
ar
X

iv
:1

10
6.

35
62

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
7 

Ju
n 

20
11

Geometric Allocation Approach for

Transition Kernel of Markov Chain

Hidemaro Suwa and Synge Todo

Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan,
suwamaro@looper.t.u-tokyo.ac.jp

Abstract. We introduce a new geometric approach that constructs a
transition kernel of Markov chain. Our method always minimizes the av-
erage rejection rate and even reduce it to zero in many relevant cases,
which cannot be achieved by conventional methods, such as the Metropolis-
Hastings algorithm or the heat bath algorithm (Gibbs sampler). More-
over, the geometric approach makes it possible to find not only a re-
versible but also an irreversible solution of rejection-free transition prob-
abilities. This is the first versatile method that can construct an irre-
versible transition kernel in general cases. We demonstrate that the auto-
correlation time (asymptotic variance) of the Potts model becomes more
than 6 times as short as that by the conventional Metropolis-Hastings
algorithm. Our algorithms are applicable to almost all kinds of Markov
chain Monte Carlo methods and will improve the efficiency.
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1 Introduction

The Markov chain Monte Carlo (MCMC) method, which is a generic integration
method free from the curse of dimensionality by the importance sampling and
a powerful tool especially for systems with multiple degrees of freedom, is be-
ing applied extensively across the various disciplines, such as statistics, physics,
chemistry, bioinformatics, economics, and so on [9, 15]. Although an MCMC
method satisfying qualified conditions (ergodicity) guarantees that estimators
asymptotically converge in principle [12], a rapid convergence is essential for the
method to work in practice. In the Monte Carlo method, if the central limit
theorem holds, the variance of expectations decreases as σ2/n, where n is the
number of samples. Then, what we have to concern is to reduce the asymptotic
variance σ2. Since the autocorrelation of a Markov chain exactly corresponds to
the asymptotic variance, it is clearly important to develop an update method
that has shorter autocorrelation time.

There are three key points for the MCMC method to be effective. One is
the choice of the ensemble. From the view of this respect, the extended ensem-
ble methods, such as the multicanonical method [3] and the replica exchange
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method [8], have been proposed and applied successfully to protein folding prob-
lems, spin glasses, etc. The second is the selection of candidate configurations.
The cluster algorithms, e.g., the Swendsen-Wang algorithm [18] and the loop
algorithm [5], can overcome the critical slowing down by taking advantage of
mapping to graph configurations in many physical models. The third is the
determination of the transition probability, given candidate configurations. We
focus our interest on this optimization problem of the probabilities through this
report.

In the MCMC method, the (total) balance, that is, the invariance of the
target distribution, is usually imposed to the transition kernel though a kind of
adaptive procedure that asymptotically guarantees the sampling from the tar-
get distribution catches much attention these days. For the optimization of the
transition probabilities, it is a guiding principle to minimize the rejection rate,
the probability that a configuration stays still at the previous state [13]. In most
practical implementations, the Metropolis-Hastings algorithm [11, 7] (we call it
simply the Metropolis algorithm below) or the heat bath algorithm [1], namely,
the Gibbs sampler [6], have been used for the determination of the transition
probabilities. These canonical algorithms satisfy the detailed balance, that is,
the reversibility, which is a sufficient condition for the total balance. Under this
condition, thanks to the simple property that every elementary transition bal-
ances with a corresponding inverse process, it becomes easy to find a qualified
transition probability by solving the equation for each pair of configurations.
Thus, attempts to reduce autocorrelation in the optimization problem have con-
centrated within the sufficient condition so far [10, 14]. However, all the previous
methods fail to minimize the rejection rate in most cases.

In this report, we introduce a new method that constructs a transition kernel
by a geometric approach. This method can find solutions by applying a graphical
procedure called weight allocation instead of solving the detailed balance equa-
tion algebraically as before. Especially, it is always possible to find a solution
that minimizes the average rejection rate. In the meantime, it has long been
considered difficult to satisfy the total balance without imposing the detailed
balance. However, this condition is not necessary for the invariance of the target
distribution. If it is possible to find a solution beyond the sufficient condition,
further optimization can be achieved. Our new approach is the first method
that can generally satisfy the total balance without the detailed balance. We
will introduce our geometric picture for the optimization problem first and then
explain concrete algorithms for constructing a reversible and an irreversible ker-
nel [17]. We will demonstrate its effectiveness in a basic physical example, the
single spin update of the ferromagnetic Potts model.

