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Abstract

We show how the Hamiltonian Monte Carlo algorithm can sometimes be speeded up
by “splitting” the Hamiltonian in a way that allows much of the movement around the
state space to be done at low computational cost. One context where this is possible is
when the log density of the distribution of interest (the potential energy function) can be
written as the log of a Gaussian density, which is a quadratic function, plus a slowly varying
function. Hamiltonian dynamics for quadratic energy functions can be analytically solved.
With the splitting technique, only the slowly-varying part of the energy needs to be handled
numerically, and this can be done with a larger stepsize (and hence fewer steps) than would
be necessary with a direct simulation of the dynamics. Another context where splitting
helps is when the most important terms of the potential energy function can be evaluated
quickly, with only a slowly-varying part requiring costly computations. With splitting, the
quick portion can be handled with a small stepsize, while the costly portion uses a larger
stepsize. We show that both of these splitting approaches can reduce the computational cost
of sampling from the posterior distribution for a logistic regression model, using either a
Gaussian approximation centred on the posterior mode, or a Hamiltonian split into a term
that depends on only a small number of critical cases, and another term that involves the
larger number of cases that have little influence on the posterior distribution.

Keywords: Markov chain Monte Carlo, Hamiltonian dynamics, Bayesian analysis

1 Introduction

The simple Metropolis algorithm (Metropolis et al., 1953) is often effective at exploring low-

dimensional distributions, but it can be very inefficient for complex, high-dimensional distributions

— successive states may exhibit high autocorrelation, due to the random walk nature of the

movement. Faster exploration can be obtained using Hamiltonian Monte Carlo, which was first
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introduced by Duane et al. (1987), who called it “hybrid Monte Carlo”, and which has been recently

reviewed by Neal (2010). Hamiltonian Monte Carlo (HMC) reduces the random walk behavior

of Metropolis by proposing states that are distant from the current state, but nevertheless have

a high probability of acceptance. These distant proposals are found by numerically simulating

Hamiltonian dynamics for some specified amount of fictitious time.

For this simulation to be reasonably accurate (as required for a high acceptance probability),

the stepsize used must be suitably small. This stepsize determines the number of steps needed to

produce the proposed new state. Since each step of this simulation requires a costly evaluation of

the gradient of the log density, the stepsize is the main determinant of computational cost.

In this paper, we show how the technique of “splitting” the Hamiltonian (Leimkuhler and Reich,

2004) can be used to reduce the computational cost of producing proposals for Hamiltonian Monte

Carlo. In our approach, splitting separates the Hamiltonian, and consequently the simulation of

the dynamics, into two parts. We discuss two contexts in which one of these parts can capture most

of the rapid variation in the energy function, but is computationally cheap. Simulating the other,

slowly-varying, part requires costly steps, but can use a large stepsize. The result is that fewer

costly gradient evaluations are needed to produce a distant proposal. We illustrate these splitting

methods using logistic regression models for classification problems. Computer programs for our

methods are publicly available from http://www.ics.uci.edu/~babaks/Homepage/Codes.html.

Before discussing the splitting technique, we provide a brief overview of HMC. (See Neal,

2010, for an extended review of HMC.) To begin, we briefly discuss a physical interpretation of

Hamiltonian dynamics. Consider a frictionless puck that slides on an uneven surface. The state

space of this dynamical system consists of its position, denoted by the vector q, and its momentum

(mass, m, times velocity, v), denoted by a vector p. Based on q and p, we define the potential

energy, U(q), and the kinetic energy, K(p), of the puck. U(q) is proportional to the height of the

surface at position q. The kinetic energy is m|v|2/2, so K(p) = |p|2/(2m). As the puck moves on

an upward slope, its potential energy increases while its kinetic energy decreases, until it becomes

zero. At that point, it slides back down, with its potential energy decreasing and its kinetic energy

increasing.

The above dynamic system can be represented by a function of q and p known as the Hamil-

tonian, which for HMC is usually defined as the sum of a potential energy, U , depending only on
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the position and a kinetic energy, K, depending only on the momentum:

H(q, p) = U(q) +K(p) (1)

The partial derivatives of H(q, p) determine how q and p change over time, according to Hamilton’s

equations :

dqj
dt

=
∂H

∂pj
=

∂U

∂pj

dpj
dt

= −∂H
∂qj

= −∂K
∂qj

(2)

These equations define a mapping Ts from the state at time t to the state at time t+ s.

