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Abstract

A group-theoretical approach for studying localized periodic and quasiperiodic vibrations in 2D

and 3D lattice dynamical models is developed. This approach is demonstrated for the scalar mod-

els on the plane square lattice. The symmetry-determined invariant manifolds admitting existence

of localized vibrations are found and some types of discrete breathers are constructed on these

manifolds. A general method using the apparatus of matrix representations of symmetry groups

to simplify the standard linear stability analysis is discussed. This method allows one to decom-

pose the corresponding system of linear differential equations with time-dependent coefficients into

a number of independent subsystems whose dimensions are less than the full dimension of the

considered system.
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Introduction

The problem of energy localization in discrete nonlinear Hamiltonian systems attracts

a considerable attention over the past few decades. In the framework of this problem a

particular interest represent stationary discrete breathers (DBs) — spatially localized and

time-periodic dynamical objects. The history of discovery and discussion of different discrete

breather properties can be found in a number of detailed review papers [1–5]. Various

analytical, numerical and experimental methods were used to study breathers in a wide

variety of discrete Hamiltonian systems. However, the most papers on discrete breathers

deal with one-dimensional chains, and much smaller number of articles are devoted to study

these dynamical objects in 2D and 3D periodic structures [6–12, 14–19].

In the present paper, we discuss discrete breathers in 2D square lattice with one degree

of freedom per lattice site. Such dynamical models are called scalar.

Different physical interpretation can be given to a scalar model. For example, it has

been used for describing transversal mechanical vibrations of plane lattice in [6] (see Fig.

1), charge vibrations in an electrical network of nonlinear capacitors coupled to each other

with linear inductors in [11, 13] (see Fig. 2), etc.
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FIG. 1: Mechanical model.

In vector models, more than one degree of freedom is associated with every lattice cite.

For example, one can consider mechanical vibrations of the plane lattice with x- and y-

displacements of the particles along its surface.

In many papers DBs in 2D and 3D lattices are investigated by some approximate methods

such as ”Rotating Wave Approximation” (RWA) etc., and only several works are devoted to

study these dynamical objects with the aid of numerically exact procedures. For example,
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FIG. 2: Electrical model.

in the paper [6], stationary DBs were constructed for scalar models on square and hexagonal

lattices with homogeneous interparticle potentials of different even degrees.

In the present paper, we develop a general group-theoretical method to obtain invariant

manifolds admitting existence of localized excitations. Then the search of DBs can be done

in two steps.

1. Singling out the above mentioned symmetry-determined invariant manifolds. To this

end, we must know only the structure and the symmetry group of the considered physical

system and we don’t take into account any information about interparticle interactions.

2. Constructing time-periodic dynamical regimes on each of these manifolds. Obviously

such regimes represent stationary discrete breathers. Unlike the first step, we now need to

know differential equations describing a given dynamical model.

Below we discuss the above approach using as examples the following two scalar dynamical

models on the square lattice:

q̈i,j + γ · qm−1
i,j = (qi+1,j − qi,j)

m−1 − (qi,j − qi−1,j)
m−1+

+(qi,j+1 − qi,j)
m−1 − (qi,j − qi,j−1)

m−1,
(1)

q̈i,j + γ · q3i,j = qi+1,j + qi−1,j + qi,j+1 + qi,j−1 − 4qi,j . (2)

For both models i = 1..M , j = 1..N and periodic boundary conditions are assumed. In

equilibrium state all qi,j are equal to zero. Despite the fact that the dynamical variable qi,j

associated with the site (i, j) can be of different physical nature, we often refer to it as the

particle (atomic) displacement.

Eqs. (1) describe dynamical model on square lattice whose ”particles” interact with the

nearest neighbours and with a substrate by homogeneous intersite and on-site potentials of
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the same degree m. Eqs. (2) determine the Klein-Gordon model, i.e. they describe an array

of Duffing oscillators with linear interaction between the nearest neighbours. In both models,

the strength of the on-site potential relative to the intersite potential is characterized by the

coefficient γ, and we study stability of discrete breathers with respect to this parameter.

Note that the model (1) was used in [6] without the on-site potential (γ = 0).

Why we consider these two models? The model (1) does not admit the harmonic ap-

proximation for m > 2, and therefore it has no phonon spectrum. On the other hand, there

exist exact solutions to this model representing Rosenberg nonlinear normal modes (NNMs)

[24] (see, also, [23]). Existence of such solutions is guaranteed by the possibility to separate

space and time variables as a consequence of homogeneity of the potential. In the dynamical

regime corresponding to a given Rosenberg NNM, variables turn out to be proportional to

one and the same function of time f(t), while spatial profile can be determined from a sys-

tem of nonlinear algebraic equations. Each localized NNM represents a stationary discrete

breather. Moreover, linear stability of these modes can be analyzed much simpler than the

investigation based on the well-known Floquet method which one has to exploit in general

case.

The second model possesses phonon spectrum and turns out to be more complicated

for studying. Indeed, we must solve nonlinear differential equations to construct discrete

breathers and need in the Floquet method to analyze their stability.

It is essential that for both models we search breather solutions on the same symmetry-

determined invariant manifolds which are singled out by group-theoretical methods. The

above invariant manifolds can be used to construct DBs for any other scalar models on the

square lattice.

For vector models and/or for different lattices, one can find the corresponding symmetry-

determined invariant manifolds using the same group-theoretical approach.

Let us emphasize that nonlinear differential equations of 2D and 3D dynamical models

possess, as a rule, many different solutions and a symmetry-related classification is very

desirable for any procedure of their construction.

Among solutions which can exist on the symmetry-determined invariant manifolds dis-

cussed in the present paper may be not only DBs, but various localized quasiperiodic dy-

namical objects (some discussion of such objects in one-dimensional lattices can be found in

[25]). The stability analysis of quasiperiodic regimes represents serious difficulties since one

4



cannot use the Floquet method in such cases.

In [34], we have developed a group-theoretical method for splitting the linearized dynam-

ical equations near a given dynamical regime (periodic or quasiperiodic) with an arbitrary

symmetry group. In some cases, this method allows one to simplify considerably the stability

studying of a given dynamical regime, since high-dimensional linearized system is decom-

posed into a number of independent subsystems of linear equations with time-dependent

coefficients whose dimensions can be sufficiently small.

The present paper possesses the following structure. The group-theoretical method for

finding symmetry-determined invariant manifolds is discussed in Sec. I. Discrete breathers

in scalar model (1) with homogeneous potentials of m = 4, 6, 8 degrees are considered

in Sec. II, while their stability is analyzed in Sec. III. Construction and stability of DBs

in the Klein-Gordon model 2 are discussed in Sec. IV. The group-theoretical method for

simplifying stability analysis of periodic and quasiperiodic regimes in dynamical systems with

discrete symmetry is presented in Sec. V. The results of the paper are briefly summarized

in Conclusion.

I. SYMMETRY-DETERMINED INVARIANT MANIFOLDS

A. General discussion

All possible solutions to a given system of differential equations L can be classified by

subgroups Gj of the ”parent” symmetry group G0 consisting of all transformations of dynam-

ical variables which transform this system to its equivalent form. In other worlds, G0 is the

group of invariance of the considered dynamical model. In particular case of a Hamiltonian

system, G0 can be treated as a group of all transformations under which its Hamiltonian

turns out to be invariant.

If we take a certain solution to the dynamical equations L and begin to act on it by all

transformations g ∈ G0, then some of these transformations conserve the solution — they

form a subgroup G ∈ G0. On the other hand, acting on the above solution by other g ∈ G0,

i.e. by g 6∈ G, we obtain the orbit ofm exact solutions to which our original solution belongs.

The integer number m is the index of the subgroup Gj in the group G0.

Thus, for the symmetry classification of all possible dynamical regimes in the given model
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with parent group G0, we must consider all its subgroups Gj ∈ G0. Each Gj determines an

invariant manifold in the phase space of the dynamical system: if we select initial conditions

belonging to this manifold and begin to integrate the differential equations of our model, we

obtain a dynamical regime which never leaves the above manifold during the time evolution.

Invariant manifolds corresponding to subgroups of the symmetry group of a given model we

call ”symmetry-determined invariant manifolds”.

The idea of classification of dynamical regimes by symmetry-determined invariant mani-

folds was taken as a principle in the theory of bushes of nonlinear normal modes in physical

systems with discrete symmetry [20, 21] (see also [22]). A given m-dimensional bush is

described by m dynamical variables and represents an exact solution belonging to a certain

symmetry-determined invariant manifold of the considered dynamical model.

In [20, 21, 26–28, 34], we have obtained low-dimensional bushes of extended vibrational

modes for dynamical models on various space-periodic structures. For example, in [26] this

has been done for all possible 3D crystal structures described by any of 230 space groups.

We have studied existence and stability of one-dimensional and two-dimensional bushes of

NNMs in the FPU chains in [27, 28].

The group-theoretical approach for finding bushes of NNMs and for analyzing their sta-

bility properties was described in detail in [22]. However, up to the present time, we applied

this approach to study bush existence and stability for the case of extended NNMs. For this

purpose, we need to make use of the subgroups Gj of the parent space groupG0 which include

some translational symmetry elements. The primitive cell of the resulting spatial pattern of

the vibrational state is some times greater than the primitive cell of the equilibrium state.

