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Accelerating cycle expansions by dynamical conjugacy
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Periodic orbit theory provides two important functions—the dynamical zeta function and the
spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle
expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down
in the presence of non-hyperbolicity. We find that the slow convergence can be associated with
singularities in the natural measure. A properly designed coordinate transformation may remove
these singularities and results in a dynamically conjugate system where fast convergence is restored.
The technique is successfully demonstrated on several examples of one-dimensional maps and some
remaining challenges are discussed.

I. INTRODUCTION

Equilibrium statistical physics has been extremely
successful, while accurate computation of physical
averages in non-equilibrium systems remains a great
challenge both theoretically and practically, due to
the intrinsic difficulty of procuring the right statisti-
cal weight of various states based on equations of mo-
tion that govern system evolution [5, 16]. From a dy-
namical systems point of view, the statistical weight
is proportional to the natural measure of states in
the phase space, which often is non-smooth or even
singular in a chaotic system [14, 22] and thus flunks
an accurate representation. Fortunately, periodic or-
bit theory (POT) avoids a direct description of the
possibly fractal measure by expressing phase space
averages in terms of averages on periodic orbits or
cycles and thus is a powerful way for reliable and
accurate characterization [7, 15, 20, 23] of a nonlin-
ear chaotic system. The associated cycle expansion
of spectral determinants or dynamical zeta functions
orders cycles in a hierarchical way such that dynam-
ical averages are dominated by a few short cycles
and the longer ones give decreasing corrections. For
a uniformly hyperbolic system with finite symbolic
dynamics, the corrections decrease exponentially or
even super-exponentially [1, 17, 21]. However, for
non-hyperbolic systems, the convergence could be
extremely poor, which severely limits the applica-
tion of cycle expansions [7].
Real physical systems are non-hyperbolic in dif-

ferent cases. For example, in an intermittent sys-
tem, typical trajectories alternate between regular
and chaotic motions in an irregular way and thus
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cause non-hyperbolicity [3, 11]. A milder type of
non-hyperbolicity is created by the strong contrac-
tion at specific points such as homoclinic tangencies
in the Hénon map or critical points in 1-d maps [1, 2].
As a consesuence, the natural measure becomes
non-analytic and thus the nice shadowing property
among cycles that is necessary for fast convergence
of cycle expansions fades out. Poles appear near the
origin of the complex plane in the dynamical zeta
function and the spectral determinant, which gives
much trouble to a polynomial approximation as in
the normal cycle expansion. To compute averages
with fair accuracy, many cycles are needed, which
usually requires unaffordable amount of resources.
Thus, how to accelerate the convergence of cycle ex-
pansions in the presence of non-hyperbolicity is a
key problem in practice.

Several accelerating schemes have been proposed
based on the analyticity of the spectral functions.
One idea is to identify and remove the poles that are
near the origin and thus expand the radius of con-
vergence. In [1, 2, 4], the dominant terms in the tail
of the expansion are estimated and summed up to
approximately determine the leading pole. More ac-
curate estimation is obtained by using Padé approx-
imation, which is valid not only for computing the
leading pole but also for seeking other ones [13, 18].
An interesting consequence of analyticity of the un-
derlying dynamics is the existence of infinite sum
rules which symptom strong correlations among pe-
riodic orbits. These exact relations show signs of
information redundancy embedded in the whole set
of periodic orbits and can be utilized to accelerate
the convergence of cycle expansions [19]. In certain
cases, analyticity can be used to derive the spectral
function with no resort to periodic orbits and thus
implies a potential alternative route to the spectrum
computation. But so far, it succeeded only for sev-
eral very specific maps and hard to be generalized
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to other examples [8].
In this paper, we employ a geometric picture of

the cycle expansion to treat the convergence prob-
lem for 1-d maps [6, 9]. Maps with critical points
have a natural measure with singularities, due to
the strong contraction around critical points. This
contraction also deteriorates the dynamical shadow-
ing between cycles of different lengths and thus leads
to a slow convergence of cycle expansions. So, the
singularity in the natural measure is an effective in-
dicator of unbalance of cycle weights and signals a
small radius of convergence. One idea for expedit-
ing convergence is thus to identify and then clear out
singularities in the natural measure. In the current
paper, we achieve this by properly designing coordi-
nate transformations such that the resulted conju-
gate map has a natural measure with no singularity.
The computation of dynamical averages in the orig-
inal map can be efficiently done with counterparts
in the conjugate map since the convergence is much
improved in the new map.
In the following, after a brief review of periodic or-

bit theory in Section II, we discuss in Section III the
convergence of the dynamical zeta function and the
spectral determinant for maps with critical points.
A comparison between the two spectral functions is
made and the importance of hyperbolicity for effi-
cient calculation is emphasized. With a description
of the geometric significance of the truncation in cy-
cle expansions, our accelerating scheme is presented
and tested on several examples. In Section IV, we
summarize the paper and discuss the existing prob-
lems and possible directions for further investiga-
tion.