We can use Hamiltonian dynamics to sample from some distribution of interest by defining

the potential energy function to be minus the log of the density function of this distribution

(plus any constant). The position variables, q, then correspond to the variables of interest. We

introduce fictitious momentum variables, p, as well (of the same dimension as q), which will have

a distribution defined by the kinetic energy function. The joint density of q and p is defined by

the Hamiltonian function as

P (q, p) =
1

Z
exp
(
−H(q, p)

)
When H(q, p) = U(q) +K(p), as we assume in this paper, we have

P (q, p) =
1

Z
exp
(
− U(q)

)
exp
(
−K(p)

)
so q and p are independent.

In applications to Bayesian statistics, q represents model parameters, and our objective is to

sample from the posterior distribution of q given the observed data D. To this end, we set

U(q) = − log(P (q)L(q|D))

where P (q) is our prior and L(q|D) is the likelihood function given data D.

Having defined a Hamiltonian function corresponding to the distribution of interest (e.g., a

posterior distribution of model parameters), we could in theory use Hamilton’s equations, ap-

plied for some specified time period, to propose a new state in the Metropolis algorithm. Since

Hamiltonian dynamics leaves invariant the value of H (and hence the probability density), and
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preserves volume, this proposal would always be accepted. (For a more detailed explanation, see

Neal (2010).)

In practice, however, solving Hamiltonian’s equations exactly is too hard, so we need to ap-

proximate these equations by discretizing time, using some small step size ε. For this purpose, the

leapfrog method is commonly used. It consists of iterating the following steps:

pj(t+ ε/2) = pj(t) − (ε/2)
∂U

∂qj
(q(t))

qj(t+ ε) = qj(t) + ε
∂K

∂pj
(p(t+ ε/2)) (3)

pj(t+ ε) = pj(t+ ε/2) − (ε/2)
∂U

∂qj
(q(t+ ε))

Typically, K(p) = pTM−1p, with M usually being a diagonal matrix with elements m1, . . . ,md,

so that K(p) =
∑

i p
2
i /2mi. The pj are then independent and Gaussian with mean zero, and

∂K/∂pj(p(t)) = pj(t)/mj.

We can use some number, L, of these leapfrog steps, with some stepsize, ε, to propose a new

state in the Metropolis algorithm. We apply these steps starting at the current state (q, p), with

fictitious time set to t = 0. The final state, at time t = Lε, it taken as the proposal, (q∗, p∗).

(To make the proposal symmetric, we would need to negate the momentum at the end of the

trajectory, but this turns out to be unnecessary when, as here, K(p) = K(−p).) We either accept

or reject this new proposal, with the acceptance probability being

min[1, exp(−H(q∗, p∗) +H(q, p))] = min[1, exp(−U(q∗) + U(q)−K(p∗) +K(p))]

These Metropolis updates will leave H approximately constant, and therefore do not explore

the whole joint distribution of q and p. The HMC method therefore alternates these Metropolis

updates with updates in which the momentum is sampled from its distribution (which is inde-

pendent of q). When K(p) =
∑

i p
2
i /2mi, each pj is sampled independently from the Gaussian

distribution with mean zero and variance mj.

As an illustration, consider sampling from the following bivariate normal distribution

q ∼ N(µ,Σ), with µ =

(
3

3

)
and Σ =

(
1 0.95

0.95 1

)
For HMC, we set L = 20 and ε = 0.15. The left panel in Figure 1 shows the first 30 states

from an HMC run. The density contours of the bivariate normal distribution are shown as gray
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Figure 1: Comparison of Hamiltonian Monte Carlo (HMC) and Random Walk Metropolis (RWM)

when applied to a bivariate normal distribution. Left Panel: The first 30 iterations of Split HMC

with 20 leapfrog steps. Right Panel: The first 30 iterations of RWM with 20 updates per iterations.

ellipses. The left panel shows every 20th state from the first 600 iterations of a run of a simple

random walk Metropolis (RWM) algorithm. (This takes time comparable to that for the HMC

run.) The proposal distribution for RWM is a bivariate normal with the current state as the

mean, and 0.152I2 as the covariance matrix. (The standard deviation of this proposal is the same

as the stepsize of HMC.) Figure 1 shows that HMC explores the distribution more efficiently,

with successive samples being further from each other, and autocorrelations being smaller. For

an extended review of HMC, its properties, and its advantages over the simple random walk

Metropolis algorithm, see Neal (2010).

