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ABSTRACT

We present a simple mathematical criterion for determinvhgther a given statistical model does not describe sewetapendent
sets of measurements, or data modes, adequately. We des\iterion for two data sets and generalise it to seveisl By using
the Bayesian updating of the posterior probability denJitydemonstrate the usage of the criterion, we apply it t@olagions of
exoplanet host stars by re-analysing the radial velooitiddD 217107, Gliese 581, andAndromedae and show that the currently
used models are not necessarily adequate in describingdperties of these measurements. We show that while the &eosets

of Gliese 581 can be modelled reasonably well, the noise haidéD 217107 needs to be revised. We also reveal some biases i
the radial velocities off Andromedae and report updated orbital parameters for ttemtly proposed 4-planet model. Because of the
generality of our criterion, no assumptions are needed emature of the measurements, models, or model parametersndthod

we propose can be applied to any astronomical problems, lhasvautside the field of astronomy, because it is a simpleseguence

of the Bayes’ rule of conditional probabilities.
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1. Introduction greatest posterior probability is adequately accurateestdb-

. : ' ing the measured quantities.
Since the discovery of the first clear-cut example of an eplex g a

planet orbiting a normal star (Mayor & Queloz, 1995), Dopple  The Bayes'’ factors (Kass & Raftery, 1995;
spectroscopy, or radial velocity (RV), has been the miigtient [Chib & Jeliazkol, [ 2001; Ford & Gregdry, 2007) and other
method in detecting extrasolar planets orbiting nearbigbta  related measures of model goodness, such as the various
Because the same nearby stars can be targets of severaiif§rmation criteria (e.g.|_Akaike,| 1973; Schwarz, 1978;
surveys, there is the possibility to combine the informatid [Spiegelhalter et al/, 2002) derived usingfelient approxima-
two or more RV data sets using the means of Bayesian inf@ibns, can only be used to tell which one of the models in some
ence (e.g. Gregary, 2011; Tuomi, 2011) and posterior updatodel set describes the measurements the best — i.e. theaela
ing. However, little is known about the possible biases -indigoodness*” of the models can be determined reliably. Howeve
vidual data sets, or RV timeseries, may contain with resfzectthey cannot be used to assess whether this best model is as
one another. Therefore, we use Bayesian tools in deterguiniccurate description as possible given the informatiorhan t
whether the common statistical models can be used to analysgasurements. Our method of determining model inadequacy
RV timeseries without bias, and if not, how these models camthis sense can be used to assess whether the model set can be
be improved to receive trustworthy results. For these me&po estimated to contain a ficiently accurate model that can be
we introduce a method for determining model inadequacyin dgsed to describe the measurements reliably.
scribing multiple sets of measurements — the Bayesian model
inadequacy criterion. Whether a given statistical model can be used to describe
The Bayes’ rule leads naturally to the commonly usegeveral sets of data in an adequate manner or not, has not
Bayesian model comparison methods (e.offrée$, [1961). been studied very extensively in the statistics literature
These methods can be usetigently to compare the relativelKaasalainen! (2011), the author presents a method for deter-
performance of dferent statistical models of sonagpriori se- Mining the optimal combination of two or more sources of
lected model set. The Bayes’ rule can be used to calculatelthe data, or data modes. However, we are not aware of a single
ative posterior probabilities of the models in the set gigeme Study discussing this problem in the Bayesian context,ghou
measurements that describe some aspect of the modelledsysbpiegelhalter et al. (2002) appear to discuss the "model ade
However, because only the relative performances of the lmodguacy” in their article introducing the deviance inforneaticri-

can be compared, it cannot be said whether the model with tiggion, but they use the term interchangeably with the tefith ”
Yet, determining whether a single model can describe two or

* The corresponding author, e-maitn. tuomi@herts.ac.uk; More data sets without bias is of increasing importance in as
mikko. tuomi@utu. fi tronomy, particularly for indirect detections of the modeirest-