In the present paper, we consider stationary discrete breathers which represent localized

vibrational regimes. As a consequence, they are associated with point subgroups of the

corresponding parent space group.

B. Choice of the parent symmetry group

To begin the procedure of finding symmetry-determined invariant manifolds, we must

choose a parent symmetry group G0 which embraces all transformations of dynamical vari-

ables under which the considered mathematical model is invariant. Taking into account that

the stationary state represents one of the solutions to the model dynamical equations and

6



that, therefore, the symmetry of this state must be a certain subgroup of G0, we, firstly,

consider the spatial transformations under which the square lattice is invariant.

It is well known, that the symmetry of square lattice is characterized by the plane space

group C1
4v = P4mm (in Schoenflies and in the International notations, respectively) and we

can assume G0 = C1
4v.

In general, the parent group G0 can be wider than the symmetry group of the stationary

state. For example, several stationary states with the same energy and symmetry can

correspond to a given Hamiltonian system and, as a consequence, the symmetry elements

which transform these stationary states into each other must also enter the group G0.

Moreover, the parent groupG0 can contain some additional symmetry elements due to the

specific type of interparticle interactions in the considered model. For both models (1), (2),

all forces acting on particles turn out to be odd functions of the atomic displacements qij (the

corresponding potentials represent even functions of their arguments). As a consequence,

changing signs of all dynamical variables, which we denote by symbol P̂ , also represents a

transformation under which models (1), (2) are invariant and P̂ must be incorporated into

the parent group G0.

Therefore, in our case, the symmetry parent groupG0 can be written as the direct product

of the space group C1
4v and the group(E, P̂ ):

G0 = C1
4v ⊗ (E, P̂ ). (3)

The last group consists of two elements, E and P̂ , where E is identity element.

For scalar models on square lattice which are not invariant with respect to the transfor-

mation P̂ , we can assume G0 = C1
4v.

If one find any additional transformations which don’t change a given mathematical

model, they can also be incorporated into the parent symmetry group G0. It such a case, we

will obtain more detailed symmetry-related classification of the dynamical regimes because

some more subgroups correspond to the wider parent group.

C. Wyckoff positions

As was already discussed, for finding invariant manifolds associated with stationary dis-

crete breathers, we must deal with point subgroups of the parent symmetry group G0 (3).
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Such subgroups (they don’t contain any translational symmetry elements), can be found for

any of 230 space groups in the standard textbooks on crystallography. One can find there

a list of so called Wyckoff positions (WPs) or regular point sets in the primitive crystal cell

which correspond to point subgroups of a given space group. WPs determine points in the

crystalline lattice with different local symmetry and, in any crystal, atoms are distributed

among these points.

However, WPs characterize the local symmetry of different points in crystal lattice in

equilibrium state. On the other hand, for the vibrational regime corresponding to a given

DB, we deal with atoms displaced from their equilibrium positions. As a consequence, for a

fixed instant, we have an atomic pattern whose symmetry is characterized by a subgroup of

the local symmetry group of the crystal equilibrium state. Thus, we must find all subgroups

of the crystal local (point) symmetry groups.

For the square lattice with plane group C1
4v, there are six WPs (see, e.g., [32]) and only

three of them must be considered for our purpose. In the International notation, they read:

1a, 4mm (0, 0); (4)

1b, 4mm
(1

2
,
1

2

)

; (5)

2c, mm
(

0,
1

2

)

. (6)

Hereafter, we will refer to these Wyckoff positions as WP-1, WP-2, and WP-3, respectively.

The following information is given for each WP in (4)-(6): the multiplicity (1; 1; 2) and the

label (a; b; c), the local point group (4mm; 4mm; mm) and the localization of the fixed

point of this group in square primitive cell with unit edge
[

(0, 0);
(

1
2
, 1
2

)

;
(

0, 1
2

)]

.

The local groups of other Wyckoff positions turn out to be subgroups of the local groups

listed in (4)-(6), and we will automatically take them into account when select all subgroups

of the groups specified in (4)-(6).

The WP-1 and WP-2 possess identical point symmetry groups (4mm), but these groups

are located in different ways with respect to the square cell of the considered lattice: the

fixed point of the group 4mm of WP-1 lies at the corner of the primitive cell, while the

group 4mm of WP-2 located in the center of the cell (see, Fig. 3). Because of this reason,
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subgroups of corresponding point groups of WP-1 and WP-2 generate different invariant

manifolds (see Table 1).

WP-1 WP-2 WP-3

FIG. 3: Wyckoff positions in the primitive cell of square lattice.

The point group (mm) of WP-3 is located at the middle of the cell edge.

Note that WP-1 and WP-2 consist of only one point per primitive cell (their multiplicity

is unity), while WP-3 consists of two points per the cell (see, Fig. 3).

D. Construction of symmetry-determined invariant manifolds

In general case, dynamical equations of a given scalar model on the square lattice can be

written in the form

Q̈M×N = F (QM×N). (7)

Here matrix

QM×N =















q11 q12 ... q1N

q21 q22 ... q2N

... ... ... ...

qM1 qM2 ... qMN















(8)

determines the set of all variables qij = qij(t) corresponding to the M × N fragment of the

lattice, while matrix F represents r.h.s. of the differential equations of the considered model

(examples of such models are given by Eqs. (1) and (2)).

As was discussed in Sec. IC, we must consider all subgroups of local symmetry groups

of WP-1, WP-2 and WP-3 demanding that the matrix (pattern) QM×N is invariant with

respect to these subgroups. As a result, we will obtain all possible symmetry-determined

invariant manifolds.

The restriction on QM×N to be invariant under the action of a symmetry group G ⊂ G0

leads to certain relations between the dynamical variables qij(t): some of them turn out to
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be equal or differ from each other only in sign. Below, presenting a symmetry determined

invariant manifold, we denote equal dynamical variables by the same symbols a(t), b(t),

c(t), d(t) ... and don’t point out explicitly their time-dependence.

In the present paper, we study only strongly localized discrete breathers. This allows us to

deal with relatively small fragments QM×N of each invariant manifold. We choose concrete

values of M and N from the condition that amplitudes of qij(t) for peripheral sites must be

much smaller than those for the breather core.

Let us demonstrate a procedure for finding 3× 3 manifold Q
(1)
3×3 invariant with respect to

the point group G = C4v.

This group consists of eight elements: four of them (g1, g2, g3, g4) are rotations by

the angles 0◦, 90◦, 180◦, 270◦ around z axis orthogonal to the lattice plane, while other

elements (g5, g6, g7, g8) are reflections in the mirror planes orthogonal to 3D vectors

(1,0,0), (1,1,0), (0,1,0), (-1,1,0). This four reflections we denote by the symbols σx, σy, σxy,

σ−xy, respectively. [Detailed description of the group C4v one can find below in Eqs. (53).]

Above listed symmetry elements, acting on the manifold

Q
(1)
3×3 =











q11 q12 q13

q21 q22 q23

q31 q32 q33











, (9)

transpose its elements qij ≡ qij(t) in a certain way. In particular, for symmetry element g2,

representing rotation by 90◦ around Z axis passing through the center of the square cell, we

have

ĝ2Q
(1)
3×3 =











q13 q23 q33

q12 q22 q32

q11 q21 q31











, (10)

while for g5, representing reflection σx, we obtain

ĝ5Q
(1)
3×3 =











q13 q12 q11

q23 q22 q21

q33 q32 q31











. (11)

Note that g2 and g5 can be considered as generators of the group G = C4v: all other

elements of this group can be expressed via different products of g2 and g5.
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As a consequence, to obtain manifold, invariant with respect to the group G = C4v, we

can require that this manifold is invariant relative to g2 and g5 only:

ĝ2Q
(1)
3×3 = Q

(1)
3×3, (12)

ĝ5Q
(1)
3×3 = Q

(1)
3×3. (13)

Then from Eqs. (12), (9) and (10), we obtain

q12 = q21 = q32 = q23 = b(t),

q11 = q31 = q33 = q13 = c(t),

q22 = a(t).

Here we have introduced three new variables a(t), b(t) and c(t), instead of nine old variables

qij(t), i = 1..3, j = 1..3.

Similarly, we must take into account invariance condition (13) comparing Eqs. (9) and

(11). As a result, we obtain the following form of the manifold Q
(1)
3×3 invariant with respect

to the point group G = C4v:

Q
(1)
3×3 =











c b c

b a b

c b c











(14)

Let us note that Eq. (13) does not produce any additional restrictions on the dynamical

variables as compared to Eq. (12), i.e. invariant manifold (14) is actually determined only

by Eq. (12). This means that above obtained manifold Q
(1)
3×3 turns out to be invariant not

only relative to the group C4 = {C4} with one generator g2, representing rotation by 90◦,

but simultaneously relative to its supergroup C4v = {C4, σx} with two generators — g2 and

g5. (Hereafter, we define any symmetry group by the list of its generators given in curle

braces).

However, if we consider larger fragment of dynamical variables on square lattice, for ex-

ample, the manifold Q
(1)
5×5, Eq. (13) indeed produce additional restrictions on some variables

qij and, as a consequence, the manifolds invariant with respect to the groups C4 = {C4} and

C4v = {C4, σx} prove to be different (see, Q(1) and Q(2) in Table 1).