In this example, we have assumed that one leapfrog step for HMC (which requires evaluating

the gradient of the log density) takes approximately the same computation time as one Metropolis

update (which requires evaluating the log density), and that both move approximately the same

distance. The benefit of HMC comes from this movement being systematic, rather than in a

random walk. We now propose a new approach called Split Hamiltonian Monte Carlo (Split

HMC), which further improves the performance of HMC by modifying how steps are done, with

the effect of reducing the time for one step or increasing the distance that one step moves.
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2 Splitting the Hamiltonian

As discussed by Neal (2010), variations on HMC can be obtained by using discretizations of

Hamiltonian dynamics derived by “splitting” the Hamiltonian, H, into several terms:

H(q, p) = H1(q, p) + H2(q, p) + · · · + HK(q, p)

We use Ti,t, for i = 1, . . . , k to denote the mapping defined by Hi for time t. Assuming that

we can implement Hamiltonian dynamics Hk exactly, the composition T1,ε ◦ T2,ε ◦ . . . ◦ Tk,ε is a

valid discretization of Hamiltonian dynamics based on H if Hi are twice differentiable (Leimkuhler

and Reich, 2004). This discretization is symplectic and hence preserves volume. It will also be

reversible if the sequence of Hi are symmetric: Hi(q, p) = HK−i+1(q, p).

Indeed, the leapfrog method (3) can be regarded as a symmetric splitting of the Hamiltonian

H(q, p) = U(q) +K(p) as

H(q, p) = U(q)/2 + K(p) + U(q)/2 (4)

In this case, H1(q, p) = H3(q, p) = U(q)/2 and H2(q, p) = K(p). Hamiltonian dynamics for H1 is

dqj
dt

=
∂H1

∂pj
= 0

dpj
dt

= −∂H1

∂qj
= −1

2

∂U

∂qj

which for a duration of ε gives the first part of a leapfrog step For H2, the dynamics is

dqj
dt

=
∂H2

∂pj
=

∂K

∂pj

dpj
dt

= −∂H2

∂qj
= 0

For time ε, this gives the second part of the leapfrog step. Hamiltonian dynamics for H3 is the

same as that for H1 since H1 = H3, giving the the third part of the leapfrog step.

2.1 Splitting the Hamiltonian when a partial analytic solution is avail-

able

Suppose the potential energy U(q) can be written as U0(q) + U1(q). Then, we can split H as

follows:

H(q, p) = U1(q)/2 + [U0(q) +K(p)] + U1(q)/2 (5)
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Here, H1(q, p) = H3(q, p) = U1(q)/2 and H2(q, p) = U0(p) +K(p). The first and the last terms in

this case are similar to Eq. 4, where we use U1(q) instead of U(q). Therefore, the first and the last

part of a leapfrog step remain as before, but we use U1(q) as opposed to U(q) to update p. Now

suppose that the middle part of the leapfrog, which is based on the Hamiltonian U0(q) + K(p),

can be handled analytically; that is, we can find the exact dynamics for time t. For this part, we

should be able to take larger step sizes and fewer steps. This could lead to faster simulations from

posterior probability distributions.

We are mainly interested in situations where U0(q) provides a reasonable approximation to

U(q). Recently, Beskos et al. (2010) proposed a similar splitting strategy for HMC on Hilbert

spaces. In our approach, we approximate U(θ) by focusing on the region of highest posterior

probability distribution. To this end, we focus on the region around the posterior mode, q̂, of

the distribution. To obtain q̂ we can use methods such as the Newton-Raphson algorithm when

analytical solutions are not available. We then approximate U(q) with U0(q), the energy function

for N(q̂,J −1(q̂)), where J (q̂) = U ′′(q̂). We set U1(q) = U(q)− U0(q).