! See The Extrasolar Planets Encyclopaedia for an up-tolidatf  ing exoplanets whose signals lie close to the current liwiits
known planetary candidatelsttp:/exoplanet.ey. instrument sensitivity.
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Since the RV variations of typical targets of Doppler- The interpretation of the posterior probabilities in Eg). i€l
spectroscopy surveys are commonly modelled using a superpaather subjective matter because they are relative anaitly
sition of Keplerian signals, reference velocities, andsfige lin-  possible to assess how much confidence one has in one of the
ear trends, corrupted by some Gaussian noise, we use these mmdels compared to the rest of them. According to the views of
els as a starting point of our analyses. However, we emphasisffreys (1961); Kass & Raftery (1995), a model would have to
the fact that the RV variations caused by the stellar suriaae be at least 150 times more probable than the next best model to
ally referred to as the stellar jitter, are in general, diespbme have strong evidence in favour of it. We adopt the same thresh
efforts in modelling their magnituda (Wright, 2005), foresesn old because claiming that there &e 1 planets orbiting a star
arising from dark or bright spots primarily driven by steltata- instead ofk needs to be on a solid ground with respect to the
tion (Barnes et all, 2011; Boisse et al., 2011) and th&ceon model probabilities. Especially, if the model wikh+ 1 planets
the RV’s is not understood very well at the moment. Thereforeas e.g. 50 times more probable than that Wdifilanets, there
we model the excess noise in the RV’s with care and show exeuld still be a roughly 2% possibility that tHeplanet model
plicitly the statistical models we use in the analyses. explains the data. Therefore, we choose a rather high tblictsh

In section 2 we describe what we mean by the model inadehen interpreting the posterior probabilities of modelgwdif-
quacy in describing two or more independent measurementsenent numbers of Keplerian signals.
sets of measurements and provide a simple way of determining With the marginal likelihoods available according to the Eq
it in practice. We describe the details of our model inadeguad, we define the modeM to be an inadequate description of
criterion in the Appendix. Finally, in section 3 we applydfuri- independent measurememisi = 1,...,N, if it holds that for
terion in practice by analysing astronomical RV exoplareet dsome small positive number
tections made using at least twdtdrent telescope-instrument P(my, ... myIM)
combinations. B(my, ..., MyIM) 1= —————

[1iZ, P(MIM)

This definition is based on the independence of the measure-
ments and that they are being modelled with a single stisti
The Bayesian methods do nofffdirentiate between determin-model. It is a simple result of a relation of the marginal like
ing the most probable parameter values or most probable madods of each of the measurement and the joint marginai-likel
els containing these parameters. They can all be arranged inood of all of them shown in E.{A.8). We derive this criterio
a linear order, which yields information on the observedeys using the Bayes'’ rule of conditional probabilities and tlvac
if only the selected models describe the observed systeln respt of independence, and also interpret the results instefm
istically enough. It is possible to calculate the relatiesterior information theory in the Appendix.
probabilities of any number of models and determine thdé-re ~ The number has an interpretation as a threshold value. For
tive magnitudes in a similar way as it is possible to detestire  instance, the model being inadequate with probabilitie%,90
posterior odds of having the measurements drawn from a pr&%, and 99% corresponds to threshold values of 0.111, 0.053
ability density characterised by a certain parameter velasy and 0.010, respectively (see Appendix). Therefore, if thstb
one of the models. We do not describe the process of determimedel according to Eql{1) satisfies Hg. (3) for some readgnab
ing the posterior probability densities of the model parrse smallr, it can be concluded that the model does not describe the
here, because several well-known posterior sampling ndsthagneasurements without bias and the corresponding analysis r
exist and they have been well covered by the existing liteeat sults may be biased as well. In such a case, the model set has to
(e.g/Metropolis et all, 1953; Hastings, 1970; Geman & Gemdve re-considered and expanded by adding better descspiion
1984; Haario et all, 2001). The performance of these methdtie data to it. In practice, we use the 95% threshold value, bu
has also been demonstrated by several re-analyses ohgxistihoosing its value is a subjective issue and only repres$ents
RV data, revealing the existence of planets (e.g. Greg@®52 confidently one wants to determine the model inadequacy.
2007&,bi Tuomi & Kotiranid, 2009) or disputing it (e.g. Tupm  We note that the model inadequacy can also be interpreted in
2011). In these works, the model probabilities have played terms of the measurements being inconsistent with one anoth
important role in assessing the number of planetary conopani with respect to the model used. This interpretation arises f
orbiting nearby stars. the fact that the model may not take into account some fesmture

Commonly, the Bayesian tools are used to assess the priohene or more data sets that result from biases in the process
abilities of diferent statistical models given the measuremer$ making the measurements or from some other unmodelled
mthat are being analysed using the models. These tools grovigatures in the data. We use the inadequacy of the model given
the relative probabilities of the selected modsl, i = 1,....k the data sets and the inconsistency of the data sets witkatesp
in thea priori determined model set as to this model interchangeably throughout this article.