Among point subgroups of the parent symmetry group, there are such that generate

invariant manifolds admitting existence of localized, as well as delocalized dynamical objects.
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Indeed, the manifold (14) allows localized periodic or quasiperiodic modes if |a| >> |b| >>
|c|, while the manifold











b a c

b a c

b a c











does not admit localization in Y-direction because variables qij, expressed via a, b, c, have

no tendency to decrease by amplitude from its center to the periphery.

Note that some invariant manifolds can correspond to multibreathers of complex struc-

ture, for example, with zero amplitude in the breather center. In Table 1, we present all

invariant manifolds associated with subgroups of the parent symmetry group (3) which admit

construction of simple discrete breathers — they are localized in both X- and Y - directions

and have no zero in the center.

However, at the end of each WP section of Table 1, we give the list of all other subgroups

associated with this regular point set. Such information can be used for construction some

different types of invariant manifolds, corresponding to this WP.

Moreover, below each manifold from Table 1, we give its symmetry group which can be

useful to expand a given manifold in the case of bad discrete breather localization (vibrational

amplitudes slightly decrease from the breather core to its periphery).

In Table 1, we present only small fragments of invariant manifolds Q(j) (j = 1..27), for

example, for manifolds corresponding to WP-1 we show 5×5 fragments and give their 3×3

parts in frames.

Note that manifolds with a minus sign before some variables correspond to subgroups

whose elements contain operator P̂ (independently or in combination with other symmetry

elements). We list these manifolds after those corresponding to the parent group G0 = C4v.

The former can be used only for models with even potential, while the latter correspond to

the models with an arbitrary potential.

Finally, let us emphasize once more that all invariant manifolds presented in Table 1

admit existence of periodic, as well as quasiperiodic dynamical objects.

In the following sections of the paper, we discuss construction of DBs as spatially localized

and time-periodic vibrations on some manifolds listed in Table 1 for the dynamical models

(1) and (2).
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Table 1

Symmetry-determined invariant manifolds for scalar models on the square lattice.

WP-1
























f e d e f

e c b c e

d b a b d

e c b c e

f e d e f

















































g e d f g

f c b c e

d b a b d

e c b c f

g f d e g

















































h f e g j

f c b d g

e b a b e

g d b c f

j g e f h

















































m k f e n

h d b e j

g c a c g

j e b d n

n e f k m

















































j h e h j

g d b d g

f c a c f

g d b d g

j h e h j

























Q(1) : {C4, σy} Q(2) : {C4} Q(3) : {C2, σxy} Q(4) : {C2} Q(5) : {C2, σy}
























n i g j p

i d b e k

g b a c h

j e c f l

p k h l m

















































n j i k p

g e b f m

j c a d h

g e b f m

n j i k p

























{C4P̂}, {C2P̂}, {σyP̂}, {σxyP̂}, {C4P̂ , σy},

{C4P̂ , σyP̂}, {C2, σyP̂}, {C2, σxyP̂},

{C2P̂ , σy}, {C2P̂ , σxy}, {C4, σyP̂}

Q(6) : {σxy} Q(7) : {σy}

WP-2


















a b b a

b c c b

b c c b

a b b a





































a b b a

c d d c

c d d c

a b b a





































a b c a

c d d b

b d d c

a c b a





































a b c d

b e f c

c f e b

d c b a





































a b c d

e f g h

h g f e

d c b a



















Q(8) : {C4, σy} Q(9) : {C2, σy} Q(10) : {C4} Q(11) : {C2, σxy} Q(12) : {C2}


















a b c d

b e f g

c f k l

d g l p





































a b c d

e f g h

e f g h

a b c d





































a b −b −a

c d −d −c

c d −d −c

a b −b −a





































a b c −a

−c d −d −b

−b −d d −c

−a c b a





































a b −b −a

b c −c −b

−b −c c b

−a −b b a



















Q(13) : {σxy} Q(14) : {σy} Q(15) : {C2P̂ , σy} Q(16) : {C4P̂} Q(17) : {C4P̂ , σyP̂}


















a b −b −a

c d −d −c

−c −d d c

−a −b b a





































a b c d

e f g h

−e −f −g −h

−a −b −c −d





































a b c d

e f g h

−h −g −f −e

−d −c −b −a



















{σxyP̂}, {C2, σxyP̂}, {C2P̂ , σxy},

{C4, σy}, {C4, σyP̂}.

Q(18) : {C2, σyP̂} Q(19) : {σyP̂} Q(20) : {C2P̂}
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WP-3














a b c d e

f g h j k

f g h j k

a b c d e





























a b c b a

f g h g f

f g h g f

a b c b a





























a b c b a

f g h g f

l m n m l

p q r q p





























a b c d e

f g h j k

k j h g f

e d c b a















Q(21) : {σy} Q(22) : {C2, σy} Q(23) : {σx} Q(24) : {C2}














a b c d e

f g h j k

−f −g −h −j −k
−a −b −c −d −e





























a b c b a

f g h g f

−f −g −h −g −f
−a −b −c −b −a





























a b c d e

f g h j k

−k −j −h −g −f
−e −d −c −b −a















{σxP̂}, {σy, σxP̂},
{σyP̂ , σxP̂}

Q(25) : {σyP̂} Q(26) : {σyP̂ , σx} Q(27) : {C2P̂}

II. CONSTRUCTION OF DISCRETE BREATHERS FOR THE MODEL WITH

HOMOGENEOUS POTENTIAL

Each invariant manifold from Table 1 depends on a number of arbitrary parameters (a,

b, c, ...). To construct a discrete breather, we must find such values of these parameters

which lead to a spatially localized and time-periodic vibration when they are used as initial

values for integrating dynamical equations of a given mathematical model.

In this section, we discuss construction of DBs for the model (1) which corresponds to

the case of homogeneous potential of m-degree. Similar model without on-site potential and

without studying breather stability was considered in [6]. Unlike this paper, we study the

dependence of existence and stability of DBs with respect to the relative strength (γ) of

on-site and intersite parts of the potential energy of the model (1).

The specific structure of Eqs. (1) admits the space-time separation and, as a consequence,

we can treat discrete breathers for the case of the homogeneous potential of m degree in

terms of localized nonlinear normal modes (NNMs) introduced by Rosenberg [24]. To this

end, we assume that

qi,j(t) = kij · f(t), (15)

where i = 1..M , j = 1..N , while kij are constant coefficients.

Substituting the ansatz (15) into differential equations (1) and requiring that all they are

equivalent to each other, we obtain a number of nonlinear algebraic equations, which deter-
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mine the spatial profile of DB, and one (”governing”) differential equation, which determines

time-dependence of all the dynamical variables qij(t). This time-dependence is described by

the single function f(t).

If we now take into account particular structures of the invariant manifolds from Table 1,

the number of unknown coefficients kij will be equal to the number of manifold arbitrary

parameters a, b, c, ... minus one, since one of these parameters can be fixed.

In [25, 30], we have used Rosenberg modes technique for constructing DBs and studying

their stability in one-dimensional lattices. In the present paper, we use the same technique

to investigate DBs in the scalar model (1) on the two-dimensional square lattice.

Let us illustrate the procedure of the Rosenberg mode construction using as an example

Q
(1)
3×3 invariant manifold (14). Only three independent dynamical variables, a(t), b(t) and

c(t), correspond to this manifold. According to the definition of Rosenberg modes, we

assume that these variables are proportional to the same time-dependent function f(t):

a(t) = a · f(t), b(t) = b · f(t), c(t) = c · f(t).
Here a, b, c in r.h.s. of the equalities are constants which we use, for simplicity, instead of

the coefficients kij from Eq. (15). Therefore, the Rosenberg mode R(t) can be written in

the form:

R(t) =











c b c

b a b

c b c











· f(t), (16)

where the vibrational amplitude corresponding to the center site of the manifold can be

assumed equal to unity (a = 1). Substituting dynamical variables qij(t) from (16) into

differential equations (1), we can obtain the following algebraic equations

b · [−γ + 4(b− 1)m−1] = −γ · bm−1 + 2 · (c− b)m−1 + (1− b)m−1, (17)

c · [−γ + 4(b− 1)m−1] = −γ · cm−1 + 2 · (b− c)m−1, (18)

while the governing equation reads

f̈(t) + p2 · f(t)m−1 = 0, p2 = γ − 4 · (b− a)m−1. (19)

15



As a rule, there are many different solutions to Eqs. (17), (18) and we must demand that

|a| > |b| > |c| to provide a localized breather profile.

There are many methods for solving nonlinear algebraic equations, such as various ver-

sions of the Newton-Rafson method, the steepest descent method, etc [5]. We use for this

purpose the standard procedure of the mathematical package MAPLE. In this way, we have

obtained breathers on a number of invariant manifolds presented in Table 1 for different

degrees m of the homogeneous potential and for a dense set of values γ ∈ [0; 10].

Let us consider some examples.

1. For the homogeneous potential of m = 4 degree, we have obtained the following

breather spatial profiles on the invariant manifold Q
(1)
3×3 for different values of γ:

γ = 0 : a = 1, b = −0.25439, c = 0.00439;

γ = 3 : a = 1, b = −0.17354, c = 0.00113;

γ = 6 : a = 1, b = −0.12261, c = 0.00032.