2 Geometric Approach

In the MCMC method, we update configuration (or state) variables locally and
run over the whole system. Now, let us consider updating one discrete variable as
an elementary process, e.g., flipping a single spin in the Ising or Potts models [19].
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Given an environmental configuration, we would have n candidates (including
the current one) for the next configuration. The weight of each candidate configu-
ration (or state) is given by wi (i = 1, ..., n), to which the equilibrium probability
measure is proportional. Although the total and detailed balance are usually ex-
pressed in terms of the weights {wi} and the transition probabilities {pi→j} from
state i to j, it is more convenient to introduce a quantity vij := wipi→j , which
corresponds to the amount of (raw) stochastic flow from state i to j. The law of
probability conservation and the total balance are then expressed as

wi =
∑n

j=1
vij ∀ i (1)

wj =
∑n

i=1
vij ∀ j, (2)

respectively. The average rejection rate is written as
∑

i vii/
∑

i wi. Also, it is
straightforward to confirm that {vij} satisfy vij = min[wi, wj ]/(n − 1) (i 6=
j) for the Metropolis algorithm with the flat proposal distribution, and vij =
wiwj/

∑n

k=1
wk (∀ i, j) for the heat bath algorithm (Gibbs sampler), where the

detailed balance, i.e., the absence of net stochastic flow, is manifested by the
symmetry under the interchange of the indices:

vij = vji ∀ i, j. (3)

Our task is to find a set {vij} that minimizes the average rejection rate while

Metropolis heat bath

Fig. 1. Example of the weight allocation by the Metropolis and heat bath algorithms
for n = 2. The regions with thick frame denote the rejection rates.

satisfying Eqs. (1) and (2). The procedure for the task can be understood visually
as weight allocation, where we move (or allocate) some amount of weight (vij)
from state i to j keeping the entire shape of the weight boxes intact. For catching
on this allocation picture, let us think at first the case with n = 2 as in the
single spin update of the Ising model. Fig. 1 shows the allocation when the
Metropolis and heat bath algorithms are applied, where the average rejection rate
(∝ v11 + v22) clearly remains finite. Indeed, for n = 2 the Metropolis algorithm
gives the best solution, i.e., the minimum average rejection rate even within the
total balance [see Eq. (4) below].

For n ≥ 3, these two methods fail to minimize the rejection rate as we will
mention. Besides, a generic method that accomplishes the minimization has not
been known before. We will show that we can easily make it possible by this
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Algorithm 1 Construction of Reversible Kernel with Minimized Rejection

Sort n candidate configurations as w1 ≥ w2 ≥ w3 ≥ ... ≥ wn (n ≥ 3).

vij ← wiδij
wdiff ← w1 − w2

S3 ←
∑n

i=3
wi

if wdiff ≥ S3 then

for i = 2, ..., n do

Swap( 1, i, wi ) // vii becomes 0
end for

else

for i = 3, ..., n do

v ← wdiff ∗ wi/S3

Swap( 1, i, v )
end for // v11 = v22 ≥ v33 ≥ ... ≥ vnn

for j = n, ..., 2 do

v′ ← vjj/(j − 1)
for k = j − 1, ..., 1 do

Swap( j, k, v′ )
end for // v11 = v22 ≥ ... ≥ vj−1,j−1 and vjj = 0

end for

end if

geometric picture. Although many optimal solutions are found actually, here we
will introduce two specific algorithms. One makes a reversible kernel, and the
other makes an irreversible kernel without the detailed balance.

2.1 Reversible Kernel

For describing our algorithm, let us introduce an operation named Swap:

Swap( i, j, w ) {
vii ← vii − w
vij ← vij + w
vji ← vji + w
vjj ← vjj − w

}.
We note that if {vij} satisfy the three conditions (1), (2) and (3), the operation
does not break them. A certain algorithm for the construction of reversible ker-
nel that minimizes the average rejection rate is described in Algorithm 1. This
algorithm starts with the diagonal matrix [vij ] and uses only Swap operation for
construction. Therefore the three conditions (1), (2) and (3) are automatically
satisfied in the whole procedure. This algorithm can be depicted visually as Al-
gorithm 1 in Fig. 2. As a result, the self-allocated weight that produces rejection
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Metropolis heat bath Algorithm1 Algorithm2

Fig. 2. Example of weight allocation by the Metropolis, the heat bath, and the proposed
two algorithms for n = 4. Algorithm 1 constructs a reversible kernel, and Algorithm 2
does an irreversible kernel. Both proposed algorithms minimize the average rejection
rate in general, and they are rejection free in this case while the conventional methods
remain finite rejection rates as indicated by the thick frames.

is expressed as

vii =

{

max(0, w1 −
∑n

i=2
wi) i = 1

0 i ≥ 2
(4)

That is, a rejection-free solution can be obtained, if

w1 ≤
Sn

2
≡ 1

2

n
∑

k=1

wk (5)

is satisfied. In contrast, when inequality (5) is not satisfied, one has to necessarily
assign the maximum weight to itself since it is bigger than the sum of the rest.
Thus, the present solution is optimal in the sense that it minimizes the average
rejection rate.