II. PERIODIC ORBIT THEORY

More often than not, dynamical averages are con-
veniently computed via time averaging,

a(x0) =
1

N

N∑
i=0

a(xi) , (1)

where x0 → x1 → · · ·xi → · · ·xN is an itinerary
generated by the map f(x) and N is a large num-
ber. Time averaging is easy to do but hard to
achieve high accuracy. In the presence of non-
hyberbolicity, its convergence is very slow and the
result becomes unreliable. To better understand the
dynamics for more efficient calculation, the phase
space average 〈a〉 is introduced and has the nice

property 〈a〉 = a(x0) in an ergodic system. Thus,

a geometric picture is enabled to explore the averag-
ing process, which will be explained in more detail.
For an ergodic map f(x), when n → ∞, under the

map action any smooth initial measure will approach
an invariant measure, called the natural measure.
Formally,

ρ(x) = lim
n→∞

∫
M

dyδ(x − fn(y))ρ0(y) , (2)

where ρ(x) is the natural measure and ρ0(y) is an
initial smooth measure. With the natural measure,
the average 〈a〉 can be obtained by

〈a〉 =
∫
M

a(x)ρ(x)dx , (3)

which is the most common way in statistical physics
for computing averages. In a chaotic system, how-
ever, the measure ρ(x), being often singular and sup-
ported on a fractal set, is hard to obtain, which mo-
tivates introduction of periodic orbit theory.
For a map f : M → M and an observable a(x),

we define the evolution operator Ln: Ln ◦ g(y) =∫
Ω Ln(y, x)g(x)dx for any function g(y). The kernel
is

Ln(y, x) = δ(y − fn(x))eβA
n

, (4)

where β is an auxiliary variable and An =∑n−1
k=0 a(f

k(x)). The average 〈a〉 or other dynamical
properties can be conveniently obtained by virtue of
the spectrum of L. Suppose the leading eigenvalue
of L is es0 , then we have [7]

〈a〉 = ∂s0
∂β

|β=0 . (5)

Specifically, when β = 0, we have Ln(y, x) = δ(y −
fn(x)), which is the kernel of the so-called Perron-
Frobenius operator. The escape rate of a dynamical
system, which we denote by γ, can be obtained by
computing the leading eigenvalue of this operator

γ = −s0 . (6)

The eigenvalues of the evolution operator L can be
detected with the help of the spectral determinant,
which is related to the trace of L and thus to the
periodic orbits by the identity

ln det(1 − zL) = Tr ln(1− zL) . (7)

For one-dimensional maps, detailed manipulation
shows that [7]

det(1 − zL) = exp(−
∑
p

∞∑
r=1

1

r

znprerβAp

|1− Λr
p|

) , (8)
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where p denotes prime cycles which are not repeats
of shorter ones. Λp is the stability eigenvalue of cycle
p and np is its length. In most classical computa-
tions, we are only interested in the leading eigen-
value. Obviously, the smallest positive zero of the
above-defined spectral determinant is e−s0 , the in-
verse of the leading eigenvalue of L. In view of
Eq. (5), we are able to compute dynamical averages
with the spectral determinant.

The leading eigenvalue can alternatively be ob-
tained from a simpler spectral function—the dynam-
ical zeta function

1

ζ
=

∏
p

(1− tp) , tp =
1

|Λp|
znpeβAp . (9)

It can be proved that 1
ζ is the zeroth-order approx-

imation of the spectral determinant and has kept
the smallest positive zero unchanged. Most often,
however, they have different analytic properties.

Practically, to evaluate zeros, we expand the spec-
tral determinant or the dynamical zeta function in
terms of power series and get polynomial approx-
imation through truncation. The power series ex-
pansion is one type of cycle expansion. For example,
for the one-dimensional map with complete binary
symbolic dynamics, the dynamical zeta function can
be expanded as

1
ζ = 1− t0 − t1 − [(t01 − t0t1)]

−[(t001 − t01t0) + (t011 − t01t1)]− · · · .
(10)

If we keep only the terms explicitly shown in
Eq. (10), its cycle expansion is truncated at cycle
length 3 and results in a polynomial in z of degree
3. The linear term is the fundamental contribu-
tion which gives the dominant part of the expansion.
Higher order terms are curvature corrections which
consist of contributions from prime cycles such as t01
and from pseudo-cycles being combination of prime
cycles such as t0t1. The cancelation between cycles
and pseudo-cycles signals shadowing properties and
smoothness of the underlying dynamics and results
in an exponential decrease of the curvature correc-
tions when uniform hyperbolicity is assumed. How-
ever, there is no good cancelation in the presence
of non-hyperbolicity and as a result cycle expansion
converges very slowly. In the current paper, we are
trying to restore this cancelation by dynamical con-
jugacy under certain circumstances.

III. IMPROVING THE CONVERGENCE OF

CYCLE EXPANSIONS

A. Notes on numerical computation

To calculate dynamical averages, we need to build
the truncated version of the dynamical zeta function
and the spectral determinant. The detailed explana-
tion for an efficient computation can be found in [7],
which is omitted here for brevity. With a truncation
length N , we drop out all the cycles longer than N .
To study the convergence of cycle expansions, as an
example, we will evaluate the escape rate and other
dynamical averages with the truncated dynamical
zeta function and spectral determinant. Also, we
will check how the computational error of physical
averages depends on the truncation length. How-
ever, except for very few cases, we cannot obtain
the exact average values. Therefore, we use aver-
ages obtained with the truncation length Nmax + 1
as the “exact” values when estimating errors with
the truncation length no larger than Nmax. Figures
are plotted to show this dependence and the loga-
rithmic scale is often used in the ordinate.
The natural measure is computed by map itera-

tions. We choose a random initial point and iterate
it many times, usually 107 if not specified otherwise.
Then, by counting the times that the point enters
a small interval, we get a probability distribution,
which is a numerical approximation of the natural
measure for an ergodic system. As the maps dis-
cussed in this paper are all ergodic, though not very
accurate in some cases, this method is simple for
getting a rough picture of the natural measure. In
addition, with Eq. (1), physical averages are easily
computed with the iterations at the same time.