(20)

We see that the coefficients b and c decrease with increasing γ, i.e. breather localization

becomes better with increasing the strength of the on-site potential with respect to the

intersite potential. (Note that the breather for γ = 0 coincides with that found in [6]).

The time-dependence of the breather solutions with spatial profiles (20) determined by

the governing equation

f̈(t) + p2 · f(t)3 = 0, p2 = 4(a− b)3 + γ, (21)

with analytical solution of the form

f(t) = cn
(

ωt,
1√
2

)

, ω = p · f(0). (22)

In Fig. 4a, we show the coefficients b = b(γ) and c = c(γ) as functions of the parameter

γ ∈ [0; 10]. Note that these functions possess opposite signs and are plotted on different

scales.

Thus, we can speak about the breather family because there exists a certain DB for

any fixed value of the parameter γ. Moreover, one can see from Fig. 4a that b(γ) and c(γ)

represent, in the considered case, sufficiently simple functions which can be approximated by

some polynomials with good accuracy. Using the mean-square method we find the following
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FIG. 4: Discrete breathers for the model 1 on the invariant manifolds a) Q
(1)
3×3; b) Q

(1)
3×3, Q

(5)
3×3,

Q
(7)
3×3.

approximations:

b(γ) = −0.133940 · 10−2γ2 + 0.297771 · 10−1γ − 0.252179,

c(γ) = −0.980247 · 10−5γ3 + 0.213750 · 10−3γ2 − 0.158541 · 10−2γ + 0.423062 · 10−2.
(23)

The above discussed breather family on the manifold Q
(1)
3×3 for m = 4, γ ∈ [0; 10] is

described by two variables b(γ), c(γ) because the third variable, a (see Table 1), can be

considered as a constant: a = 1. Another fixed value of this variable leads to the breather

spacial profile which turns out to be proportional to that for a = 1 (despite the algebraic

equations (17), (18) for finding Rosenberg nonlinear normal mode profiles are nonlinear!).

However, the time dependence of the breather solution, in particular, its frequency, does

depend on the parameter a, since p = p(a) according to Eq. (21).

Let us represent profiles for some other breathers whose stability we will discuss in the

next section.

a) Invariant manifold Q
(1)
3×3 {C4, σy}.

m = 6 : a(γ) = 1,

b(γ) = −0.733310 · 10−3γ2 + 0.228270 · 10−1γ − 0.251758,

c(γ) = −0.346820 · 10−6γ3 + 0.780072 · 10−5γ2 − 0.593555 · 10−4γ + 0.157500 · 10−3.

(24)
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m = 8 : a(γ) = 1,

b(γ) = −0.132486 · 10−3γ2 + 0.151641 · 10−1γ − 0.251854,

c(γ) = −0.103097 · 10−7γ3 + 0.255021 · 10−6γ2 − 0.215981 · 10−5γ + 0.636736 · 10−5.

(25)

b) Invariant manifold Q
(8)
3×3 {C4, σy}.

m = 4 : a(γ) = 1,

b(γ) = 0.206049 · 10−4γ3 − 0.462088 · 10−2γ2 + 0.864977 · 10−1γ − 0.539657,

c(γ) = −0.155129 · 10−3γ3 + 0.332604 · 10−2γ2 − 0.232426 · 10−1γ + 0.538939 · 10−1

(26)

m = 6 : a(γ) = 1,

b(γ) = −0.334370 · 10−3γ3 + 0.420770 · 10−2γ2 + 0.272984 · 10−1γ − 0.500903

c(γ) = −0.541969 · 10−5γ3 + 0.153732 · 10−3γ2 − 0.143670 · 10−2γ + 0.445843 · 10−2

(27)

m = 8 : a(γ) = 1,

b(γ) = 0.104004 · 10−3γ3 + 0.174863 · 10−3γ2 + 0.151320 · 10−1γ − 0.500456,

c(γ) = 0.161985 · 10−6γ3 + 0.133814 · 10−5γ2 − 0.751460 · 10−4γ + 0.460920 · 10−3

(28)

b) Invariant manifold Q
(15)
3×3 {C2P̂ , σy}.

m = 4 : a(γ) = 1,

b(γ) = 0.479180 · 10−4γ3 − 0.131456 · 10−2γ2 + 0.161263 · 10−1γ − 0.1356280688,

c(γ) = −0.971222 · 10−6γ3 + 0.208977 · 10−4γ2 − 0.155620 · 10−3γ + 0.442289 · 10−3.

(29)

m = 6 : a(γ) = 1,

b(γ) = −0.259370 · 10−4γ2 + 0.113473 · 10−2γ − 0.344276 · 10−1,

c(γ) ∼ 10−7.

(30)
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m = 8 : a(γ) = 1,

b(γ) = −0.479130 · 10−6γ2 + 0.659596 · 10−4γ − 0.813363 · 10−2,

c(γ) ∼ 10−16.

(31)

In Fig. 4b, one can see an example of nontrivial profiles of DBs for the homogeneous

potential of m = 8 degree. These breathers are constructed on the invariant manifold

Q
(7)
3×3 which is characterized by five arbitrary parameters b, c, d, e, f (the parameter a = 1

corresponds to the breather centre). Parameters e and f corresponding to the lattice sites

more distant from the central site with a = 1 are very small (e, f ∼ 10−6) as compared to

parameters b, c, d associated with the nearest sites.

There is a critical point γ = γc ≈ 5.885 in which some DBs of different symmetry

coincide with each other. Indeed, the dotted line on which b = c = d corresponds to the

breathers on the invariant manifolds Q
(1)
3×3 with the symmetry group {C4, σy} ≡ C4v. The

solid lines (c = d 6= b) corresponds to breathers on the manifold Q
(5)
3×3 with the symmetry

group {C2, σy} ≡ C2v, while the dash-dot lines (b = d 6= c) corresponds to DBs on the

manifold Q
(7)
3×3 whose symmetry is described by the group {σy} ≡ Cs.

Note that the above mentioned breathers, except for those who possess the symmetry

group {C4, σy} ≡ C4v, turn out to be unstable (see below).

III. STABILITY ANALYSIS OF DISCRETE BREATHERS FOR THE MODEL

WITH HOMOGENEOUS POTENTIAL

Discrete breathers represent time-periodic dynamical regimes and, therefore, standard

Floquet method can be used for analyzing their stability. However, for the scalar model

(1) on the square lattice with m-degree homogeneous potential the stability studying of

discrete breathers can be essentially simplified, if they are Rosenberg nonlinear normal

modes (in the next section we will consider breathers in the model 1 which are not such

modes!). In [25, 30], we have demonstrated this idea for the case of one-dimensional chains

with m = 4 homogeneous potential, while now we use the same method for analyzing the

breather stability in the two-dimensional scalar model (1) described by the homogeneous

potential of arbitrary (even) degree m.

Let us consider a localized nonlinear normal mode. Being periodic in time, this dynamical
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object represents a certain discrete breather. Let vector δ(t) determines a set of infinites-

imal deviations of all the particles from the exact breather solution R(t) [for example, see

Eq. (20)]. Linearizing nonlinear differential equations of the model (1) with respect to all

components of the vector δ, we obtain the following system of linear differential equations

with time-periodic coefficients (some computational details can be found in [25]]):

δ̈ = (m− 1) · fm−2 ·B · δ. (32)

Here B is a constant symmetric matrix whose dimension, as well as the dimension of the

vector δ, is equal to the number of all sites of a chosen lattice fragment, while f(t) is the

solution to the governing equation for the Rosenberg NNM.

For the model (1), described by the homogeneous potential ofm degree, the time-periodic

function f(t) is the solution to the equation

f̈(t) + p2 · f(t)m−1 = 0, (33)

with initial conditions

f(0) = A, ḟ(0) = 0. (34)

Here, A is the breather amplitude (displacement of the central particle), while p2 depends

on the breather profile. For example, for a breather on the invariant manifold Q
(1)
3×3 in the

case of the model 1 with m = 4, we have Eq. (21).

In the above approach, investigation of stability of the considered dynamical regime

(discrete breather, in our case) is reduced to analyzing the stability of the zero solution of

the linearized variational system (32).

Note that the system (32) possesses a very specific structure: it contains the constant

matrix B with time-periodic coefficient (m− 1) · fm−2(t) standing in front of it.

Now we can reduce the symmetric matrix B to a diagonal form D with the aid of a

certain orthogonal transformation

STBS = D. (35)

(ST is a transpose of S).

Eigenvalues λj of the matrix B are diagonal elements of the matrix D, while eigenvectors

of B form the columns of the matrix S.

Introducing a new infinitesimal vector z instead of the old one δ with the aid of the

transformation δ = Sz, we decompose the system (32) of coupled equations into independent
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scalar equations of one and the same type:

z̈ = (m− 1) · λj · f(t)m−2 · z. (36)

With the help of scaling

f(t) = Aψ(t), t =
τ

pAm/2−1
(37)

one can rewrite Eqs. (33), (34) and (36) in the form

ψ′′
τ + ψm−1(τ) = 0, (38)

ψ(0) = 1, ψ′
τ (0) = 0, (39)

z′′τ = ψm−2(τ) · Λj · z, (40)

z(0) = 0, z′τ (0) = 0, (41)

where

Λj =
(m− 1) · λj

p2
(42)

Here we denote differentiation by the new time variable τ by prime. Eqs. (41) appear

because we study stability of the zero solution of the differential equation (40) for the

function z(t).