Using the above normal approximation, H2(q, p) = U0(q)+K(p) in Eq. (5) has a quadratic form

and produces a first-order linear ODE system that can be handled analytically (Polyanin et al.,

2002). In this case, we let K(p) = 1
2
pTp, which is the energy for the standard normal distribution,

and U0(q) = 1
2
(q− q̂)TJ (q̂)(q− q̂) is the potential energy of the approximate normal distribution.

Setting q∗ = q − q̂, the corresponding Hamiltonian dynamics can be written as follows:

d

dt

q∗(t)
p(t)

 =

 0 I

−J (q̂) 0

q∗(t)
p(t)


where I is the identity matrix. We can rewrite the above ODE system as d

dt
X(t) = AX(t), where

A =

 0 I

−J (q̂) 0


The fundamental solution matrix of the above system is Φ(t) = eAt. We can diagonalize the

coefficient matrix A

A = ΓDΓ−1

where Γ is invertible and D is a diagonal matrix. Thus, we can rewrite the ODE system as

d

dt
X(t) = ΓDΓ−1X(t)
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Algorithm 1 Leapfrog steps for split Hamiltonian Monte Carlo with a partial analytic solution.

R← ΓeDεΓ−1

Sample initial values for p

for ` = 1 to L do

p← p− (ε/2)∂U1

∂q

q∗ ← q − q̂

X0 ← (q∗, p)

(q∗, p)← RX0

q ← q∗ + q̂

p← p− (ε/2)∂U1

∂q

end for

Now, let Y (t) = Γ−1X(t). Then,
d

dt
Y (t) = DY (t)

The solution for the above equation is Y (t) = eDtY0, where Y0 = Γ−1X0, and X0 are the initial

values. Therefore,

X(t) = ΓeDtΓ−1X0

The above analytical solution is of course for the middle part (denoted as H2) of Eq. (5) only.

We still need to approximate the overall Hamiltonian dynamics, H, using the leapfrog method.

Algorithm 1 shows the corresponding leapfrog steps. As we can see, after an initial step of size ε/2

based on U1(q), we obtain the exact solution at time ε based on H2(q, p) = U0(q) + K(p). Then,

we finish the iteration by taking another step of size ε/2 based on U1(q).

2.2 Splitting the Hamiltonian by splitting the data

The method discussed in the previous section is based on the assumption that we are able to

handle the Hamiltonian H2(q, p) = U0(q) +K(p) analytically. If this is not possible, we might still

benefit from splitting the Hamiltonian H(q, p), if the computational cost associated with U0(q)

is substantially lower than the computational cost of U1(q). In these situations, we can use the
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Algorithm 2 Nested leapfrog steps for split Hamiltonian Monte Carlo by splitting the data.

Sample initial values for p

for ` = 1 to L do

p← p− (ε/2)∂U1

∂q

for m = 1 to M do

p← p− (ε/2M)∂U0

∂q

q ← q + (ε/M)p

p← p− (ε/2M)∂U0

∂q

end for

p← p− (ε/2)∂U1

∂q

end for

following split:

H(q, p) = U1(q)/2 +
M∑
m=1

[U0(p)/2M +K(p)/M + U0(p)/2M ] + U1(q)/2 (6)

for some M > 1. The above discretization can be considered as a nested leapfrog, where the outer

part takes half steps to update p based on U1 alone, and the inner part involves M leapfrog steps

of size ε/M based on U0.

For example, suppose our statistical analysis involves a large data set with many observations,

but we believe that a small subset of data is sufficient to build a model that performs reasonably

well (i.e., compared to the model that uses all the observations). In this case, we can construct

U0(q) based on a small part of the observed data, and use the remaining observations to construct

U1(q). That is, we divide the observed data, y, into two subsets: R0, which is used to construct

U0(q), and R1, which is used to construct U1:

U(θ) = U0(θ) + U1(θ)

U0(θ) = − log[P (θ)]−
∑
i∈R0

log[P (yi|θ)]

U1(θ) = −
∑
i′∈R1

log[P (yi′ |θ)]

Note that the prior appears in U0(θ) only.