B. Comparison of the dynamical zeta function

and the spectral determinant

The escape rate and other dynamical averages
may be evaluated with the dynamical zeta func-
tion or the spectral determinant. However, the con-
vergence rates of the two methods are quite differ-
ent, which is due to the difference in their radius
of convergence in cycle expansions. To show this,
we calculate the escape rate of the map f(x) =
6x(1 − x), M = [0, 1], f : M → M with the dy-
namical zeta function and the spectral determinant.
The results are listed in TABLE I. According to
the table, both methods converge fast, thanks to
the nearly perfect cancelation between prime and

3



N γ( 1

ζ
) γ(det(1 − zL))

1 0.87 0.9

2 0.83 0.83

3 0.83151 0.831492

4 0.831492 0.831492987

5 0.831493012 0.831492987487621

6 0.831492987 0.831492987487621617307

7 0.8314929875 0.8314929874876216173072762950

8 0.831492987487 0.83149298748762161730727629503691

9 0.8314929874876

10 0.83149298748762

TABLE I. Escape rate obtained by the dynamical zeta
function 1

ζ
and the spectral determinant det(1− zL) for

the map f(x) = 6x(1− x) on the interval [0, 1].

pseudo-cycles. Thus very accurate results can be
obtained with only several short prime cycles. More-
over, the results computed with the spectral deter-
minant converge much more quickly than with the
dynamical zeta function, implying a difference in
their analyticity.
FIG. 1 shows the dependence of the error in the

computed escape rate on the truncation length N
with the dynamical zeta function and the spec-
tral determinant. It is clear that the logarithm of
the error decreases linearly for the dynamical zeta
function and super-linearly for the spectral determi-
nant, which suggests an exponential and a super-
exponential decrease in the error itself, respectively.
The reason for this difference is that the spectral de-
terminant is analytic over the whole complex plane,
while the dynamical zeta function is only analytic in
a region with a finite radius. Thus, the coefficient
of the Nth-order term decreases super-exponentially
with N in the spectral determinant, and exponen-
tially in the dynamical zeta function. From a pure
algebraic point of view, the way in which the coef-
ficient of the Nth-order term decreases determines
the convergence rate.

C. The influence of hyperbolicity

Having compared the convergence rate of the dy-
namical zeta function and the spectral determinant
for the map f(x) = Ax(1− x) with A = 6, we check
how the value of A influences the convergence rate.
First, we set A equal to 5 and repeat the above

computation for the escape rate, the results are
shown in FIG. 2. We see that though a little
slower than the A = 6 case, both methods converge
fast—the dynamical zeta function method converges
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(a)the error of the escape rate computed with the dynamical
zeta function

0 2 4 6 8
−30

−25

−20

−15

−10

−5

0

N
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g
1

0
(|

γ−
γ N

|)

(b)the error of the escape rate computed with the spectral
determinant

FIG. 1. The error of the escape rate for the map f(x) =
6x(1−x) computed with (a) the dynamical zeta function
and (b) the spectral determinant.

nearly exponentially and the spectral determinant
exhibits a beautiful super-exponential convergence,
just like what happened before. It looks as if the
change of A had little effect on convergence. How-
ever, if we set A equal to 4, a dramatic change hap-
pens to the convergence. As shown in FIG. 3, the
dynamical zeta function with cycles up to length 15
gives an error of 10−5, while in the A = 5 case, the
error is 10−15. Moreover, the results obtained by the
spectral determinant even lose the super-exponential
convergence and exhibit only an exponential conver-
gence. This phenomena implies that, in this special
case, the spectral determinant may not be an entire
function any more.

If we increase A from 4 to 4.001, the convergence
of the expansion improves dramatically, as depicted
in Figure 4. When A = 4.001, the super-exponential
convergence of the spectral determinant is restored.
An apparent property that makes the map of A = 4
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(a)the error of the escape rate computed with the dynamical
zeta function
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FIG. 2. The error of the escape rate for the map f(x) =
5x(1−x) computed with (a) the dynamical zeta function
and (b) the spectral determinant.

different is that the height of the critical point falls
within the interval [0, 1], which is known to be the
cause of the slow convergence [7]. Here, we study
this phenomena in great detail and will design a
technique to counter its effect later. To show how
the critical point influences the convergence of cy-
cle expansions, we use the dynamical zeta function
to calculate the escape rate for maps with a higher-
order critical point. One general form of such maps
is f(x) = 1− |2x− 1|k, x ∈ [0, 1] [12].

In FIG. 5, the profile of the map for different k
is portrayed. As the order k increases, the top of
the map profile becomes flatter and flatter. The er-
ror of the escape rate obtained from the dynamical
zeta function is displayed in FIG. 6 and FIG. 3(a),
where we can see that the convergence is poorer for
maps with a higher-order critical point. To know
why the dynamical zeta function and the spectral
determinant flaw for maps with critical points, we
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(a)the error of the escape rate computed with the dynamical
zeta function
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(b)the error of the escape rate computed with the spectral
determinant

FIG. 3. The error of the escape rate for the map f(x) =
4x(1−x) computed with (a) the dynamical zeta function
and (b) the spectral determinant.

must have a clear understanding of the nature of
the approximations when we apply a truncation to
the dynamical zeta function.

D. The significance of the truncated dynamical

zeta function

As the number of all prime cycles is infinite,
the truncation to the spectral functions is needed
for an efficient computation. For example, for the
unimodal maps discussed above, if we truncate at
the shortest cycles, the dynamical zeta function is
1
ζ = 1− t0− t1. This truncated dynamical zeta func-

tion leaves out all the curvature corrections and is a
rough approximation for the original map. Now, one
question can be asked: is there a linear map having
1
ζ = 1 − t0 − t1 as its truncated first-order dynami-

cal zeta function? A simple example is a piecewise
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(a)the error of the escape rate computed with the dynamical
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(b)the error of the escape rate computed with the spectral
determinant

FIG. 4. The error of the escape rate for the map
f(x) = 4.001x(1 − x) computed with (a) the dynami-
cal zeta function and (b) the spectral determinant.

linear map consisting of two branches, which is con-
structed in this way: firstly, find the fixed points of
the map along with the slopes at these points, then,
draw line segments which pass the fixed points and
are tangent to the graph of the map. If we want to
construct a piecewise linear map which has a dynam-
ical zeta function identical with that of the original
map up to order N , we need the positions and slopes
of all the periodic points of period not larger than
N . FIG. 7 displays such a piecewise linear map for
the truncation up to length two, while the original
map is f(x) = 4x(1− x).

