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Abstract

The Bernoulli Factory is an algorithm that takes as input a series of i.i.d. Bernoulli random
variables with an unknown but fixed success probability p, and outputs a corresponding series
of Bernoulli random variables with success probability f(p), where the function f is known
and defined on the interval [0, 1]. While several practical uses of the method have been
proposed in Monte Carlo applications, these require an implementation framework that is
flexible, general and efficient. We present such a framework for functions that are either
strictly linear, concave, or convex on the unit interval using a series of envelope functions
defined through a cascade, and show that this method not only greatly reduces the number
of input bits needed in practice compared to other currently proposed solutions for more
specific problems, but can easily be coupled to more asymptotically efficient methods to
allow for theoretically strong results.

1 Introduction

First made explicit by Keane and O’Brien [1994], a Bernoulli Factory is defined as an algorithm

that takes as its input an i.i.d. sequence of Bernoulli random variables with unknown success

probability – call this pin – and outputs a new sequence of Bernoulli random variables whose

success probability, pout, is a known function of the input probability. A Bernoulli Factory does not

use any approximation for either pin or pout, instead obtaining output draws through a stochastic

process with two absorbing states, one of which has terminal probability pout.

The prototypical problem for this comes from von Neumann [1951], which seeks to generate a

“fair coin”, or a draw from a Be(0.5) random variable, from an i.i.d. sequence of Bernoullis with

unknown success probability p. The corresponding stochastic process has three states, labelled

“yes”, “no” or “continue”:

• Begin in state “continue”.

• Take two draws from the input sequence. The possible outcomes are grouped as {00, 01, 10, 11}.
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• While the outcome is 00 or 11, remain in state “continue”. Discard these bits and replace

them with two new draws.

• If the outcome is 10, output “yes”; if the outcome is 01, output “no”.

Because both 01 and 10 have probability p(1 − p) or occurring, there is equal probability of

the outcome being a “yes” or a “no”, and as a result, the outcome can be likened to the flip of a

fair coin. The running time of this method is two times a Geometric random variable with success

probability 2p(1− p), so that the expected number of input bits required is 1
p(1−p)

.

A similar process can be conducted to turn a series of fair coins into a coin with any success

probability pout, by noting that a uniform random variable can be produced through the represen-

tation

U =
∞∑
i=1

2−iXi

where Xi ∼ Be(0.5). However, a finite number of bits will be needed if the outcome of interest is

specified as

Y = I(U < pout).

The stochastic process has an unbounded number of states, but is as simple to specify as the

standard von Neumann example:

• Begin with n = 1.

• At each stage n, set Un =
∑n

i=1 2−iXi. Note that Un ≤ Un+k for all n and k.

• If Un > p, then U > p as well; output “no”.

• If p− Un < 2n−1, then no matter what the remaining inputs are, U < p; output “yes”.

• Otherwise, add one more digit to the expansion and repeat the previous three steps.

These algorithms each converge in geometric time, with rates proportional to the target prob-

ability pout. While neither requires a sophisticated implementation in order to produce a correct

output, these methods suggest a general trend: that methods that produce absorbing states of sim-

ple Markov chains are powerful methods of transforming random bits without a loss of information,

merely efficiency.
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1.1 From Simple Alchemy to the Full Factory

The problem explored by Keane and O’Brien [1994] works on the principle that the input and

output success probabilities are possibly unknown, but a function that defines their connection is

fully specified. The case where

f(p) = min (cp, 1− ε) , c > 1, ε < 1,

henceforth referred to as the “elbow function”, is of particular interest to applications in exact

sampling of Markov chains [Asmussen et al., 1992; Hobert and Robert, 2004; Blanchet and Meng,

2005; Hobert et al., 2006; Blanchet and Thomas, 2007; Flegal and Herbei, 2011], as this function

represents a ratio in general rejection sampling schemes for draws from the stationary distributions

of Markov Chains. (In the case where c < 1, the problem is trivial: the representation X ∼
Be(c) ∗Be(p) immediately produces the desired result.)

To make practical use of this, the solution proposed by Nacu and Peres [2005] uses a pair of

Bernstein polynomial forms to approximate f(p) from above and below. The standard Bernstein

polynomial approximation to a function is defined as

fn(p) =
n∑

k=0

(
n

k

)
f

(
k

n

)
pk (1− p)n−k ;

their usefulness comes about in this problem because the probability of any one of the sequences of

k ones and n−k zeros from n Be(p) random variables is pk(1−p)n−k. If these approximations both

converge to the target function in the limit, then a draw from the target distribution Be(f(p)) can

be obtained in finite time.