We describe the parameter probability densities using

P(mM)P(M) (1) three numbers. These numbers are the maxinzurposte-
Z'j‘zl P(mle)P(Mj)’ riori (MAP) estimate of the posterior density and the lim-

] ) ~its of the 99% Bayesian credibility seDgg9 as defined in
where probabilitie®®(M;),i = 1, ...,k are the prior probabilities ¢ g [Tuomi & Kotiranta [(2009). We calculate these estimates
of the diferent models and the marginal likelihod@{gnM;) are  from the posterior densities of the model parameters redeiv

®3)

2. Bayesian analyses and model inadequacy

P(Mim) =

defined as using the adaptive Metropolis posterior sampling alganith
(Haario et al., 2001), which is a modification of the famous
P(MIM;) = fg . |(mi6;)7(65)d6;, (2)  Metropolis-Hastings (M-H) algorithmi_(Metropolis et d1.953:
i €0

Hastings| 1970) that adapts the proposal density to thesshiap
wheren(6;) is the prior probability density of the parameter othe posterior density of the model parameters. Becauseiof th
parameter vecto; of the modelM; andl(m|6;) represents the property, it is not very sensitive to the choise of initialpae-
likelihood function corresponding to the model. ter vector nor proposal density — desired features that rtfeke
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method significantly more robust than the common M-H algdable 1. The relative model probabilities &fplanet models for
rithm by enabling a more rapid convergence to the posterior. the combined data set of HD 217107.

While the adaptive Metropolis algorithm assumes a Gaussian X PO
proposal density, it adapts to the posterior reasonablgllsagnd o <1027
a samples of roughly faare stficient for the chain burn-in pe- 1 <1085
riod in all the analyses, i.e. until the chain converges éqthste- 2 1.00
rior. Because of the Gaussian posterior, the acceptareefrite 3 <107

chain can sometimes decrease to as low values as 1% when the
posterior density is highly nonlinear, as is comonly theecaigh
RV data. However, in such cases, we simply increased th@chai; yp 217107
length by a factor of 10-20 and saved computer memory by only
saving every 10th or 20th member of the chain to the output filehe RV’s of HD 217107 are known to contain the signatures
We verified that the chain had indeed converged by running upaf two extrasolar planets (Fischer et al., 1999, 2001; Voate
five samplings with dferent initial values and required that thex2000; [ Naef et &l.| 2001; Vogt etial., 2005; Wittenmyer et al.,
all produced marginal integrals that were equal up to thersg:c 2007; /| Wright et al.| 2009). The system consists of a massive
digit. With a converged chain, we then calculated the maigirshort-period planet with an orbital period of roughly 7 days
likelihoods using the method bf Chib & Jeliazkov (2001). and an outer long-period planet with an orbital period of 11
. . . ears. The RV's of this target have been observed using 4 in-
For the sake of trustworthiness, throughout this article V‘Z‘?ruments mounted on 5 telescopes, namely, Euler (Naef et al
also take into account the uncertainties in the stellar 8%5%007) ‘Harlam J. Smith (HIS) (Wittenmyer et AL, 2007), Keck
when calcqlatlng the semi-major axes and RV Masses of I{Wriaht et al.; 2009), and Shane and Coude Auxiliary Telpsco
planets orbiting them. These uncertainties are taken otownt (CA‘F) at the Lick Observatory (Wright et al., 2009). Togathe
by using a direct Monte Carlo simulation —i.e. by drawing-rafare’ are 293 RV measurements of this systém.
dom values from both the density of the model parameters angThe most up-to-date solution is that/of Wright et &l (2009)
the estimated density of the stellar mass when calculatieg t, here the combined Keck and Lick data with 207 measurements
densities of the semi-major axes and planetary RV masses. YW analysed. However, the authors do not discuss the eaact s
assume that thg estimated distribution of the §te]|ar MES, tistical model used in their analyses and therefore we fesl t
ally reported using mean and stardard error, is indeperfenty,is compined data set should be re-analysed to see howthe fo
the densities of the orbital parameters from the poSteBor-s a5 sets should be modelled to receive the most trustwazthy
plings. sults.
Following the common Bayesian approach (e.g. Gregory,
2005, 2007a,b;_Tuomi & Kotiranta, 2009; Tuomi, 2011), we
choose our model set to consist of four models, namely, nsodel
M. k=0,..., 3, wherek denotes the number of planetary signals
3. Model inadequacy criterion and exoplanet in the data. Therefore, there are-65 parameters in our models
detections corresponding to 5 parameters for each planet — RV amplitude
K, orbital eccentricitye, orbital periodP, longitude of pericentre
In principle, analysing RV data is reasonably simple beeaus. and mean anomalylo, i.e. the date of periastron passage as
the planet induced stellar wobble can be modelled using tf¥Pressed in radians between 0 and-Zour parameters decrib-
well-known Newtonian laws of motion — especially if the graving the reference velocities of each dataget = 1,...,4, and
itational planet-planet interactions are not significamtthe the parameter describing the magnitude of stellar jiterOur
timescale of the observations and post-Newtonifiacts are Set of statistical models describing the measuremenade at
negligible. In practice, though, there are several aspafctise UMet Is
RV measurements that are not understood well enough to be abt
to consider that the models describe the measurements aan &) + 71 + 6 + €.k =0,....3, 4)
equate manner. These aspects include e.g. Q'St“rban(mj‘:a\‘n‘/hererk represents thé& Keplerian signals and and e; are
by undetected planets or planets whose orbital periodsatang, ssian random variables with zero mean and known vari-
p(er]constralngq (e.0. Eord 8|¢|Greg?ry, 2007); I?O'S(? cgasghhé)y Bncer? and an unknown variane#, respectively. The variance
Inhomogeneities in the stefar surface, usually refer the o2 corresponds to the instrument uncertainty of each indalidu