Neal (2010) discusses a related strategy for splitting the Hamiltonian by splitting the observed

data into multiple subsets. However, instead of randomly splitting data, as proposed by Neal,
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we split data by building an initial model based on the posterior mode, q̂, and use this model to

identify a small subset of data that sufficiently capture the overall patterns in the whole data set.

Then, we use Eq. (5) to split the Hamiltonian dynamics. The corresponding leapfrog steps for

this approach are presented in Algorithm 2.

3 Application of Split HMC to logistic regression models

In this section, we describe the application of Split HMC to Bayesian logistic regression models

for binary classification problems. Consider the following logistic regression model:

P (y = 1|x, α, β) =
exp(α + xTβ)

1 + exp(α + xTβ)
(7)

For simplicity, we use θ to denote the set of all unknown parameters, (α, β). Let P (θ) be the prior

distribution for θ. The posterior distribution of θ given x and y is proportional to P (θ)P (y|x, θ).

The corresponding potential energy function is

U(θ) = − log[P (θ)]− log[P (y|x, θ)]

For logistic regression models, U0(θ) based on the normal approximation, N(θ̂,J −1(θ̂)), usually

provides a reasonable approximation to U(θ). Therefore, we expect the error term U1(θ) =

U(θ) − U0(θ) to be small, and the splitting scheme of (5) to result in more efficient sampling by

increasing the stepsize and reducing the number of leapfrog steps.

Alternatively, we could split the Hamiltonian dynamics by splitting the data into two subset

and using the splitting scheme presented in (6). To illustrate the application of this approach,

consider the binary classification problem presented in Figure 2, where the two classes are shown as

white circles and black squares. The straight line represents the estimated classification boundary

using the maximum likelihood estimate (MLE). Around this line, the estimated probabilities for

the two groups are close to 0.5. Also, the points close to the boundary line have high entropy,

which is defined as

e = −P (y = 0|x, θ̂) log[P (y = 0|x, θ̂)]− P (y = 1|x, θ̂) log[P (y = 1|x, θ̂)]

The shaded area in Figure 2 shows the region that includes the top 30% of the observations with

the highest entropy values. In this example, the class probabilities for these points are between
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Figure 2: Splitting the observed data into two parts based on an initial logistic regression model

represented by solid line. The dashed line is model using the data within R0 region only. The

energy function U is then divided into two parts: U0 based on the data points in R0, and U1 based

on the data points in R1.

0.28 and 0.72. If we focus on this region and use the data points within the shaded area to re-

estimate the MLE, we obtain a new classifier, which is represented by the dashed line. As we can

see, the model based on a small subset of data provides a reasonable approximation for the model

based on all data points. We can partition the data into two subsets. One subset includes data

points with relatively high entropy points that fall within the shaded area, R0. The remaining

data points fall within the unshaded area, R1.

Using the two subsets, we can split the energy function U(θ) into two terms: U0(θ) based on
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the data points that fall within R0, and U1 based on the data points that fall within R1:

U(θ) = U0(θ) + U1(θ)

U0(θ) = − log[P (θ)]−
∑
i∈R0

log[P (yi|xi, θ)]

U1(θ) = −
∑
i′∈R1

log[P (yi′ |xi′ , θ)]

To use this approach, first we obtain the posterior mode, θ̂. Then, we define U0 based on the top

20% of the data points with the highest values of entropy.

In the following two sections, we use simulated and real data to compare our proposed methods

to the standard HMC. For each problem, we set L = 20 for HMC, and find ε such that the

acceptance rate is close to 0.65. We set the corresponding L and ε for Split HMC such that the

trajectory length remains the same, but with longer stepsize and smaller number of steps. Among

all possible options, we choose the values of L and ε for Split HMC such that its acceptance rate

is not less than the acceptance rate of HMC. This is of course determined by how much we can

increase ε before the acceptance rates of Split HMC methods falls bellow than what we we obtain

from the standard HMC. Additionally, increasing the stepsizes beyond a certain point could lead

to instability of trajectories. In such cases the error of the Hamiltonian grows without bound

(Neal, 2010), and the proposals are rejected with very high probability. Therefore, in choosing

the stepsizes for Split HMC methods, we are limited by the acceptance rate of the standard HMC

and the point of instability of Hamiltonian dynamics.