While the theoretical properties of this method have been described by previous authors, the

practical implementations to these solutions are concerned more with theoretical tractability than

flexibility or applicability to real problems. Chief among these problems is that for convex or

concave functions, while one envelope is trivial to construct, the other is invariably more difficult

and requires tuning to the particular expectations of the problem. To strengthen the use of the

factory in practical problems, we propose a general strategy for envelope construction that uses a

series of cascading envelopes on the “difficult” function, one that is easy to implement and verify

on many classes of input function. We first review the Bernstein expansion as introduced by Nacu

and Peres [2005] and demonstrate it on purely linear functions, before moving to more general

convex or concave functions including piecewise linear functions.
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2 Bernstein Polynomial Expansions and Set Approxima-

tions

Bernstein polynomials are a set of basis functions defined on the interval [0, 1]. A Bernstein

approximation of order n contains a total of n+ 1 functions of the form pk(1− p)n−k, which is also

the individual probability of any single sequence containing k ones and n − k zeros. Indeed, it is

trivial to show that the Bernstein polynomial approximation is the expected value of the function

under a Binomial random variable:

K ∼ Bin(n, p); Ef

(
K

n

)
=

n∑
k=0

(
n

k

)
f

(
k

n

)
pk (1− p)n−k = fn(p).

Using this result, a convex function will always be greater than any of its finite Bernstein

polynomial expansions; by Jensen’s inequality, f(p) = f(EK/n) ≥ Ef(K/n) = fn(p). Conversely,

a concave function will always be less than any of its Bernstein approximations.

The general method proposed by Nacu and Peres [2005] works with the use of two approxi-

mating functions, one from above, one from below, and ties these directly to the probabilities of

observing particular bit strings. With a slight change in notation, consider the following formula-

tion:

• Define a series of functions an(x) that approximate the target function f(x) from below (that

is, for all n, an(x) < f(x)and limn→∞ a
n(x) = f(x)). Define also another series of functions

bn(x) to approximate 1 − f(x), also from below; by construction, an(x) + bn(x) ≤ 1. These

functions are used when the total length of the input bit string is n.

• Let An be a set of bit-words of length n, and An,k be the subset of An with exactly k ones;

likewise with Bn.

• Note the Bernstein polynomial approximations ann(x) and bnn(x) yield natural quantities ex-

pressions for An,k and Bn,k. Since

ann(x) =
n∑

k=0

(
n

k

)
an
(
k

n

)
pk (1− p)n−k ,

we introduce

An
n(x) =

n∑
k=0

⌊(
n

k

)
an
(
k

n

)⌋
pk(1− p)n−k;

4



and define a set An,k containing b
(
n
k

)
an( k

n
)c distinct n−length bit strings with k ones. From

those bit strings that remain, choose b
(
n
k

)
bn( k

n
)c to form Bn,k (notingthat the probability of

observing any one bit-string is pk(1− p)(n−k).)

• Ensure that An
n(x) ≤ f(x) and Bn

n(x) ≤ 1 − f(x). For whatever sequence of functions is

used, also ensure that An+m,k ≥
∑m

j=0

(
m
j

)
An,k−j, so that any lower-length bit string in An

may also be in An+m.

• Collecting the remaining unaccounted items, define Cn,k to be all those n−length bit strings

with k ones that were not included in An,k or Bn,k.

Using these tools we can now build the Bernoulli factory for a great number of classes of

functions; details of the convergence properties of this method for various proposed envelope

functions are addressed by Keane and O’Brien [1994] and Nacu and Peres [2005].

2.1 Example: f(p) is Constant or Linear

With a linear factory function f(p) = c + hp, it is clear that the standard Bernstein polynomial

expansion is identical:

fn(p) =
n∑

k=0

(
n

k

)
(c+ h

k

n
) pk(1− p)n−k (1)

= c+
h

n

n∑
k=0

(
n

k

)
k pk(1− p)n−k (2)

= c+
h

n
EK = c+

h

n
np = c+ hp. (3)

As a result, the function can be used as both an upper and a lower envelope. This means that

for those cases where
(
n
k

)
(c + h k

n
) is an integer, Cn,k is empty, and the algorithm will terminate

if k ones are observed. For the case when it is not an integer, there will be only one member of

Cn,k. As a result, the survival function is bounded above by the simple expression

P (T > n) ≤
n∑

i=0

pi(1− p)(n−i).

To demonstrate, consider the von Neumann problem again, so that f(p) = 0.5 for whatever p.