2.2 Irreversible Kernel

Next, we show another algorithm that constructs an irreversible kernel [17]. The
whole algorithm is described in Algorithm 2. In the algorithm, if two or more
configurations have the same maximum weight, choose one of them at first.
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Algorithm 2 Construction of Irreversible Kernel with Minimized Rejection

Choose a configuration that has the maximum weight and number it 1.
Sort other configurations in an arbitrary order.
i← 1
j ← 2
while i ≤ n do

wr ← wi

while wr > 0 do

if wr ≥ wj then

vij ← wj

wr ← wr − wj

if j = n then

j ← 1
else

j ← j + 1
end if

else

vij ← wr

wj ← wj − wr

wr ← 0
end if

end while

i← i+ 1
end while

Any order of configurations accomplishes the same minimized rejection rate. In
the above procedure, all the boxes are filled without any space as well as the
reversible case, as Algorithm 2 in Fig. 2; it satisfies the two conditions (1) and
(2). However, the reversibility (3) is broken. (For example, v12 > 0, but v21 = 0
as depicted in the figure.) It is also clear that the second and subsequent boxes
must be already saturated when the allocation of its own weight is initiated since
w1 is the maximum.

The rejection rate becomes the same with the previous reversible kernel as
formulated in Eq. (4). In contrast to the reversible case, a net stochastic flow is
introduced as the result of breaking the detailed balance, and it is expected to
further boost up the sampling efficiency [4].

3 Benchmark test

In order to assess the effectiveness of the present algorithms, we investigate
the autocorrelations in the ferromagnetic q-state Potts models on the square
lattice [19], which exhibit a continuous (q ≤ 4) or first-order (q > 4) phase tran-
sition at T = 1/ ln(1 +

√
q). We calculate the autocorrelation time of the square

of order parameter for q = 4 and 8 by several algorithms. The autocorrelation
time τint is estimated through the relation: σ2 = (1 + 2τint)σ

2

0
, where σ2

0
and

σ2 are the variances of the estimator without considering autocorrelation and
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with calculating correlation from the binned data using a bin size much larger
than the τint [9]. In Fig. 3, it is clearly seen that our algorithms significantly
boosts up the convergence in both models in comparison with the conventional
methods. In the 4-state Potts model, the autocorrelation time becomes nearly
6.4 times as short as that by the Metropolis algorithm, 2.7 times as short as
the heat bath algorithm, and even 1.4 times as short as the locally optimal up-
date (LOU) [14], which was considered as one of the best solutions before our
approach. Furthermore, the present algorithms are increasingly advantaged as q
increases. The autocorrelations of our two algorithms are much the same both
for q = 4, 8. We also note that our irreversible algorithm improves the efficiency
more than 100 times as much as that by the heat bath algorithm in a quantum
spin model [17].

103

102

101

100

 0.86  0.9  0.94  0.98

τ i
nt

q = 4 q = 8

 0.74  0.76  0.78

T

Fig. 3. Autocorrelation time of the square of order parameter near the transition tem-
perature (T ≃ 0.910 and 0.745, respectively) in the 4-state (left) and 8-state (right)
Potts models by the Metropolis (circles), heat bath (triangles), LOU (diamonds), and
present (squares) methods. The results of present two algorithms are the same in this
scale. The system size is 16 × 16. The error bars are the same order with the point
sizes.

4 Conclusion

We have introduced the new geometric approach for optimization of transition
probabilities and the two concrete algorithms that always minimizes the average
rejection rate in the MCMC method. One constructs a reversible kernel, and
the other does an irreversible kernel, which is the first versatile method that
constructs an irreversible chain in general cases. We showed our algorithms sig-
nificantly improve the sampling efficiency in the ferromagnetic Potts models.
The autocorrelations of our two algorithms are much the same in the model;
the net stochastic flow does not matter to the efficiency. However, it is generally
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possible for the flow to play an important role to the convergence. The introduc-
tion of efficient flow needs to be researched in the future. Finally, we note that
our algorithm for irreversible kernel can be generally extended to continuous
variables, which will be presented in other report [16].

Most simulations were performed on T2K Supercomputer at University of
Tsukuba. The program was developed based on the ALPS library [2]. We ac-
knowledge support by Grant-in-Aid for Scientific Research Program (Nos. 20540364,
23540438) from JSPS, and by Grand Challenges in Next-Generation Integrated
Nanoscience, Next-Generation Supercomputer Project from MEXT, Japan.
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