We will refer to the parameters Λj as stability indicators. Breather solution proves to be

stable if all Λj fall into intervals of stability of the zero solution to Eq. (40).

Note that one of the stability indicators, say Λ0, always belongs to the boundary between

the first region of instability and the second region of stability of zero solution to Eq. (40).

The infinitesimal vector corresponding to this indicator turns out to be exactly proportional

to the breather profile (i.e., it is located along this profile) and, therefore, such indicator Λ0

does not affect the breather stability.

For m = 4, stability analysis of zero solution of Eq. (40) can be fulfilled with the aid

of the Lame equation (see, [25]). For m > 4, such analysis represents essentially more

complicated analytical problem [35]. However, some numerical methods can be efficiently

used for studying stability of the zero solution of Eq. (40). Using these methods we were

able to reveal that discrete breathers prove to be linear stable if all indicators Λj fall into

the following intervals:

[0; 1], [m− 1; m+ 2], [3m− 2; 3m+ 3], ... (43)
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Let us consider stability of discrete breathers listed in Eqs. (23)–(31). The indicators

Λj = Λj(γ) are certain functions of the parameter γ describing relative strength of the on-

site and intersite potentials of the model 1. In Fig. 5, we present functions Λj(γ), γ ∈ [0; 10]

for different manifolds Q(i) and different degrees m of the homogeneous potential.

FIG. 5: Stability indicators Λj(γ) for discrete breathers on the invariant manifolds Q(1) {C4, σy},

Q(8) {C4, σy}, Q(15) {C2P̂ , σy} for the model 1.

Note that stable and unstable regions of the zero solution of Eq. (40) alternate according

to Eq. (43). The first stable region [0, 1] are one and the same for all m, while the width
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of the first unstable region [1, m − 1] increases with increasing m. Because of this reason,

we depict in Fig. 5 only lower part of the first region of instability (it is presented in grey

color).

Let us comment in these figures.

1) DBs corresponding to the invariant manifoldQ
(1)
3×3 with the symmetry group {C4, σy} =

C4v centered at the corner of the primitive cell (WP-1) are described for m = 4, 6, 8 by Eqs.

(23–25). Nine degree of freedom are associated with this 3×3 fragment of the square lattice

and, therefore, there are nine indicators Λj which determine stability of breathers on Q
(1)
3×3.

For example, for m = 4, γ = 0, we have found the following indicators Λj (j = 0, 1, ..., 8):

λ0 = 3, λ1 = λ2 = 0.65095, λ3 = 0.64879

λ4 = 0.09128, λ5 = 0.05089, λ6 = λ7 = 0.04873, λ8 ∼ 10−10
(44)

Note that some indicators Λj are equal to each other (we consider the source of such

degeneration elsewhere). The functions Λj = Λj(γ) are depicted for the breathers on Q
(1)
3×3

for m = 4, 6, 8 γ ∈ [0; 10] in Fig 5. For m = 4, all stability indicators Λj(γ) fall into the

first stability region since 0 < Λj(γ) < 1, j = 0..8, γ ∈ [0; 10]. Note that we cannot see all

these indicators in Fig. 5 because some of them are too small. Therefore, discrete breathers

described by Eq. (23) (m = 4) are stable dynamical objects for all values of the parameter

γ on the considered interval.

However, one can see essentially different stability properties of discrete breathers for

m = 8 on Q
(1)
3×3. Indeed, one curve, Λ1(γ), lies out of the first stability region for γ < γc ≈

5.8848. This means that DBs for small strength of the on-site potential turn out to be

unstable. On the other hand, for γ > γc, this curve enters the first stability region and DBs

become stable for γ greater than γc.

Finally, for m = 6, we have an intermediate case between two above discussed cases: the

curve Λ1(γ) begins exactly from the upper end of the first stability region and, therefore,

the breather possesses marginal stability for γ = 0. All DBs for γ > 0 are stable since

Λj(γ) < 1, j = 0..8, γ ∈ (0; 10].

2) Another situation takes place for DBs (26 – 28) on the invariant manifold Q
(8)
3×3 with

the group {C4; σy} = C4v corresponding to the center of the primitive cell (WP-2). Indeed,

we see in Fig. 5 that for m = 4, m = 6 and m = 8, some stability indicators lie outside

the first stability region up to certain critical values γc of the parameter γ. These critical
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values γc = γc(m) are different for different m. Moreover, we see that γc(m) increases with

increasing m. In other words, we need more strong on-site potential for stabilizing DB for

the greater m.

3) Finally, for DBs determined by Eqs. (29)–(31) on the invariant manifold Q
(15)
4×4 with the

symmetry group {C2P̂ ; σy} ≡ C2v corresponding to WP-2, we find Λj(γ), j = 0..15 which

also are depicted in Fig. 5. From these plots, one can see that DBs for m = 4 are unstable

for all values of γ ∈ [0; 10]. On the other hand, for m = 6 and m = 8, DBs turn out to

be stable for small values of γ up to the critical values γ
(1)
c ≈ 5.3104 and γ

(2)
c ≈ 19.1248,

respectively. In all above discussed cases, there is the same tendency: a sufficiently strong

on-site potential can stabilize breather vibrations.

In conclusion, let us pay attention to one important property of the discrete breather

stability for the models with homogeneous potential of an arbitrary degree m. In such

models, the stability of the breathes which represent Rosenberg nonlinear normal modes

don’t depend on their amplitude. This fact becomes obvious, if we take into account that

the amplitude A does not enter Eqs. (38)–(42) which fully determine the stability of the

zero solution to decoupled linear equations derived from the system (32).

IV. DISCRETE BREATHERS FOR ARBITRARY SCALAR MODELS ON THE

SQUARE LATTICE

A. Construction of DBs for the model 2

The scalar model 1 with homogeneous potential ofm > 2 degree discussed in the previous

section represents a sufficiently exotic case from the physical point of view. Indeed, there

is no phonon spectrum in this model since it does not admit the harmonic approximation:

Taylor-series expansions of r.h.s. of Eqs. (1) with respect to all dynamical variables qij

don’t contain any linear terms. On the other hand, in the more realistic models, admitting

the harmonic approximation, there are no localized Rosenberg nonlinear normal modes.

Therefore, we have to use different and more complicated methods, as compared to those

described in Sec. III, for constructing DBs and for studying their stability. The most widely

known method for constructing DBs was developed in [29]. It based on the Newton-Rafson

iterative scheme for finding initial values of all dynamical variables which lead to localized
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and time-periodic solution of the dynamical equations describing the considered model.

However, such approach need, as a rule, very good initial approximation for the breathers

profile at t = 0 and, even in this case, some problems with convergence of the numeric

procedure in the many-dimensional phase space PS can arise. We prefer to construct DBs

with the aid of a certain variant of the steepest descent method in the above mentioned space

PS (see, for example, [5]). Using this method, we minimize the sum of square deviations

between all dynamical variables at the instants t = 0 and t = T where T is an arbitrary fixed

period of the breathers solution. In some cases, we used the ”pair synchronization method”

[30] in a manual regime for constructing plausible initial conditions. Runge-Kutta methods

(rkf45 and dverk78) were applied for integrating differential equations of the considered

model from t = 0 to t = T . Such approach allows us to construct discrete breathers with a

high level of accuracy for different scalar models.

We used the same invariant manifolds from Table 1 for constructing DBs for both model 1

and model 2. For example, for the manifoldQ
(1)
5×5, we obtained the following initial conditions

which determine DB with T = 2 for the model 2 with γ = 1 (all initial velocities of the

dynamical variables are assumed to be zero):

a(0) = 2.23751, b(0) = −0.64719, c(0) = 0.30201, d(0) = 0.13725,

e(0) = −0.07879, f(0) = 0.02294.
(45)

On the other hand, using the above discussed method for the model 1 (γ = 1, m = 4),

we found the following DB with T = 2 on the same manifold Q
(1)
5×5:

a(0) = 1.28198, b(0) = −0.28941, c(0) = 0.00366, d(0) = 0.00180,

e(0) = −0.00018, f(0) ∼ 10−14.
(46)

(This breather was also obtained with the aid of the Rosenberg nonlinear normal modes

technique discussed in Sec. III).

Comparing solutions (45) and (46), we see that discrete breather in the homogeneous

potential model 1 turns out to be much more localized in space than that in the model 2.

Because of this reason, DBs on the invariant manifolds Q
(1)
5×5 and Q

(2)
5×5 for the model

2 are essentially different, while DBs on the same manifolds for the model 1 prove to be

practically identical. Indeed, the peripheral dynamical variables are very small in this case

and the breathers on Q
(1)
5×5 and Q

(2)
5×5 manifolds are practically indistinguishable from each
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other up to the used accuracy (note that Q
(2)
5×5 transforms into Q

(1)
5×5 if g = f = e).