To measure the efficiency of each sampling method, we use the autocorrelation time (ACT)

by dividing the posterior samples into batches of size B = 1000, and estimating ACT as follows

(Neal, 1993; Geyer, 1992):

τ = B
S2
b

S2

Here, S2 is the sample variance and S2
b is the sample variance of batch means.

For the logistic regression models in the following two sections, we first find the autocorrelation

times for each regression parameters separately, and then compare different methods using the

maximum autocorrelation time over all regression parameters.
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HMC Split HMC

Normal Appr. Data Splitting

L 20 12 11

AP 0.69 0.83 0.78

τ 12.12 10.44 8.18

s 0.156 0.108 0.152

τ × L 242.4 125.28 -

τ × s 1.89 1.13 1.24

Table 1: Comparing Split HMC (with normal approximation and data splitting) to HMC using

simulated data.

3.1 Simulated data

We simulate a data set with 100 covariates and 5000 observations. We start by sampling xij ∼

N(0, σ2
j ), for i = 1, . . . , 5000 and j = 1, . . . , 100. We set σj to 5 for the first five variables, to

1 for the next five variables, and to 0.2 for the remaining 90 variables. Next, we sample the

corresponding class labels using the following model:

α, β1, . . . , β100 ∼ N(0, 1)

logit(pi) = α + xTi β

yi ∼ Bernoulli(pi)

We run HMC, Split HMC with normal approximation, and Split HMC with data splitting

(using the top 30% of the observations with the highest entropy values) for 50000 iterations. For

HMC, we set L = 20 and ε = 0.02 (i.e., trajectory length of 20× 0.02 = 0.4). For Split HMC with

normal approximation and Split HMC with data splitting, we reduce the number of leapfrog steps

to 12 and 11 respectively, while increasing the stepsizes so that the trajectory length remains 0.4.

For the data splitting methods, we set M = 3.

Table 1 shows the results for the three alternative methods. While these methods have com-

parable acceptance probabilities, AP , the CPU time (in seconds) per iteration, s, and τ × s for

Split HMC methods are substantially lower than that of HMC. Since the CPU time varies de-

pending on the machine type, Table 1 also provides τ × L for HMC and Split HMC with normal

approximation.
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HMC Split HMC

Normal Appr. Data Splitting

L 20 14 8

AP 0.65 0.71 0.79

τ 11.3 10.5 9.2

StatLog s 0.046 0.034 0.039

τ × L 226.0 147.8 -

τ × s 0.52 0.37 0.36

L 20 13 9

AP 0.78 0.89 0.85

τ 109.12 89.43 93.61

Chess s 0.034 0.024 0.033

τ × L 2182.4 1162.59 -

τ × s 3.71 2.18 3.15

L 20 14 11

AP 0.70 0.83 0.78

τ 13.79 18.07 12.04

GISETTE s 0.151 0.114 0.147

τ × L 275.8 253.0 -

τ × s 2.08 2.06 1.77

L 20 14 9

AP 0.67 0.82 0.86

τ 220.26 167.8 179.45

CTG s 0.018 0.014 0.017

τ × L 4405.2 2349.2 -

τ × s 3.96 2.28 3.08

Table 2: Comparing Split HMC (with normal approximation and data splitting) to HMC using

three real data sets.

3.2 Results for real data

In this section, we evaluate our proposed method using four real binary classification problems. We

run each Markov chain for 200000 iterations. The autocorrelation times are obtained by dividing

the posterior samples into 200 batches of size B = 1000.

The data for these four problems are available from the UCI Machine Learning Repository

(http://archive.ics.uci.edu/ml/index.html). The first problem, StatLog, involves using

multi-spectral values of pixels in a satellite image in order to classify the associated area into

soil or cotton crop. (In the original data, different types of soil are identified.) The sample size for

this data set is 4435, and the number of features is 37. For HMC, we set L = 20 and ε = 0.075.

14
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For the two Split HMC methods with normal approximation and data splitting, we reduce L to

14 and 8 respectively while increasing ε so ε× L remains the same as that of HMC. For the data

splitting method, we set M = 3. Table 2 compares the three sampling methods. As we can see,

Split HMC methods substantially reduce τ ×s while keeping the acceptance probability above the

acceptance probability of HMC.