For the piecewise linear map, the curvature cor-
rections with order lager than N are nearly zero due
to its linearity, and therefore, we regard it as a proto-
typed geometric model of the Nth-order truncated
dynamical zeta function. The dynamical averages
computed with the Nth-order truncated dynamical
zeta function are very close to those given by the
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0.2

0.4

0.6

0.8

1

x

f(
x
)

FIG. 5. The graph of f(x) = 1− (2x− 1)k, k = 2, 4, 6.

piecewise linear map. So, how well the piecewise lin-
ear map approximates the original map determines
the computational accuracy of the truncation.

We know that the average obtained from the dy-
namical zeta function is the phase space average
〈a〉 =

∫
M dxρ(x)a(x), where ρ(x) is the natural mea-

sure. For example, for the tent map, the natural
measure is uniform everywhere. However, for the
map with critical points, the natural measure has
singularities as portrayed in FIG. 8.

It’s just these singularities that lead to the slow
convergence in a cycle expansion, because the piece-
wise linear map obtained from the truncated dy-
namical zeta function can not capture well the nat-
ural measure with singularities. Though the natural
measure of the piecewise linear map gets closer and
closer to that of the original map with increasing
truncation length, it fails at the singularity. As a re-
sult, the average obtained from the piecewise linear
map, or equivalently, from the truncated dynamical
zeta function for a non-hyperbolic system, does not
converge as fast as in the uniformly hyperbolic case.

E. Accelerating convergence in the presence of

a critical point

The singularity in the natural measure causes the
slow convergence of the dynamical zeta function. A
natural cure of this trouble is to clear out the sin-
gularity by a coordinate transformation, which re-
sults in a new map conjugate to the original one but
without a singularity in the natural measure. Con-
sequently, we are able to accelerate the convergence
of the cycle expansion with the help of the conjugate
map.
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FIG. 6. The error of the escape rate for maps with a
higher-order critical point computed with the dynamical
zeta function.
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FIG. 7. A piecewise linear map approximation of the
map f(x) = 4x(1− x).
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FIG. 8. The natural measure of the map f(x) = 4x(1−
x).

1. Clear out the singularities

For maps with a critical point, such as f(x) = 1−
|2x−1|k, k = 2, 4, 6, · · · , the probability distribution
has an algebraic form in the neighborhood of the
singularity, more explicitly

ρ(x) ∼ 1

x
k−1

k

near x = 0 , (11)

where k is the order of the critical point. For ex-
ample, the natural measure of the map f(x) =
1− (2x− 1)2 has two singular points: 0 and 1, with
the probability distribution ρ(x) ∼ 1√

x
near x = 0

and ρ(x) ∼ 1√
1−x

near x = 1.

A coordinate transformation is needed which
stretches the coordinate axis around the singular-
ity in order to remove it. We are able to con-
struct a homeomorphism h : M → M of the form

h(x) ∝ |x− x0|1/k in the neighborhood of the sin-
gularity x = x0 to achieve this goal. For the map
f(x) = 1 − (2x− 1)2 = 4x(1 − x), [0, 1] → [0, 1], an
appropriate transformation is h(x) = 2

π arcsin
√
x,

which as you can see has the desired form in the
neighborhood of 0 and 1.
With the coordinate transformation, the original

map is changed to its conjugate. Denoting the origi-
nal map by f(x) and the conjugate by g(x′), we have
the relationship that f = h−1 ◦g ◦h, or equivalently,
g = h ◦ f ◦ h−1. The map f(x) = 1 − (2x − 1)2 =
4x(1− x) and its conjugate are displayed in FIG. 9.
The conjugate map has no critical point any more,

and the natural measure produced by the two maps
are displayed in FIG. 10, in which we can see that
the natural measure of the conjugate map has no
singularity any more.
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(a)f(x) = 4x(1 − x)
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(b)the conjugate map

FIG. 9. (a)The map f(x) = 4x(1− x) and (b) its con-
jugate map.

2. The conjugate dynamical zeta function

In an ergodic system, the dynamical average 〈a〉
can be obtained through the time averaging, as well
as an average on the natural measure as discussed
before.

An ergodic map f : X → X and its conjugate
g = h ◦ f ◦ h−1 : X ′ → X ′ is related by the
conjugacy h : X → X ′. If we have the iteration
f(xi) = xi+1, under the conjugation h(xi) = x′

i, it
becomes g(x′

i) = x′
i+1, which is to say, one trajectory

{xi} for the map f(x) transforms into a trajectory
{x′

i} for the map g(x′). In particular, the cycle for
the map f(x) is a cycle for the map g(x′). If the
conjugacy h is piecewise smooth, a typical trajec-
tory has identical weight in both coordinates, which
suggests that the dynamical average can be similarly
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(a)the natural measure of map f(x) = 4x(1 − x)
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(b)the natural measure of the conjugate map

FIG. 10. The natural measure (a) of the map f(x) =
4x(1− x) and (b) of its conjugate map.

computed with iterations of the map g(x′),

〈a〉f =
1

N

N∑
i=i

a(xi) =
1

N

N∑
i=1

a(h−1(x′
i)) = 〈a◦h−1〉g .