stella_r jitter” (€.g. erg_ht, 2005); and excess noise ansy- measurement, which is usually assumed known and is reported
ble biases that are particular to the various instrumerddels- together with the data
R -

scopes used to make the observations. All these aspects m e analyse the combined data set using the mosits =

the analyses of RV's challenging and if not accounted fop[aroO 3 and >r/eceive the model robabilitieg in Table 1 'Fhese

erly by the statistical models used, can lead to biasedteegod >~ =~ P . .'
probabilities imply that there are two companions orbitihg

misleading interpretations. star with high confidence. However, the Bayes factor determi

In this section we re-analyse three RV data sets made using the inadequacy of the best model in the model set has to be
at least two telescope-instrument combinations. Assuhiegse calculated to assess the reliability of this model. Dergptime
sets are independent — which is a common assumption, thodigir data sets asy, | = 1, ..., 4, we receiveB(my, ..., my) = 0.05,
not explicitly stated most of the time when analysing seh&ts which means that the model is an inadequate descriptioneof th
of measurements — we apply the model inadequacy criteriondata with a probability of 0.95. This implies, that the mosiet
find out if the common models should be modified and if théoes not contain a fliciently good model, i.e. the data sets are
corresponding results arefidirent from the ones found in thenot consistent with one another given this model, and ne®ds t
literature. be expanded.
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Table 2. The relative model probabilities &fplanet models\i, i ‘ ‘ T ‘ T 1
and M, x for the combined data set of HD 217107 (all 8 proba- 0 - 7
bilities are on the same scale). ot .
= L ]
k P(My) P(MLk) ~ ~ r ]
0 <1025 <1072 - i 1
1 <109 <10% £ T 1
%]
2 <10 1.00 <M —
3 <10Y <102 £ L ]
~ F ]
Because of the inadequacy of model,, we no longer as- L 1 x 1 | s ]
sume that the instrument noise is known according to the vari 10 12 14
5 :
anceso? but suspect that there could be unknown random vari-
ations or biases thatfiier between the data sets. Therefore, we P, [year]

expand our model set by models
Fig. 1. The equiprobability contours of the RV mass and orbital
(t)+y +ea+eak=1..3 (3)  period of HD 217107 ¢ containing 50%, 95%, and 99% of the

where the Gaussian random variakle is different for every Probability density.

data set and is assumed to consist of additional random-varia

tion caused by the instrument noise and stellar jitter. @fee, Table 4. The relative model probabilities &fplanet modelg\ix

in this model, the resulting values; can only be interpreted and M,  for the combined data set of Gliese 581.

