} such that Xαu

and Xβv
do not appear in

X ′|S. We want to show that by replacing X ′
1 by either Xαu

or Xβv
, in X ′|S, one increases

the value of g. More precisely, we want to show that

max
(

g(Xαu
, X ′|S\{1}), g(Xβv

, X ′|S\{1})
)

≥ g(X ′|S).

Then by induction one can show the existence of the S ′ described above.
Note that, for x ∈ R

k and y ∈ R,

g(x1, . . . , xj−1, y, xj+1, . . . , xk)− g(x)

= 2(y − xj)
∑

i 6=j

xi − ρ(k − 1)(y2 − x2
j )

= (y − xj)

(

2
k
∑

i=1

xi − (2 + ρ(k − 1))xj − ρ(k − 1)y

)

.

Consider the case where
∑

i∈S X
′
i > 0 (the case

∑

i∈S X
′
i < 0 can be dealt similarly). Since

Xαu
≥ X ′

1, it suffices to show that 2
∑

i∈S X
′
i ≥ (2+ρ(k−1))X ′

1+ρ(k−1)Xαu
, which follows

from

(2 + ρ(k − 1))X ′
1 + ρ(k − 1)Xαu

≤ (k − 1)ζγ

(

2

k − 1
+ 2ρ

)

= 2(k − 1)ζ
√

1− ργ2

≤ 2
∑

i∈S
Xi.

This concludes the proof.

In view of Theorem 2, the GLRT is clearly suboptimal when in the situation stated there,
and compares very poorly with the squared-sum test, which is asymptotically powerful if
ρk2/n → ∞ as seen in Proposition 2. We do not know of any other situation where the
GLRT fails so miserably.

3.3 Other tests

In this section we discuss two other natural tests, both comparable to the GLRT in terms
of, but with computational advantages. Indeed, note that the GLRT may be difficult to
compute in many cases such as the class of k-sets.

3.3.1 A localized squared-sum test

The first variant that we propose is a “localized” version of the squared-sum test, based
on the test statistic T = maxS∈C(

∑

i∈S Xi)
2. An advantage of this statistic is that it does

not depend on knowledge of ρ. (Naturally, the threshold value of T under which the null
hypothesis is accepted must depend on ρ.)
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It is not difficult to see, by an argument parallel to that of Proposition 3, that this test
is nearly optimal for the detection of small (parametric) classes. Also, if C is the class of

all k-sets, T is easy to compute, since T = max
(

(
∑k

i=1X(i))
2, (
∑k

i=1X(n−i+1))
2
)

, where

X(1) ≤ · · · ≤ X(n) are the order statistics of X . However, in the case of k-sets this test
suffers from the same drawback as the GLRT: it can be powerless in situations where the
basic square-sum test is powerful. In fact, one can see that Theorem 2 also holds true for
this test (with a similar proof).

3.3.2 Tests based on pairwise distances

Another natural idea when designing tests is based on the observation that (positively)
correlated variables tend to be closer to each other than uncorrelated ones. Here we briefly
present such a test, only for the case of k-sets. Unfortunately, such a test can only be
powerful for values of ρ very close to 1. In that regime the test has a similar performance as
the GLRT which has some power for detecting k-sets in the regime where k2/n → 0. The
advantage of the distance-based test is that it is computationally tractable.

The proposed test rejects for small values of D, defined as

D = min
i=1,...,n

|Xi −X
(k−1)
i |

whereX
(k−1)
i denotes the (k−1)-st nearest neighbor ofXi amongX1, . . . , Xi−1, Xi+1, . . . , Xn).

Observe first that under PS, if i ∈ S, then for all j ∈ S, by Lemma 1, |Xi − Xj | is
normally distributed with mean 0 and variance 2(1 − ρ). Thus, under the alternative, D is
bounded from above by the maximum of

(

k
2

)

normal random variables with variance 2(1−ρ).

This implies that D ≤
√

9(1− ρ) log k with high probability.
On the other hand, under the null hypothesis, D is at least k/n with high probability.

To see this, note first that since the standard normal distribution function Φ is Lipschitz
with constant 1/

√
2π,

D ≥ DU
def
=

√
2π min

i=1,...,n
|Φ(Xi)− Φ(X

(k−1)
i )| ≥

√
2π min

i=1,...,n
|Ui − U

(k−1)
i | .

where the Ui = Φ(Xi) are independent uniform random variables in (0, 1) and U
(k−1)
i is the

(k − 1)-st nearest neighbor of Ui. By conditioning on the value of Xi, we see that for any
i = 1, . . . , n and t < 1/2,

P

{

|Ui − U
(k−1)
i | < t

}

≤ P {Bin(n− 1, 2t) ≥ k} .

Taking, for example, t = k/(4(n− 1)), and using Bernstein’s inequality, we have

P

{

|Ui − U
(k−1)
i | < t

}

≤ e−k/4

and therefore, by the union bound,

P

{

DU < (
√
2π/4)

k

n− 1

}

≤ ne−k/4 .
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Thus, under the null hypothesis, D ≥ (
√
2π/4)(k/(n− 1)) with high probability, whenever

k ≥ 4 logn. Hence, the test based on D is powerful when

1− ρ ≥ 1

log k

(√
2π

12

k

n− 1

)2

.
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