The second problem, Chess, involves in chess endgame prediction: white can win vs. white

cannot win. This data set includes 3196 instances, where each instance is a board-descriptions for

the chess endgame. There are 36 attributes describing the board. For HMC, we set L = 20 and

ε = 0.08. We improved the computational cost (Table 2) by reducing the number of leapfrog steps

to 13 and 9 for Split HMC with normal approximation and data splitting (M = 3) respectively.

The third problem, GISETTE, is a handwritten digit recognition problem (Guyon et al., 2004)

constructed based on the MNIST data (http://yann.lecun.com/exdb/mnist). The objective is

to separate the highly confusable digits “4” and “9”. The data include n = 6000 observations and

a set of 5000 highly sparse features. For our analysis, we use the projections of original covariates

onto the first 100 principal components as predictors. We set L = 20 and ε = 0.11 for HMC. For

the two Split HMC methods with normal approximation and data splitting, we reduce L to 13

and 11 respectively. For the data splitting method, τ × s is substantially reduced. For the Split

HMC with normal approximation, however, reduction in s coincides with the increase in τ so the

overall reduction in τ × s is not substantial for this approach.

Finally, the fourth problem, CTG, involves analyzing 2126 fetal cardiotocograms along with

their respective diagnostic features (de Campos et al., 2000). The objective is to determine whether

the fetal state class is “pathologic” or not. The data include 2126 observations and 21 features.

For HMC, we set L = 20 and ε = 0.075. We reduced the number of leapfrog steps to 14 and 9 for

Split HMC with normal approximation and data splitting (M = 3) respectively. As the result,

the sampling efficiency improved substantially (Table 2).

4 Discussion

We have proposed the new methods for improving the efficiency of HMC. Our methods are based

on splitting the Hamiltonian function, which allows much of the movement around the state space

to be done at low computational cost. While we have focused on the application of our method to
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logistic regression models for binary classification problems, it can easily be generalized to multi-

nomial logistic (MNL) models for multiple classes. For these models, the regression parameters

for p covariates and J classes form a matrix of (p + 1) rows and J columns. We can vectorize

this matrix such that the model parameters, θ, becomes a vector of (p + 1) × J elements. Then,

for Split HMC with normal approximation, we define U0(θ) using an approximate multivariate

normal N(θ̂,J −1(θ̂)) as before. For Split HMC with data splitting, we can still construct U0(θ)

using a small subset of data with the highest entropy,

e = −
J∑
j=1

P (y = j|x, θ̂) log[P (y = j|x, θ̂)]

Our method can also be extended to other problems such as regression models. We can

approximate the posterior distribution of model parameters by a Gaussian distribution. We can

also split the the Hamiltonian by splitting the data. To this end, we can build a model using the

posterior mode, and divide the data into two ports: 1) observations whose absolute residuals fall

below a certain threshold, and 2) observations whose absolute residuals is above the threshold.

While simulated data and real classification problems presented in this paper have demon-

strated the advantages of splitting the Hamiltonian dynamics in terms of improving the sampling

efficiency, our proposed methods require preliminary analysis of data; mainly, we need to find

the posterior mode. The performance of our approach obviously depends on how well the corre-

sponding normal distribution approximates the posterior distribution, or how well the small subset

of data (using the posterior mode and corresponding entropy measures) can capture the overall

patterns in the whole data. In general, however, the computational cost associated with finding

the posterior mode tends to be negligible compared to the potential improvement in sampling

efficiency.

Future research in this area can involve finding a better tractable approximation (compared

to the Gaussian distribution) for the posterior distribution. Also, one could investigate other

methods for splitting the Hamiltonian dynamics by splitting the data. For example, one could

fit a support vector machine (SVM) to binary classification data, and use the support vectors

for constructing U0. For regression models, the support vectors could be identified using a SVM

model with an ε-insensitive error. Future research could also involve investigating the application

of Split HMC to nonlinear regression and classification models, such as those based on Gaussian

process priors. These models tend to be computationally intensive. In fact, the computational
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cost is a major factor in limiting the application of these models. The method proposed in this

paper could mitigate this by improving the efficiency of sampling from the posterior distribution

of model parameters.
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