as giving the upper limit for the stellar jitter. We denotesh

models asM . k

Using the expanded model set, we receive the model prob- 0

abilities in Tabld 2. These probabilities imply that there &n- 1 <10%® <103

deed dfferences in the noise levels of théfdrent data sets and 2 <108 <10™

that these dferences have to be taken into account when assess- i <10 <107
5
6

POMJ) __ P(Mi)
<10® <1017

ing the orbital parameters of the planets. We calculate theein <102 0.16
inadequacy Bayes fact@(my, ..., my) for the best modeM; ». 0.11 0.72
This time B(my, ..., my) = 3.3 x 102, which corresponds to an <10 <10
inadequacy probability of.8 x 10713, a value that clearly states

the best model cannot be considered inadequate.

We have listed the solution of the model with the greate&iur (Tuomi,[2011) or fivel(Gregory, 2011), the RV's of Gliese
posterior probabilityM, », in Table 3. While consistent with the 581 provide a challenging analysis problem because thalsign
results of Wright et al. (2009), our solution with the bestdeb are only barely distinguishable from the relatively noisgan
M, 2 has much more uncertain parameter values, especially snrements.
the period, RV mass, and RV amplitude of the outer companion, We start by analysing the combined data set of HARPS and
which is also found heavily correlated with the referendese HIRES RV measurements (see e.g. Vogt étal., 2010; Gregory,
ity parameters. We show the 99%, 95%, and 50% equiprobabilg011;| Tuomi, 2011) using the modeMy and M,y with k =
contours of RV mass and period of the outer companion in Fig...., 5. We choose this model set because we already suspect,
[ (the gap in the 50% contours arises from the numerical inackased on the analysis of the RV’s of HD 217107, that this com-
racy of the plot). This Fig. is similar to the Fig. 8lin Wrighta| bined data set may haveflirent noise levels corresponding to
(2009), but they used the¢? density for the plot instead of pos-the diferent telescope-instrument combinations.
terior density. Also, we note that the jitter of HD 217107 laas  The posterior probabilities of the models in our model set ar
level of at most 6.0 ms based on the noise in the Euler datashown in Tabl¢}4. These probabilities, while having the tsta
which turned out to contain the least noise out of the fouadagalue for modelM; 5, do not support the conclusion that there
sets. Itis also interesting to see that the Lick data haetbez at are five Keplerian signals in the data strongly enough bexcties
least 5 ms', but possibly even more than 10.0 thsadditional probability of modelM, 4 is highly significant. Therefore, we
uncertainty that can only be caused by the telescopes ama-thecheck the inadequacy of the latter model to see if our sizist
strument. Therefore, it cannot be said that the Lick ins&m model is good enough.
uncertainty is known according to the standard uncergsraf The Bayes factor in Eq[{3) has a value dd & 10 for the
the data reduction pipeline, as reported when publishir Lifour-planet modeM, 4, which means that the probability of the
RV's. This could in fact be one of the reasons the parameter VRIRES and HARPS data sets being inadequately described by
ues in our solution (Tablgl 3) appear to be more uncertain thgye model is 3 x 10°2%, a value low enough to conclude that
those reported by Wright etlal. (2009), though they do noitindhere is no need to revise the model. We note that this model,

cate the confidence-level of the reported uncertainties. an order of magnitude more probable than the previously used
model M, (Tuomi,[2011), does not result in a revision of the
32 Gliese 581 orbital parameters (Tablg 5). However, the noise parameter

the two data sets do filer from one another slightly. Denoting
The Gliese 581 planetary system has been claimed to be ahoshée HIRES data set with= 1 and the HARPS data set with=
as many as six relatively low-mass planets (Bonfils et aD520 2, the parameters ;,| = 1,2, have MAP estimates of 2.39 and
Udry et al., 2007; Mayor et al., 2009; Vogt ef al., 2010). Thou 1.50 ms?, respectively. The corresponding 99% credibility sets
the most likely number of planetary companions in the syssemare [1.77, 3.09] and [1.00, 2.01] ris respectively. Therefore,
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Table 3. The two-planet solution of HD 217107 combined data set. Té°Mstimates of the parameters and in brackets the limits
of their Dy g9 sets. The solution of Wright etlal. (2009) is shown for congaar for the corresponding parameters as reported by
them.