Surprisingly, using the above described approach, we were able to find some ”unusual”

DBs both for the models 1 and 2. As an example, in Fig. 6, we present DB with T = 2 on

the manifold Q
(1)
5×5 for the model 1 with homogeneous potential of m = 4 degree. Note that

this discrete breather is not a Rosenberg nonlinear normal mode. Indeed, it can be seen in

Fig. 6 that different particles pass their equilibrium position at different instants and this

contradicts to the definition of the Rosenberg NNMs [see Eq. (15)]. As to our knowledge, all

papers devoted to discrete breathers in the models with homogeneous potentials deal only

with the solutions constructing on the basis of separation of space and time variables. Such

solutions represent Rosenberg nonlinear normal modes. However, one can see in Fig. 6 that

in the models with homogeneous potentials there can also exist essentially another types of

discrete breathers.

The unusual DB presented in Fig. 6 is determined by the following initial values of

dynamical variables:

a(0) = 1.6208, b(0) = −1.3718, c(0) = 0.6325, d(0) = −0.0370, f(0) = −0.0354,

FIG. 6: Time evolution of DB for the model 1 on the invariant manifold Q
(1)
5×5. This breather is

not a Rosenberg nonlinear normal mode.

while the breather depicted in Fig. 7 is generated by Eq. (46).

In both cases, initial velocities of all the particles are equal to zero.
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FIG. 7: Time evolution of DB for the model 1 on the invariant manifold Q
(1)
5×5. This breather is a

Rosenberg nonlinear normal mode.

Moreover, we can also construct DBs of the above discussed unusual type for the model

2, as well as for other scalar models on square lattice.

V. GENERAL GROUP-THEORETICALMETHOD FOR SIMPLIFYING STABIL-

ITY ANALYSIS OF PERIODIC AND QUASIPERIODIC REGIMES

A. General discussion

The system (32) of variational equations for the model 1 possesses a very specific structure

which permits one to decompose it into independent scalar equations by diagonalyzing the

matrix B. Unfortunately, the variational equations for studying stability of breathers in the

model 2 possess more complicated structure which does not allow such decoupling. Indeed,

the Jacoby matrix J(t) from the variational equations δ̈ = J(t)δ for the model 2 can be

written as follows

J(t) = D(t) +C.

Here D(t) is a certain diagonal matrix whose elements are different time-periodic func-

tions determined by the breather solution, while C is a constant matrix depending on the

parameter γ which describes coupling between Duffing oscillators.

It is essential, that these two matrices, D(t) and C, don’t commute with each other:

D(t) ·C 6= C ·D(t).
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Therefore, it is impossible to diagonalize them simultaneously, i.e. with the aid of one and

the same orthogonal transformation.

In turn, this means that one cannot decompose the system of variational equations

δ̈ = J(t)δ into independent scalar equations.

Then, one may ask: ”Are there any methods for decomposing the system of variational

equations into some independent subsystems of less dimension than that of the whole system

δ̈ = J(t)δ”? A general group-theoretical method was developed for solving this problem in

our paper [34]. Below, we give an outline of this method adapted to the 2D scalar models.

Let us suppose that the system of nonlinear dynamical equations (7) is invariant with

respect to a group G0. This means that after the action of induced operators ĝ, associated

with each g ∈ G0, we obtain a new system of differential equations which is equivalent to

the original system (7).

It can be seen from the structure of Eqs. (7) and the group G0 (3) that under the action

of any operator ĝ (g ∈ G0) the individual equations are transposed and change their sings

exactly in such a way, as the corresponding dynamical variables qij .

On the other hand, as was discussed in Sec. ??, every dynamical regime in the considered

model can be associated with a certain subgroup G of the parent symmetry group G0

(G ⊂ G0). For studying its linear stability, we linearize nonlinear equations (7) near this

regime and obtain a variational system δ̈ = J(t)δ, where δ = δ(t) is an infinitesimal vector

describing perturbations of all the variables qij(t), while J(t) is the Jacoby matrix of the

system (7).

Then the following question arises: ”What one can say about symmetry group of the

linearized (variational) system δ̈ = J(t)δ?”. It was proved in [34] that this system is

invariant with respect to the group G describing the symmetry of the given dynamical

regime.

Since each operator ĝ generates a transposition (and, may be, changing in sign) of indi-

vidual variables qij , one can associate a certain matrix with every g ∈ G. In this way, we can

construct a matrix representation Γ of the group G. In general, this representation turns

out to be reducible and, therefore, it can be decomposed into a number of irreducible rep-

resentations (irreps) Γj of the group G with the aid of standard group-theoretical methods

(see, for example, [33]):
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Γ =
∑

j

⊕Γj, (47)

In [34], we proved that the Jacoby matrix J(t) commutes with all matrices of the rep-

resentation Γ. This fact allows one to apply then the well-known Wigner theorem [33].

As a consequence of this theorem, the matrix J(t) can be represented in the following

block-diagonal form

J(t) =
∑

j

⊕Dj , (48)

where each block Dj corresponds to the irrep Γj of the group G. Dimension of Dj is equal

to mj · nj, where nj is the dimension of the irrep Γj , while mj determines how many times

Γj enters into the decomposition (47) of the reducible representation Γ.

Moreover, each block Dj possesses a very specific structure: it consists of subblocks

representing matrices proportional to the identity matrix Inj
of dimension nj which are

repeated mj times along the rows and columns of the block Dj .

We can illustrate the structure of a certain block Dj = D characterized by the numbers

nj = n, mj = m as follows

D =















µ11In µ12In ... µ1mIn

µ21In µ22In ... µ2mIn

... ... ... ...

µm1In µm2In ... µmmIn















, (49)

where In is the n× n identity matrix.

As was already noted, individual nonlinear equations (7), as well as those of linearized

system δ̈ = J(t)δ are transformed under the action of operators ĝ (g ∈ G) as the cor-

responding variables qij . Therefore, we can construct the same reducible representation Γ

of the group G using as the basis the set of equations entering the system δ̈ = J(t)δ. In

turn, this leads to representing this system in the form of independent subsystems of mj ·nj

equations corresponding to the individual irreps Γj. Moreover, the specific structure (49)

of the blocks Dj in (48) allows one to conclude (see details in [34]) that the subsystem

corresponding to the block Dj can be splitted into nj new independent identical subsystems

whose dimension is equal to mj .

Thus, as a result of the decomposition of the variational system δ̈ = J(t)δ, we can obtain

29



for each irrep Γj, entering the representation Γ, nj identical subsystems whose dimension

is equal to mj .

Obviously, such a decomposition may be very effective, if the integer numbers mj are

much smaller than the full dimension of the system δ̈ = J(t)δ.

It is very important that the above described decomposition does not depend on the

character of the considered dynamical regime — it can be periodic, quasiperiodic or even

chaotic!

As was discussed in [34], for decomposing (splitting) the original system δ̈ = J(t)δ into

independent subsystems in explicit form, we must find the basis vectors of all Γj entering Γ.

These vectors can be used as columns of the matrix S which allows one to split the system

δ̈ = J(t)δ.

Using this matrix, we can introduce a new infinitesimal vector y instead of the old vector

δ with the aid of relation

y = Sδ. (50)

Note that S is an orthogonal matrix: ST · S = I (ST is the transpose of the matrix S).

Multiplying both sides of the equation δ̈ = J(t)δ by the matrix S from the left, we obtain

Sδ̈ = (SJ(t)ST ) · (Sδ), or
ÿ = J̃(t) · y. (51)

Here the matrix J̃(t) ≡ S · J(t)ST possesses the above discussed block-diagonal structure

and, therefore, Eqs. (51) represent a set of independent subsystems whose dimensions are

determined by mj — the number of times that the irrep Γj enters the reducible representa-

tion Γ.

B. Splitting schemes

The explicit decomposition of the linearized system δ̈ = J(t)δ represents a cumbersome

procedure and, therefore, it is interesting to know beforehand to what extent such decompo-

sition will be useful. For this purpose, we construct the so-called splitting schemes [34] with

the aid of the theory of characters of group representations. Let us consider this approach

in more detail.

The splitting scheme determines how many independent subsystems one can obtain as a

result of the decomposition of the linearized system δ̈ = J(t)δ and what dimension possesses
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each of these subsystems.

To obtain the splitting scheme of variational equations corresponding to a given dynamical

regime, we must find how many times (mj) each irrep Γj enters the reducible representation

Γ associated with the symmetry group G of the considered regime.

According to the theory of group representations [33]

mj =
1

||G||
∑

g∈G

χΓ(g) · χ̄j(g) (52)

Here ||G|| is the number of elements of the group G, χΓ(g) and χj(g) are traces of

the matrices associated with the group element g ∈ G in the reducible representation Γ

and in the irreducible representation Γj, respectively [the bar over χj(g) denotes complex

conjugation].

As an example, let us consider constructing of the splitting scheme for a dynamical regime

on the invariant manifold Q
(1)
3×3 corresponding to the point symmetry group C4v = {C4, σy}.