Setting an(x) = bn(x) = 0.5 for all x, for any n it is clear that the size of any Cn,k is either 0 or 1,

if
(
n
k

)
is even or odd respectively. In particular, consider the cases where n = 2 and n = 4, and a

potential distribution of bit strings over sets:
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k,n=2 A2,k B4,k C2,k

0 00

1 10 01

2 11

k,n=4 A4,k B4,k C4,k

0 0000

1 0010,1000 0001,0100

2 0011, 1010, 1001 0101, 0110, 1100

3 1110, 1011 1101, 0111

4 1111

The sequences in the respective A, B and C sets once again represent “output 1”, “output

0” or “add more bits”, but under the Bernstein construction, there are two additional bit strings

that will terminate the algorithm where von Neumann would not: 0011 and 1100. Note that the

“descendents” of A2 also appear in A4 and indeed all An beyond n = 2.

In practice, it is not necessary to construct this table for all n, or even to select a particular

partitioning of all bit-strings, only to note the size of the sets themselves. As we demonstrate,

this is done by ensuring that for any string in An, all of its “descendants” obtained by adding any

k-length bit string are members of An+k, and similarly for Bn and Bn+k.

2.2 f(p) is Piecewise Linear, and Concave (or Convex)

One motivating problem for the practical use of the Bernoulli factory is the aforementioned elbow

function

f(p) = min(cp, 1− ε), c > 1, ε < 1,

which is concave on the interval [0, 1]. Due to Jensen’s inequality, the Bernstein polynomial

approximation to this function will always be less than the target function, so the lower bound

function is simply an(p) = f(p).

The upper envelope function is considerably more difficult to design. A single function cannot

be used, as the Bernstein approximation to a concave function will increase as the length of the

bit string increases. The envelope functions chosen by Nacu and Peres [2005] are functions of the

bit-string n and are sufficient to prove the convergence properties of the algorithm under particular

constraints, but are markedly inefficient at producing output draws; Flegal and Herbei [2011] shows

that a minimum of 216 bits are required for the function f(p) = min(2p, 0.8).

The alternative specification of Flegal and Herbei [2011] changes the problem slightly by speci-

fying a new objective function that is twice-differentiable, but still linear on the domain [0, (1−ε)/c],
6



using the method of Latuszynski et al. [2011]. The number of bits needed is considerably reduced

from the original case, but still requires a minimum of many hundreds of bits to operate on these

target functions.

Rather than create a new functional form to add to the target function in creating an upper

envelope, albeit one that would not noticeably affect the output of the algorithm for known inputs,

our approach is to use the basic form of the function to create a series of cascading envelopes that

will converge to the target function from above (approaching 1−f(p) from below). In particular, the

manner in which the functions cascade is governed by their own Bernstein polynomial expansions,

and the sequence converges to the target function f(p) in the limit.

We require a series of “checkpoints” {m1,m2, ...} at which the envelopes will be constructed and

used. As Nacu and Peres [2005] point out, it is trivial define a partition (An+∆n, Bn+∆n, Cn+∆n)

by starting with a partition (An, Bn, Cn) and adding all possible 2∆n bit strings to each member

of each set; this freedom allows us to minimize computation by choosing a smaller set of tests to

conduct. The choice of checkpoints can be defined in any number of ways but may also be chosen

to minimize the running time of the algorithm.

The method takes the following steps:

• Choose a potential series of functions that converge toward f(p). As shown in Figure 1, we

select a series of elbow functions whose elbow points lie along a preset curve (two such curves

are demonstrated).

• Choose an initial elbow point along this curve, and initial bit-string length m1. In this case

it is simple to verify that 1−bm1
m1

(p) > f(p) for all p by evaluating bm1
m1

at the target function’s

elbow point (1−ε)/c, as the Bernstein expansion’s concavity ensures that we only need check

the connecting points of the piecewise linear f(p).

• Retrieve m1 bits from the input bit stream and set k1 to equal the number of ones. Note

the sizes of each subset Am1,k1 , Bm1,k1 and Cm1,k1 . If desired, one can generate the actual

corresponding bit strings, but this is unnecessary to run the algorithm itself.

• If the bit string memberships of each groups have been specified exactly, note which of the

subsets contains the observed string; if not, generate a trinomial random variable with prob-

abilities proportional to (|Am1,k1|, |Bm1,k1 |, |Cm1,k1|). Terminate the algorithm with output 1

or 0 if this trinomial is in each of the first two bins; If not, continue.