Parameter M2 M, Wright et al. (2009)
Planet b Planet ¢ Planet b Planet ¢

P [days] 7.12664 [7.12674, 7.12692] 4300 [3800, 6000] 7.12689) 4270(220)

e 0.123[0.111, 0.139] 0.49[0.39,0.58]  0.1267(52)  0.51y(33

K [ms™] 138.3 [136.0, 140.1] 31.5[25.0, 60.4] 139.20(92)  35.3(1.

w [rad] 0.39[0.29, 0.52] 3.38[3.12, 3.82]

Mo [rad] 4.97 [4.85, 5.08] 1.44[0.63, 1.80]

m, sini [Me] 1.35[1.22, 1.47] 2.6[1.8,5.4] 1.39(11) 2.60(15)

a[AU] 0.0742 [0.0701, 0.0771] 5.3[4.7, 6.6] 0.0748(43)  §3®

y1 [ms™Y] (Euler) 6.6 [-12.7, 14.2]

v [ms™] (HJS) 11.0 [-6.9, 19.0]

y3 [ms™] (Keck) -0.8[-19.9, 4.9]

v4 [ms™] (Lick) -1.2[-19.9, 5.0]

o1 [ms™] (Euler) 2.7[0.0, 6.0]

o2 [ms™] (HIS) 4.8[1.1,8.4]

o3 [ms™] (Keck) 5.4 [4.4, 6.4]

1.4 [ms™] (Lick) 12.9[10.9, 15.4]

the noise in the HARPS measurements gives an upper limit 8860 [3180, 5160] for Lick2 data. The latter of these estenat
the jitter of Gliese 581 of 2.01 m& whereas there is likely a appears to be very close to the estimate of Curiellet al. (2011
small amount of additional instrument noise in the HIRES@datof 3848.86-0.74 days. However, because of théelience of
more than 700 days between the MAP estimates of the periods
from Lickl and Lick2, we cannot conclude, based on the Lick
data alone, that there are indeed four Keplerian signalken t

The RV's of v And have shown three strong Kepleriarflata. This inconsistency is seen the most clearly when igpki
signals resulting from three massive planets orbiting tré the equiprobability contours of the parameter postefeorsi-
star (Butler et dl., 1997, 1990 Fischer et al., 2003; Naaflet {i€S given each data set. The contours containing 50%, 9686, a
2004: [Wittenmyer etal.,[ 2007/ Wright et all, 2009). Th&9% of the density are shown in Fig. 2 for the period and ampli-
star has been a target of five RV surveys for severd® parameters afAnd d (top) and the proposedand e (bot-
years, namely, Lick[(Butler et hll,_1999; Fischer ét al., 200t0m). The Lickl contours are shown in red and Lick2 contours
Wright et al., [2009), the Advanced Fiber-Optic Echelle spet blue. As seen in this Fig., the estimated period and aogat
trometer (AFOE) at the Whipple Observatory (Butler ét al9f thev And d differ also between the two Lick data sets.
1999), HJS [(Wittenmyer et al., 2007), ELODIE at the Haute- Because of the inconsistency of the Lick data sets published
Provence Observatory (Naef et al., 2004), and the Hobbyhebdn [Fischer et al. [(2003) and Wright et al. (2009), we use the
Telescope (HET)(McArthur et al., 2010). Recently, the comnodel inadequacy criterion to find out if either of these tvated
bined data of Lickl(Fischer etlal., 2003; Wright et al., 2088y sets is also inconsistent with the combined ELODIE, AFOE,
ELODIE (Naef et all, 2004) has been reported to contain atiouHET, and HJS data. We denote this combined datanasd
planetary signal (Curiel et al., 2011). usemy andm, to denote the Lickl and Lick2 data, respectively,
We re-analyse the combined RV dataoAnd by using the and calculate the Bayes factdg¢ém, my) and B(m, m) for the
model inadequacy criterion. However, before we start, veckh ModelM, 4. The logarithms of these factors are 4.01 and -10.20,
the consistency of the 248 Lick RV's published in Fischerl bt despectively (Tablel6). This implies that the Lick2 dataisén-
(2003) and the 284 Lick RV's published[in Wright et al. (2009§0onsistent with the rest of the data and the 4-companion himde
(we denote these data sets as Lick1 and Lick2, respectjiedy) an inadequate description with a probability of more th£199,
causé Curiel et all (20111) used Lick2 data and the additi®dal Whereas the Lickl data cannot be shown inconsistent with the
RV points from Lick1 that were not included in Lick2. The facfest of the data with a probability exceeding 5%. Therefire,
that these 30 measurements were notincluded in Lick2 lixely appears that Lickl data (Fischer etal., 2003) is consistéht
cause of suspected biases or calibration errors suggaesta¢ne the other four data sets but the Lick2 data (Wright et al..£300
could be some biases within the combined Lick data analysed$ Not.
Curiel et al.|[(2011) as well. We also investigated whether some of the ELODIE, AFOE,
The Lickl and Lick2 data sets appear to have one striklET, HJS, and Lick data sets were inconsistent with the riest o
ing difference. While they both imply that there are indeede data by calculating the Bayes fact8(sn, m), wherem, i =
four Keplerian signals in thes And RV's, as concluded by 1,....5, refers to each of these sets, respectively,ramdntains
Curiel et al. [(2011), they do not agree on the orbital peribd @ll the data except the sat. We performed these calculations
the proposed fourth signal. The probability of the three corising both Lickl data and Lick2 data. The probabilities @& th
panion model is significantly lower than that of the four mian model M, 4 being inadequate in describing each of these sets
model — 104 and 1024 times lower for Lickl and Lick2, re- With respect the the rest of the data are shown in Table 6.
spectively. This implies that there is either a fourth Kejale The results in Tablg]6 show that while Lick2 data is incon-
signal in the data or biases that mimic Keplerian periogidihe sistent with the rest of the measurements with respect to the
MAP estimate and the correspondifiiy o9 Set of the period of model M, 4, the AFOE data is also inconsistent with the rest
this fourth signal is 3120 [2560, 3940] days for Lickl datal anof the measurements regardless of using the Lickl or Lick& da