(12)
Eq. (12) shows that computing the average 〈a〉 under
the map f(x) is equivalent to computing the average
〈a ◦ h−1〉 under the map g(x′).
Based on the discussion above, it is natural to

introduce a concept: the conjugate dynamical zeta
function as follows.
Suppose that the map f(x) and g(x′) are conju-

gate, with f = h−1 ◦ g ◦ h. The observable a for
the map f(x) has a correspondent a ◦ h−1 for the
map g(x′). The dynamical zeta function 1

ζ for f(x)

and a, and 1
ζ′

for g(x′) and a ◦ h−1 are said to be

conjugate. We call h the conjugacy between 1
ζ and

1
ζ′
.

It’s obvious that the dynamical averages obtained
by 1

ζ and 1
ζ′

are the same, since 〈a〉f = 〈a ◦ h−1〉g.
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Typical forms for 1
ζ and 1

ζ′
are

1
ζ =

∏
p(1− tp), tp = znp eβAp

|Λp|
1
ζ′

=
∏

p(1− t′p), t
′
p = znp e

βA′

p

|Λ′

p|
,

(13)

where A′
p =

∑np

i=1 a(h
−1(x′

i)) =
∑np

i=1 a(xi) = Ap.
So, Ap is equal to A′

p, no matter if h is diffeomor-
phic or not. If h is diffeomorphic, the cycle stability
eigenvalue Λp is also equal to Λ′

p. Thus, we obtain
1
ζ = 1

ζ′
. However, when h is not diffeomorphic, the

cycle stability eigenvalue could be changed and so
does the dynamical zeta function, i.e., 1

ζ 6= 1
ζ′
. This

happens when we use a non-diffeomorphic coordi-
nate transformation to clear out the singularities in
the natural measure.

3. The associated changes with the dynamical zeta

function

We mentioned in Section III E 1 that to clear out
the singularities, we need a coordinate transforma-

tion h ∝ |x− x0|1/k near the singular point x0. The
derivative of h has the form: dh

dx ∝ 1

|x−x0|1−
1

k

. So, the

dh/dx has a singularity at x = x0. Thus, the conju-
gacy h is not diffeomorphic at the singular point. If
one periodic point happens to be singular, the stabil-
ity eigenvalue of the periodic orbit will be changed.

For example, for the map f(x) = 1−|2x− 1|k, the
fixed point 0 is a singular point of natural measure.

So, the stability Λ0 for 0 is changed to Λ
1/k
0 , as shown

below.
In the neighborhood of the fixed point 0, the

asymptotic form for f and h is f ∼ Λ0x, x > 0
and h ∼ ax

1

k , where a > 0 is a coefficient. We have

g(x′) = h ◦ f ◦ h−1(x′)

∼ h ◦ f(xk/ak) ∼ h(Λ0x
k/ak) ∼ Λ

1/k
0 x′

(14)
Hence stability Λ0 of 0 for the conjugate map g is

changed to Λ
1/k
0 .

So, in this situation, 1
ζ′

6= 1
ζ . Nevertheless, for the

map f(x) = 1− |2x− 1|k, if the conjugacy is diffeo-
morphic except at x = 0, 1, the only change in 1

ζ′
is

Λ′
0 = Λ

1/k
0 , as compared to 1

ζ . As the conjugate dy-

namical zeta function 1
ζ′

is computed for map g(x′)
whose natural measure has no singularity, the con-
vergence for 1

ζ′
is much improved than for 1

ζ . Note

that the exact functional form of the conjugacy is
not essential as long as it has the right asymptotic
form near the singular point.

F. Several examples

We proved that dynamical averages in a map can
be computed with its conjugate map. For a map
with critical points, we should find an appropriate
coordinate transformation to clear out singularities
in the natural measure. The conjugate map behaves
much better in the sense that the singularity caused
by critical points is eliminated and the convergence
of the conjugate dynamical zeta function is accel-
erated. Moreover, we do not have to know the ex-
act functional form of the coordinate transforma-
tion. What we do is change stability eigenvalues of
specific cycles supported on the singularities of the
natural measure and hence transform the dynamical
zeta function to its conjugate.
In the following, we apply our method to several

examples. All these maps have critical points and
therefore, produce a natural measure with singular-
ity.

1. The logistic map

The logistic map f(x) = 4x(1 − x) , x ∈ [0, 1] has
a critical point of order two. Its natural measure is
singular at two points: x = 0 and x = 1. Under the
transformation h(x) = 2

π arcsin
√
x, the singularities

in its natural measure are cleared out, as shown in
FIG. 10. Also, the conjugate map g(x′) = h ◦ f(x) ◦
h−1 has no critical point any more, as depicted in
FIG. 9.
In the map g(x′), the stability eigenvalue of the

fixed point 0 is Λ
1/2
0 = 2 where Λ0 = 4 is the stability

eigenvalue of the corresponding point in the logistic
map, with stability eigenvalues of all the other orbits
remaining the same.
The logistic map has an interesting property: the

eigenvalue for any prime cycle except 0 has an abso-
lute value of 2n, where n is the length of the cycle.
However, the eigenvalue of 0 is Λ0 = 4. After the
coordinate transformation, the absolute value of the
eigenvalue of any prime cycle of length n is 2n, re-
turning to the tent map case.
Thanks to this interesting observation, the conju-

gate dynamical zeta function under the conjugation
h is just

1

ζ
= 1− z, (15)

which is the same dynamical zeta function of the
tent map. So, the escape rate of the logistic map is
exactly 0.

9



Similar to the conjugate dynamical zeta function,
we can write down the conjugate spectral determi-

nant, only with the change Λ′
0 = Λ

1/2
0 = 2. With

the conjugate spectral determinant, the error of the
escape rate decreases super-exponentially, as shown
in FIG. 11. However, if we apply the spectral de-
terminant directly to the logistic map, the error of
the escape rate decreases only exponentially with the
truncation length N , as shown in FIG. 3(b). So, by
an appropriate coordinate transformation, we bring
the super-exponential convergence back, which sig-
nals that the influence of critical points wears out in
the conjugate system.