This group consists of the following eight elements (||G|| = 8):

g1(x, y) = (x, y) — identity element;

g2(x, y) = (−y, x) — rotation by 90◦;

g3(x, y) = (−x, −y) — rotation by 180◦;

g4(x, y) = (y, −x) — rotation by 270◦;

g5(x, y) = (−x, y) — reflection in the mirror plane (1, 0) [σx];

g6(x, y) = (−y, −x) — reflection in the mirror plane (-1, 1) [σx̄y];

g7(x, y) = (x, −y) — reflection in the mirror plane (0, 1) [σy];

g8(x, y) = (y, x) — reflection in the mirror plane (1, 1) [σxy];

(53)

Here we define every symmetry elements by its action on an arbitrary point (x, y) of the

two-dimensional plane. All rotations are performed about Z axis perpendicular to this plane

and passing through the origin of the coordinate system. Mirror planes are determined by

their normals which are given as two-dimensional vectors at the end of the corresponding

lines. (In square brackets, we give notations of these planes used in the previous sections of

the present paper).

Let us illustrate definitions of the symmetry elements from Eqs. (53) with the example of

g2. This element, being the rotation by the angle 90◦, maps the point (x, y) onto the point

(−y, x), i.e. x→ −y, y → x under the action of g2.
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Every dynamical regime on the invariant manifold Q
(1)
3×3 is described by three variables

a(t), b(t), c(t). However, an arbitrary perturbation of this regime is characterized, obviously,

by nine independent variables δij (i = 1..3, j = 1..3):

δ =











δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33











. (54)

Thus, we must consider the nine-dimensional space of all possible perturbations.

In this space, we choose a natural basis {e1, e2, ..., e9}:

e1 =











1 0 0

0 0 0

0 0 0











, e2 =











0 1 0

0 0 0

0 0 0











, e3 =











0 0 1

0 0 0

0 0 0











, ..., e9 =











0 0 0

0 0 0

0 0 1











.

Only one component of each vector ej possesses nonzero value (it is equal to unity).

Basis vectors ej (j = 1..9) transform into each other under the action of any symmetry

element g ∈ G. For example, ĝ7e1 = e7, ĝ7e2 = e8, ĝ7e3 = e9, ..., ĝ7e9 = e3.

This transposition of the basis vectors determines a 9 × 9 matrix M(g7) of the reducible

permutational representation Γ corresponding to the element g7. In such manner, we can

construct the complete representation Γ as the ordered set of matrices {M(g) | ∀g ∈ G}.
However, for using Eq. (52), we need only the character of the representation Γ, i.e. the

ordered set of traces χ(g) of all its matrices M(g).

It is easy to see that nonzero contribution to χ(g) originates only from the basis vectors

ej which are not changed under the action of the element g. For g7 such vectors contain

1 in those sites of the lattice which lie on this mirror plane: ĝ7e4 = e4, ĝ7e5 = e5 and

ĝ7e6 = e6. Therefore, χ(g7) = 3.

Continuing in such a way, we obtain traces χ(g) for all g ∈ G = C4v for the reducible

representation Γ (see the last line in Table 2).

Table 2.

Irreducible representations Γj (j = 1..5) of the group G = C4v and the character χ(Γ)

of its permutational representation Γ.
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g1 g2 g3 g4 g5 g6 g7 g8

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 -1 -1 -1 -1

Γ3 1 -1 1 -1 1 -1 1 -1

Γ4 1 -1 1 -1 -1 1 -1 1

Γ5





1 0

0 1









0 1

−1 0









−1 0

0 −1









0 −1

1 0









−1 0

0 1









0 1

1 0









1 0

0 −1









0 −1

−1 0





χ(Γ5) 2 0 -2 0 0 0 0 0

χ(Γ) 9 1 1 1 3 3 3 3

On the other hand, the group G = C4v possesses five irreducible representations: four

of them are one-dimensional (Γ1, Γ2, Γ3, Γ4), while Γ5 turns out to be two-dimensional.

This information is presented in Table 2 and can be found practically in all textbooks on

the group theory.

Using Table 2 and Eq. (52), we can easily obtain:

m(Γ1) = 3, m(Γ2) = 0, m(Γ3) = 1, m(Γ4) = 1, m(Γ5) = 2.

Therefore, the reducible representation Γ can be decomposed into irreducible representations

as follows:

Γ = 3Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ 2Γ5. (55)

According to the above-discussed method for decoupling the linearized system δ̈ = J(t)δ

into some independent subsystems, we, therefore, find the following splitting scheme:

(3× 3)⊕(1× 1)⊕ (1× 1)⊕ 2(2× 2). (56)

Thus, 9 × 9 system of variational equations δ̈ = J(t)δ can be decomposed into five

independent subsystems:

– one of them is three-dimensional (it corresponds to the irrep Γ1),

– two represent different scalar equations, i.e. 1 × 1 system, corresponding to the irreps

Γ3 and Γ4,

– two subsystems are two-dimensional with the same 2 × 2 matrix (they correspond to

the irrep Γ5).

Obviously, the study of stability of the considered dynamical regime becomes considerably

easer: instead of analyzing 9 × 9 system of variational equations one can study stability
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properties of the four independent subsystems whose dimensions are equal to 1, 2 and

3. Such approach demonstrates its particular effectiveness in the cases where dynamical

regimes are quasiperiodic and, therefore, we cannot use the Floquet method for studying

their stability.

C. Explicit decomposition of the variational equations

Now we will consider the method for obtaining the explicit form of the decoupled sub-

systems of the linearized system δ̈ = J(t)δ.

As was already discussed, to this end, we must find the orthogonal matrix whose columns

are basis vectors of all the irreps Γj entering the reducible representation Γ. Usually, basis

vectors of irreducible representations of a given group are constructed by the projection

operator method [33]. However, we prefer to use the ”direct” method [31] based on the

straightforward application of the group representation definition. This method turns out

to be more obvious and more simple for our purposes.

Suppose Φ = {V1, V2, ..., Vn} is a ”supervector” representing the set of all basis vectors

Vj of a given (reducible or irreducible) n-dimensional representation Γ̃ of the group G:

Γ̃ = {M(g)|∀g ∈ G}.

This means that (see, for example, [33]):

ĝΦ =MT (g)Φ, ∀g ∈ G, (57)

whereMT (g) is the transpose of the matrixM(g) associated with the element g of the group

G.

We want to construct basis vectors of all irreps Γj (j = 1..5) of the group G = C4v

presented in Table 2. Since Γ1, Γ2, Γ3 and Γ4 are one-dimensional, only one basis vector

corresponds to each of them. We denote these vectors by ϕ1, ϕ2, ϕ3 and ϕ4, respectively.

Note that it is sufficient to take into account only those equations from (57) which cor-

respond to generators of the group G: all other elements can be constructed as a different

products of these generators and equations (57), written for such elements g ∈ G, don’t give

us any additional information about the basis vectors of a given representation. We choose

elements g2 and g5 as generators of the considered group G = C4v.
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Then, from the definition (57), we obtain the following equations for the above basis

vectors:

Γ1 : ĝ2ϕ1 = ϕ1, ĝ5ϕ1 = ϕ1; (58)

Γ2 : ĝ2ϕ2 = ϕ2, ĝ5ϕ2 = −ϕ2; (59)

Γ3 : ĝ2ϕ1 = −ϕ3, ĝ5ϕ1 = ϕ3; (60)

Γ4 : ĝ2ϕ4 = −ϕ4, ĝ5ϕ4 = −ϕ4; (61)

On the other hand, the irrep Γ5 is two-dimensional and, therefore, two basis vectors, ψ1

and ψ2, correspond to it. They satisfy the following equations:

ĝ2ψ1 = ψ2, ĝ2ψ2 = −ψ1;

ĝ5ψ1 = −ψ1, ĝ5ψ2 = ψ2.
(62)

Solving Eqs. (58)–(62), we can construct the complete set of basis vectors in nine-

dimensional space of all possible deviations δij(t) [see Eq. (54)] from the considered dynam-

ical regime on the invariant manifold Q
(1)
3×3.

Noting that Eqs. (58) coincide with Eqs. (12)–(13) up to renaming variables (qij → δij),

we conclude that the basis vector of the identical irrep Γ1 possesses the same form as the

invariant manifold Q
(1)
3×3 in Eq. (14):

ϕ1 =











C B C

B A B

C B C











. (63)

Thus, ϕ1 depends on three arbitrary parameters A, B, C and represents a three-

dimensional subspace of the above-mentioned nine-dimensional space. This means that

the irrep Γ1 enters the reducible representation Γ three times.

Taking into account Eq. (63), we can rewrite ϕ1 as follows:

ϕ1 = A











0 0 0

0 1 0

0 0 0











+B











0 1 0

1 0 1

0 1 0











+ C











1 0 1

0 0 0

1 0 1











. (64)
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Therefore, one can choose the following three basis vectors Vj in the three-dimensional

subspace determined by ϕ1:

V1 = (0, 0, 0|0, 1, 0|0, 0, 0)T ;
V2 =

1
2
(0, 1, 0|1, 0, 1|0, 1, 0)T ;

V3 =
1
2
(1, 0, 1|0, 0, 0|1, 0, 1)T .

(65)

These nine-dimensional vectors form the first three columns of the matrix S which leads to

the decomposition of the linearized system δ̈ = J(t) · δ into some independent subsystems.

(Here we use the transposition symbol T to present column vectors as row vectors).

From Eqs. (59), we find ϕ2 = 0, i.e. the irrep Γ2 does not enter the reducible represen-

tation Γ.