For all subsequent steps indexed by i:

• Choose the next elbow point to be where the previous Bernstein approximation 1− bmi−1
mi−1(p)

intersects the elbow point curve. Choose a value mi > mi−1 such that 1 − bmi
mi

(p) > f(p),

and so that sufficient room is left for future iterations (since if the envelope is too close to
7
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Figure 1: Two methods for generating upper envelope functions for f(p) = min(2p, 0.8); each
successive function is defined by the intersection of a curve with the previous Bernstein approx-
imation. Left, the elbow points are generated with a simple polynomial descent (dotted line), as
each successive curve approaches the target function (dashed line). Right, the descent curve is
designed to minimize the distance between the Bernstein polynomial and the target function for
smaller values of p.

the target, an extreme value of n will be needed to produce a Bernstein expansion greater

than the target function.) This is the next upper envelope in the cascade; by construction,

it is less than the previous envelope and produces a Bernstein expansion that is less than its

precursor. Figure 1 contains two examples.

• Retrieve mi − mi−1 bits and add them to the current bit string; let the number of ones

equal ki. Calculate the sizes of sets Ami,ki , Bmi,ki and Cmi,ki for ki. For each element in

Ami−1,ki−1
, there are

(
mi−mi−1

ki−ki−1

)
elements that are produced by adding (mi−mi−1)-bit strings

with (ki− ki−1) ones; since these would have produced termination in the prior step, remove

these from Ami,ki ; similarly, remove the redundant descendants from Bmi,ki .

• Generate a trinomial random variable with probabilities proportional to (|Ami,ki |, |Bm1,ki|, |Cm1,ki|).
Terminate the algorithm with output 1 or 0 if this trinomial is in each of the first two bins,

and repeat these steps if not for the next checkpoint mi+1.

In general, these set sizes can all be pre-calculated for as many cascade steps i as is desired,

and for all possible k; the enumeration of bit strings into sets is not required since if the algorithm

continues at each i > 1 it is known that the previous bit string belonged to group C.

Due in part to its design as a practical implementation, the algorithm as stated does not have

conveniently calculable convergence properties. However, at worst, there exists some n for which
8



the envelope functions for Nacu and Peres [2005] can be used instead of the cascade, since as

n gets arbitrarily large for any given cascade envelope, it approaches that envelope and not the

target function; by the properties of the Bernstein approximation, there must exist some finite n

for which 1 − bnn(p), maintaining the same elbow position, is greater than the NP-envelope hn(p)

for all 0 < p < 1.

The method yields considerable practical improvement over that proposed by Flegal and Herbei

[2011] in terms of both the minimum number and the expected number of input bits required for a

single output. Much of the speed increase can be attributed to the fact that because |Bn,0| = 1 (as

bn(0) = 1), if the first considered bit sequence contains no ones, the algorithm will output a zero

on the first round. This result is perfectly valid if the envelope is shown to be strictly greater than

the target function, which requires that the number of input bits exceed some minimum value.

For ε = 0.2, the following table represents the number of input bits for a standard implemen-

tation of the Cascade Bernoulli Factory against the Flegal and Herbei [2011] implementation for

various multipliers c, over 104 trials, with pin = 0.01:

Cascade Method Best Alternative

c min(bits) E(bits) sd(bits) min(bits) E(bits) sd(bits)

2 20 66 512 256 562.9 2104.6

5 100 246 1215 2048 2439.8 7287.6

10 200 614 1851 8192 10373 54836

20 400 1410 3047 32768 43771 390800

The minimum number of draws shown in this table is not a strict property of the method,

but simply a consideration to be made in the choice of envelopes, since there needs to be a

comfortable distance between each Bernstein expansion and the target function so that future

steps do not require a vast number of additional input bits. The fewer bits that are required at

the first checkpoint, the less this distance will be, and the more bits will be required in further

steps. Likewise, choosing a higher number of bits and a closer envelope function will decrease the

probability that a comparably large number of bits will be required for the algorithm to terminate,

but greatly increase the number of bits required if termination does not occur quickly. The choice

of what quantity to optimize is therefore an option that practitioners may configure. If the required

number of output bits is small, one can choose a sufficiently close envelope with a relatively high

probability of termination – in this example, the chosen probability was 1 in 106 for most examples,

though for the case when c = 2, it is easy to find a “small” value of n, on the order of 10000, where

the probability of continuing is so small that the computer cannot distinguish it from zero.
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3 General Convex or Concave Functions

It is not a stretch to say that these methods can be combined to produce an even more efficient

Bernoulli factory in the same way that the original Nacu and Peres [2005] envelopes can be in-

troduced for high n. The use of the Latuszynski et al. [2011]/Flegal and Herbei [2011] envelope

construction can be used instead, with the change that the target function is no longer piecewise

linear.

As defined, the cascading envelope method works identically for general convex and concave

functions beyond the simple piecewise linear construction we have used so far. The only difference

is that the method for guaranteeing that the Bernstein expansion for the upper envelope is greater

than the target function is not as simple as checking a finite number of points. A numerical method

will need to be used to guarantee that the envelope does not cross the target function.
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