Certainly, the logistic map here is very special
since it is exactly conjugate to a tent map [24]. To
show the general applicability of the technique, in
the following, we apply the method to several other
maps for which no smooth conjugacy to the piece-
wise linear map is known.
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FIG. 11. The error of the escape rate for the logistic
map computed with the conjugate spectral determinant.

2. The map f(x) = sin(πx)

The map f(x) = sin(πx) , x ∈ [0, 1] has a critical
point of order two. Similar to the logistic map, its
natural measure has two singular points: x = 0 and
x = 1. The asymptotic form of its natural mea-
sure near the singularity is ρ ∼ 1√

x
near x = 0

and ρ ∼ 1√
1−x

near x = 1. Under the coordinate

transformation h(x) = 2
π arcsin

√
x, the singularities

of the natural measure are removed, and we obtain
the conjugate map g(x′) = h ◦ f(x) ◦ h−1. FIG. 12
portraits the map f(x) and g(x′) where the critical
point that exists in f(x) disappears in the map g(x′).
FIG. 13 displays the natural measure produced by

the map f(x) and g(x′) respectively where the sin-
gularity for f(x) at x = 0, 1 vanishes for g(x′).
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(a)the map f(x) = sin(πx)
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(b)the conjugate map g(x′)

FIG. 12. The graph of (a) f(x) = sin(πx) and (b) its
conjugate map g(x′).

For the conjugate map g(x′), the stability eigen-
value of the fixed point 0 is changed from Λ0 = π to
Λ0 = π1/2, while the eigenvalue of any other orbit
doesn’t change. We use the dynamical zeta func-
tion and its conjugate to calculate the escape rate,
〈x〉, 〈x2〉, 〈x3〉 of the map f(x) = sin(πx). The re-
sults are shown in TABLE II, with a cutoff of cycle
length 10. Also included are the results obtained
by direct time averaging, with 107 iterations. From
TABLE II we can see that the results obtained from
the conjugate dynamical zeta function are by far the
most accurate.

FIG. 14 displays errors in the averages obtained
by the dynamical zeta function for f(x) = sin(πx)
and its conjugate with different truncation length.
Although all the errors seem to decrease exponen-
tially, the results from the conjugate dynamical zeta
function decay much faster, indicating a great im-
provement of the convergence.
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(b)the natural measure of the conjugate map g(x′)

FIG. 13. The natural measure of (a) f(x) = sin(πx) and
(b) its conjugate map g(x′).

the dynamical the conjugate time

zeta function dynamical zeta function averaging

escape rate 9 × 10−4 −3 × 10−11

〈x〉 0.47 0.467962949 0.468

〈x2〉 0.34 0.34397492 0.344

〈x3〉 0.28 0.28394728 0.284

TABLE II. The escape rate, 〈x〉 , 〈x2〉 , 〈x3〉 for the map
f = sin(πx) computed with three different methods.

3. The map f(x) = 1− (2x− 1)4

The map f(x) = 1− (2x− 1)4 has a critical point
of order four, with measure singularities at x = 0
and x = 1. The asymptotic form of the natural
measure near the singularity is ρ ∼ 1

x
3

4

near x = 0

and ρ ∼ 1

(1−x)
3

4

near x = 1 as shown in FIG. 16(a).

To remove the singularities, an appropriate coordi-

nate transformation is h(x) = 1− arccos(1−2
√

1−√
x)

π ,

which has an asymptotic form h ∝ x1/4 near x = 0
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(d)the error of 〈x3〉

FIG. 14. The error of the escape rate, 〈x〉 , 〈x2〉 , 〈x3〉
obtained by the dynamical zeta function(circles) for f =
sin(πx) and its conjugate dynamical zeta function(stars).
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and h ∝ (1− x)1/4 near x = 1. Thus, we obtain the
conjugate map g(x′) = h◦f(x)◦h−1. The map f(x)
and its conjugate g(x′) are depicted in FIG. 15. Al-
though f(x) has a very flat top, the peak of g(x′) is
acute. As a result, the natural measure of the map
g(x′) has no singularity, as exhibited in FIG. 16(b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f(
x
)

(a)the map f(x) = 1− (2x− 1)4
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(b)the conjugate map

FIG. 15. The graph of (a) the map f(x) = 1− (2x− 1)4

and (b) its conjugate map.

The stability eigenvalue of 0 of the conjugate map

is Λ′
0 = Λ

1/4
0 = 81/4. The convergence of the dy-

namical zeta function for f(x) = 1 − (2x− 1)
4
is

even poorer than the logistic map. However, the
conjugate dynamical zeta function continues to give
a much accelerated convergence. The escape rate,
〈x〉 , 〈x2〉 , 〈x3〉 obtained by the two different ways
are shown in TABLE III, with a truncation length
10. It is worth mentioning that the direct time av-
eraging becomes very unreliable in the current case.
FIG. 17 plots the errors in these averages with differ-
ent truncation length. We can see that the conjugate
dynamical zeta function converges much faster.
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(b)the natural measure of the conjugate map

FIG. 16. The natural measure of (a) f(x) = 1−(2x− 1)4

and (b) its conjugate map.

the dynamical the conjugate

zeta function dynamical zeta function

escape rate 2× 10−3 −2× 10−9

〈x〉 0.45 0.4475860

〈x2〉 0.36 0.3601271

〈x3〉 0.32 0.31801265

TABLE III. The escape rate, 〈x〉 , 〈x2〉 , 〈x3〉 for the map
f(x) = 1− (2x− 1)4 computed with two different meth-
ods.