The solution

ϕ3 =











0 −B 0

B 0 B

0 −B 0











(66)

of Eqs. (60) means that the irrep Γ3 enters the representation Γ only one time and, therefore,

the fourth column of the matrix S represents the vector

V4 =
1

2
(0,−1, 0|1, 0, 1|0,−1, 0)T .

From the solution of Eq. (61)

ϕ4 =











−A 0 A

0 0 0

A 0 −A











(67)

we obtain the fifth column of the matrix S:

V5 =
1

2
(−1, 0, 1|0, 0, 0|1, 0,−1)T .

Finally, for the irrep Γ5, we find from Eq. (62):

ψ1 =











A B A

0 0 0

−A −B −A











, ψ2 =











A 0 −A
B 0 −B
A 0 −A











. (68)
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These basis vectors depend on two parameters (A, B) and, this confirms that the irrep Γ5

enters the representation Γ two times [see Eq. (55)]. Supposing successively A = 1, B = 0

and A = 0, B = 1, we obtain after normalizing the last four columns of the matrix S:

V6 =
1
2
(1, 0, 1|0, 0, 0| − 1, 0,−1)T ;

V7 =
1√
2
(0, 1, 0|0, 0, 0|0,−1, 0)T ;

V8 =
1
2
(1, 0,−1|0, 0, 0|1, 0,−1)T ;

V9 =
1√
2
(0, 0, 0|1, 0,−1|0, 0, 0)T .

All the vectors Vj (j = 1..9) are orthogonal and normalized. Note that this is the

necessary condition for the matrix S to be orthogonal.

As a result of all above-discussed steps, we confirm the correctness of the decomposition

(55) of the reducible representation Γ into the irreps of the group G = C4v and construct the

following matrix S which allow us to split the linearized system δ̈ = J(t) ·δ into independent

subsystems:

S =













































1
2
0 0 0 −1

2
1
2

1
2

0 0

0 1
2
0 −1

2
0 0 0

√
2
2

0

1
2
0 0 0 1

2
1
2

−1
2

0 0

0 1
2
0 1

2
0 0 0 0

√
2
2

0 0 1 0 0 0 0 0 0

0 1
2
0 1

2
0 0 0 0 −

√
2
2

1
2
0 0 0 1

2
−1

2
1
2

0 0

0 1
2
0 −1

2
0 0 0 −

√
2
2

0

1
2
0 0 0 −1

2
−1

2
−1

2
0 0













































. (69)

As was described in Sec. VA [see, Eqs. (50)–(51)], introducing the new nine-dimensional

infinitesimal vector y = Sδ with matrix S determined by Eq. (69), we obtain from the old

linearized system δ̈ = J(t) · δ the new one

ÿ = J̃(t)y, J̃(t) = SJ(t)ST , (70)

which turns out to be decomposed into some independent subsystems.

Example 1

For the model (2) of linearly coupled Duffing oscillators, we obtain the following subsys-

tems corresponding to the individual irreps of the group G = C4v.
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The irrep Γ1 generates the following 3× 3 subsystem:



















ÿ1 + [3c2(t) + (1 + 2α)]y1 − 2αy2 = 0,

ÿ2 − 2αy1 + [3b2(t) + (1 + 3α)]y2 − 2αy3 = 0,

ÿ3 − 2αy2 + [3a2(t) + (1 + 4α)]y3 = 0.

(71)

All three time-periodic functions, a(t), b(t) and c(t), describing a dynamical regime on

the invariant manifold Q
(1)
3×3 =











c b c

b a b

c b c











, enter Eqs. (71). Let us emphasize once more

that this regime can be periodic, as well as quasiperiodic.

Two identical 2× 2 subsystems







ÿ1 + [3c2(t) + (1 + 4α)]y1 −
√
2αy2 = 0,

ÿ2 −
√
2αy1 + [3b2(t) + (1 + 5α)]y2 = 0

(72)

correspond to the irrep Γ5, while different scalar equations correspond to the irreps Γ3 and

Γ4, namely,

Γ3 : ÿ + [3b2(t) + (1 + 3α)]y = 0, (73)

Γ4 : ÿ + [3c2(t) + (1 + 6α)]y = 0. (74)

For studying stability of discrete breathers in the model 2, we can apply the standard

Floquet method. In the case of the invariant manifold Q
(1)
3×3, one has to deal with the

18-dimensional phase space corresponding to a given breather. On the other hand, after

splitting the linearized system δ̈ = J(t) · δ into independent subsystems (71)–(74), we

may analyze discrete breather stability applying the Floquet method successively for these

subsystems of much smaller dimensions.

For DB with T = 2 determined on the invariant manifold Q
(1)
3×3 in the case of the model

2 with γ = 1 by the initial conditions, a(0) = 2.35593, b(0) = −0.45156, c(0) = 0.13152

we have obtained the following Floquet exponents for 3× 3 subsystem (71):



















−0.74678± 0.66507 · i,
0.26213± 0.99966 · i,
1± 0 · i.

(75)
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For 2× 2 subsystems (72):






−0.60978± 0.79257 · i,
0.61449± 0.78892 · i.

(76)

For Eq. (73):

− 0.53267± 0.84632 · i. (77)

For Eq. (74):

− 0.55546± 0.83154 · i. (78)

All these Floquet exponents lie on the unit circle in the complex plane and, therefore,

the given DB proves to be stable.

To check the above-discussed splitting procedure, we calculated the Floquet exponents

for the whole 18-dimensional phase space associated with the original linearized system

δ̈ = J(t)δ and are convinced that they exactly coincide with those from Eqs. (75)–(78).

Actually Eqs. (75)–(78) allow us to study stability of a given DB with respect to different

symmetry-determined collective degrees of freedom. In some a sense, such information can

throw light upon the cause of the breather stability loss.

Example 2

Finally, let us decompose the linearized system δ̈ = J(t)δ for the discrete breather on

Q
(1)
3×3 in the case of the model 1 whose stability we were able to study without applying

the Floquet method (see Sec. III). Using the same matrix S from Eq. (69) we obtain the

following decomposition of the linearized system:

Γ1 :



















ÿ1 + 3[γc2(t) + 2ν(t)]y1 − 6ν(t)y2 = 0,

ÿ2 − 6ν(t)y1 + 3[γb2(t) + µ(t) + 2ν(t)]y2 − 6µ(t)y3 = 0,

ÿ3 − 6µ(t)y2 + 3[γa2(t) + 4µ(t)]y3 = 0,

(79)

Γ5 :







ÿ1 + 3[γc2(t) + 2ν(t)]y1 − 3
√
2ν(t)y2 = 0,

ÿ2 − 3
√
2ν(t)y1 + 3[γb2(t) + µ(t) + 2ν(t)]y2 = 0,

(80)

(two identical systems of this form),

Γ3 : ÿ + 3[γb2(t) + µ(t) + 2ν(t)]y = 0, (81)

Γ4 : ÿ + 3[γc2(t) + 2ν(t)]y = 0. (82)
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Here µ(t) = [a(t)− b(t)]2, ν(t) = [b(t)− c(t)]2, where a(t), b(t), and c(t) are three breather

components on the invariant manifold Q
(1)
3×3.

As a consequence of this decomposition, we can associate different stability indicators Λj

(j = 0..8) (see Sec. III) for DB (γ = 1) with the irreducible representations Γ1, Γ3, Γ4, Γ5

of the group G = C4v:

Γ1 : Λ0 = 3, Λ1 = 0.12407, Λ2 = 0.02340

Γ3 : Λ3 = 0.59433

Γ4 : Λ4 = 0.03707

Γ5 : Λ5 = Λ6 = 0.59556, Λ7 = Λ8 = 0.03584.

(83)

Note that some of these Λj turn out to be degenerate, exactly or approximately. We will

consider symmetry-related causes of this phenomenon elsewhere.

In connection with the above group-theoretical method for splitting the linearized sys-

tem δ̈ = J(t)δ into independent subsystems, one may ask: ”How this method works in

the case of large lattice fragment?” Indeed, the worse the localization of the breather, the

larger fragments of the corresponding invariant manifolds one must consider. Unfortunately,

our decomposition method becomes less effective for this case because dimensions of the in-

dependent subsystems can be rather large. For example, we obtain the following splitting

scheme for studying stability of DB with symmetry group G = C4v on the invariant manifold

Q
(1)
5×5:

1(6× 6)⊕ 1(1× 1)⊕ 1(3× 3)⊕ 1(3× 3)⊕ 2(6× 6). (84)

These subsystems are associated with the irreps Γ1, Γ2, Γ3, Γ4 and Γ5, respectively.

Comparing (84) and (56), we see that the decomposition of the linearized system on the

manifold Q
(1)
3×3 is more efficient than that on Q

(1)
5×5.

However, let us emphasize again that all discussed decompositions are true not only for

periodic, but for any quasiperiodic regimes, as well. In practice, the latter can be very

important.

VI. CONCLUSION

In the present paper, we study stationary discrete breathers in two nonlinear scalar

models on the plane square lattice. However, the developed group-theoretical methods for
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constructing breather solutions and studying their stability can be naturally extended to

the case of time-periodic and quasiperiodic nonlinear dynamical objects of various physical

nature on different 2D and 3D lattices. These methods allow one to simplify, sometimes

considerably, studying discrete breathers and quasibreathers in space-periodic structures.
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