4. The map f(x) = 1− (2x− 1)6

The map f(x) = 1− (2x− 1)
6
has a critical point

of order six, and therefore causes an even worse
convergence for the dynamical zeta function. The
coordinate transformation we use is h(x) = 1 −
arccos(1−2(1−x

1

3 )
1

3 )
π , and the conjugate map g(x′) =

h ◦ f(x) ◦ h−1 has no critical point any more. Thus,
the singularities of natural measure are removed.
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(d)the error of 〈x3〉

FIG. 17. The error of the escape rate, 〈x〉 , 〈x2〉 , 〈x3〉
obtained by the dynamical zeta function(circles) for
f(x) = 1 − (2x− 1)4 and its conjugate dynamical zeta
function(stars).

FIG. 18 shows the graph of the map f(x) and g(x′).
The natural measure of the map f(x) and g(x′) is
depicted in FIG. 19, obtained with 108 iterations
in this case. We see that both numerical measures
fluctuate, which implies that time averages based on
iterations can’t reach a high accuracy for this map.
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(a)the map f(x) = 1− (2x− 1)6
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FIG. 18. The graph of (a) the map f(x) = 1− (2x− 1)6

and (b) its conjugate map g(x′).

For the conjugate dynamical zeta function, the
only difference from the original one is that, the sta-

bility eigenvalue of 0 is changed to Λ′
0 = Λ

1

6

0 = 12
1

6 .
The values of the averages obtained by the two dy-
namical zeta functions, with a truncation length 10,
are listed in TABLE IV, while the dependence of
the computational errors on the truncation length is
portrayed in FIG. 20. We can see that the conjugate
dynamical zeta function converges much faster than
the original zeta function, which provides evidence
that clearing out the singularity in natural measure
helps accelerate the convergence.
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FIG. 19. The natural measure of the map f(x) = 1 −
(2x− 1)6 and its conjugate map g(x′).

the dynamical the conjugate

zeta function dynamical zeta function

escape rate 5× 10−3 −2× 10−7

〈x〉 0.4 0.40232

〈x2〉 0.34 0.332921

〈x3〉 0.31 0.30027

TABLE IV. The escape rate, 〈x〉 , 〈x2〉 , 〈x3〉 for the map
f(x) = 1− (2x− 1)6 computed with two different meth-
ods.

5. A map with three measure singularities

The maps we have studied so far all have two mea-
sure singularities: x = 0 and x = 1. In this section,
we turn to a map with three measure singularities,
the graph of which is shown in FIG. 21(a). The exact
functional form of the map is f(x) = sin(πa (1 − x)),
where a = 1.3156445888.... It has a critical point of
order two, and has a nice property: f(0) = xf , where
xf is the unique fixed point of the map. The natu-
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FIG. 20. The error of the escape rate, 〈x〉 , 〈x2〉 , 〈x3〉
obtained by the dynamical zeta function(circles) for
f(x) = 1 − (2x− 1)6 and its conjugate dynamical zeta
function(stars).
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ral measure of f has three singularities: x = 0, xf , 1.
The asymptotic form of the natural measure near
the singularity is: ρ ∼ 1√

x
near x = 0, ρ ∼ 1√

|x−xf |
near x = xf and ρ ∼ 1√

1−x
near x = 1, as shown

in FIG. 22(a). To clear out the singularities, we
use the coordinate transformation h(x) as depicted
in FIG. 23, which stretches the coordinate around
the singularities. The conjugate map g(x′) is nearly
a piecewise linear map, as shown in FIG. 21(b).
The natural measure of the map g(x′) is depicted
in FIG. 22(b), which has no singularity any more.
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(a)the map with three measure singularities
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FIG. 21. The graph of (a) the map with three measure
singularities and (b) its conjugate map.

For the conjugate dynamical zeta function, the
stability of xf should be changed to |Λxf

|′ = |Λxf
| 12 .

Again, we use the original and the conjugate dynam-
ical zeta function to calculate averages. The results
are listed in TABLE V, with a cutoff of cycle length
20. The errors in the computation are plotted in
FIG. 24. Note that the binary symbolic dynamics is
not complete in the current example. The number
of cycles get much reduced compared with the full
symbolic dynamics case.
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(a)the natural measure of the map with measure three
singularities
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FIG. 22. The natural measure of (a) the map with three
measure singularities and (b) its conjugate map.

By clearing out the singularities in the natural
measure, the convergence is accelerated a lot. So, in
this case, the conjugate dynamical zeta function is
still an effective way to acquire averages with high
accuracy.

the dynamical the conjutate

zeta function dynamical zeta function

escape rate 5× 10−4 −1× 10−10

〈x〉 0.601 0.601895610

〈x2〉 0.453 0.453165976

〈x3〉 0.36 0.364669939

TABLE V. The averages for the map with three measure
singularities computed with two different methods.
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FIG. 23. The conjugacy h(x) for the map with three
measure singularities.

6. A map with measure singularities on a period-2

orbit

The conjugation method may be applied to sys-
tems with measure singularity on longer orbits. As
an example, we study a map with measure singular-
ities on a period-2 orbit. The functional form of the
map is still f(x) = sin(πa (1 − x)), but with a dif-
ferent value a = 1.10263451544766.... FIG. 25(a)
portrays the graph of the map. For this map,
f(0) = xa, f

2(0) = xb, where xa and xb make a
period-2 orbit. The natural measure of the map
is shown in FIG. 26(a) and has four singularities:
x = 0, xa, xb, 1. An appropriate conjugacy h(x)
is plotted in FIG. 27, which stretches the coordi-
nate around the four singularities. The conjugate
map g(x′) and its natural measure are plotted in
FIG. 25(b) and FIG. 26(b) respectively. For the map
g(x′), the singularities has been removed—the situ-
ation that we have experienced many times.

We change the eigenvalue of the period-2 orbit and
obtain the conjugate dynamical zeta function—just
as what we have done. The conjugate dynamical
zeta function gives interesting results in the calcu-
lation of the escape rate. FIG. 28 shows the error
in the escape rate computed with the original and
the conjugate dynamical zeta function. In general,
the results obtained with the conjugate dynamical
zeta function converge exponentially and uniformly,
faster than with the original dynamical zeta func-
tion. However, it’s not totally true here. The conju-
gate dynamical zeta function doesn’t accelerate the
convergence as effectively as before. So, why the con-
vergence for the conjugate dynamical zeta function
is not so good even if we have removed the measure
singularities?
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FIG. 24. The error of the escape rate, 〈x〉 , 〈x2〉 , 〈x3〉
obtained by the dynamical zeta function(circles) for the
map with three measure singularities and its conjugate
dynamical zeta function(stars).
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FIG. 25. The graph of (a) the map with measure singu-
larities on a period-2 orbit and (b) its conjugate map.

If we stare at FIG. 25(b), the graph of the con-
jugate map, we find one special point at which the
slope is infinite. It’s just this point that causes the
slow convergence. We regard this infinite slope map
as “super-hyperbolic”. The super-hyperbolic map
can slow down the convergence. To illustrate this
point, we use the dynamical zeta function to calcu-
late the escape rate of a super-hyperbolic map f(x),

f(x) = { 2x x ∈ [0, 1/2]√
2− 2x x ∈ [1/2, 1] ,

(16)

where f ′(1) = ∞. We compare the results obtained
from this map and the logistic map in FIG. 29.
Both results are computed with the original dynam-
ical zeta function. We can see that the convergence
rates are similar for these two maps. So, the super-
hyperbolicity is harmful to the convergence, just like
the non-hyperbolicity. To understand this, we recall
the fact that the average obtained by the truncated
dynamical zeta function is nearly identical to the
one computed with the corresponding piecewise lin-
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(b)the natural measure of the conjugate map

FIG. 26. The natural measure of (a) the map with mea-
sure singularities on a period-2 orbit and (b) its conju-
gate map.

ear map. So, if the piecewise linear map can ap-
proximate the original map very well, the average
obtained would be quite accurate. However, for the
super-hyperbolic map, there exists a point with in-
finite slope, which means that the value of the map
changes extremely unevenly near that point. So, a
lot of cycle points are needed near that point to get
a fair approximation just like near the critical of a
non-hyperbolic map. Thus, the slow convergence of
the super-hyperbolic map is expected.
Based on the discussion above, we can see that the

singularity in the natural measure is not the only fac-
tor which influences the convergence of the dynami-
cal zeta function. For the map with measure singu-
larities on a period-2 orbit, clearing out the measure
singularities doesn’t improve the convergence much.
In fact, the direct and essential factor to determine
the convergence of the dynamical zeta function is the
cancelation between prime cycles and pseudo-cycles.
For the super-hyperbolic case, the cancelation is not
good even if the measure singularities do not exist.
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FIG. 27. The conjugacy h(x) for the map with measure
singularities on a period-2 orbit.
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FIG. 28. The error of the escape rate by the orig-
inal(circles) and the conjugate(stars) dynamical zeta
function for the map with measure singularities on a
period-2 orbit.

So, in the super-hyperbolic case, how to incur fur-
ther cancelation remains a challenging problem.

IV. CONCLUSION

The central idea of this paper is that by clear-
ing out the singularities in the natural measure we
may accelerate the convergence of cycle expansions.
Maps with critical points produce natural measures
with singularities and show bad convergence in the
expansion calculation. With appropriate coordi-
nate transformation, the resulted conjugate map
produces no singularity in its natural measure. To
calculate dynamical averages, we use the conjugate
spectral function, the cycle expansion of which is
greatly accelerated due to the removal of the sin-
gularities. Essentially, the method locates leading
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FIG. 29. The error of the escape rate for the super-
hyperbolic map and the logistic map.

poles of the spectral function by classifying singu-
larities in the natural measure and removes them
through a coordinate transformation.

We test our method on several maps, i.e., f(x) =
1 − |2x − 1|k, k = 2, 4, 6, f(x) = sin(πx) which
have only one critical point and complete binary dy-
namics, and the map which has three measure sin-
gularities. For these maps, the conjugate dynam-
ical zeta function converges much faster than the
original zeta function. Also, the conjugate spectral
determinant restores the super-exponential conver-
gence. However, when we treat the map with mea-
sure singularities on a period-two orbit, we find that
the conjugate dynamical zeta function does not con-
verge as fast as expected. Analysis shows that the
super-hyperbolicity of the conjugate map leads to
this slowing-down. Further study is needed to elim-
inate this nuisance.

In this paper, we use one-dimensional maps as
examples to demonstrate our accelerating scheme.
How to generalize it to higher dimensions or to flows
requires further investigation. Even in the 1-d case,
we can can only treat maps with symbolic dynam-
ics being subshifts of finite type. If the genealogy
sequence of the critical point is not essentially pe-
riodic, there may exist a natural boundary in the
complex plane for the dynamical zeta function on
which singular points are dense. In this case, the
natural measure is singular on a dense and count-
able set [10]. It seems not possible to expand the
radius of expansion by analytic continuation. Novel
techniques have to be invented to achieve accelerated
convergence in this case.
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[3] R. Artuso, P. Cvitanović, and G. Tanner. Cycle ex-
pansions for intermittent maps. Proc. Theor. Phys.
Supp., 150:1–21, 2003.

[4] E. Aurell. Convergence of dynamical zeta functions.
J. Stat. Phys., 58:967, 1990.
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