3.3. v Andromedae
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Table 5. The four-planet solution of GJ 581 combined HARPS and HIRE&.dThe MAP estimates of the parameters and in
brackets the limits of theiDg g9 Sets.

Parameter Planet e Planet b Planet ¢ Planetd

P [days] 3.1487 [3.1479, 3.1507] 5.36845 [5.36810, 5.36890R.917 [12.908, 12.926] 66.88 [66.12, 67.32]
e 0.05 [0, 0.38] 0.005 [0, 0.048] 0.04 [0, 0.24] 0.36 [0, 0.65]

K [ms™] 1.76 [1.08, 2.37] 12.45[11.90, 13.07] 3.26 [2.67, 3.92] 831[1.15, 2.52]

w [rad] 2.410, Z] 3.9[0, 21] 2.6 [0, 21] 5.6 [0, 21]

Mo [rad] 2.6 [0, ] 2.6 [0, 1] 3.5[0, 1] 4.7 [0, 21]

m, sini [Me] 1.86[1.14, 2.51] 15.73[14.38, 16.95] 5.51 [4.45, 6.56] 1%[3.36, 7.21]
a[AU] 0.0284 [0.0275, 0.0294] 0.0406 [0.0393, 0.0420] 0872.0706, 0.0751] 0.218[0.211, 0.226]

v1 [ms™I] (HARPS)
v2 [ms™!] (HIRES)
o1 [mS_l] (HARPS)
o2 [ms] (HIRES)

-0.36 [-0.88, 0.12]
0.38[-0.41, 1.17]
1.50 [1.00, 2.01]
2.39 [1.77, 3.09]

Table 6. The log-Bayes factors (Idg) and probabilities ) of
model M, 4 being an inadequate description of each individual
set of RV's ofv And and the rest of the data. The Lick1 (L1) and
Lick2 (L2) data are analysed separately.

9]

o L _
& © ) . Set logB(LI) IlogB(L2) P(LL) P(L2)
j . Lick 401 -10.20 0.018 >0.999
¢ i AFOE -12.91 -10.81  >0.999 >0.999

A HET 52.73 3889 <102 <1016
2 ] HJS 10.55 8.70 <10* <103
A ELODIE 13.59 19.36 <105 <108

K, [ms
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Fig. 3. The residuals of AFOE RV'’s of the And with the plan-
P4 [dOY] etary signals subtracted.

Fig. 2. The equiprobability contours of the period and amplitude

parameters of And d (top) andv And e (bottom) containing ¢ompined data of AFOE, Lickl, ELODIE, HET, and HJS (Fig.
50%, 95%, and 99% of the probability density. The red colog) These residuals appear to show a low-amplitude peitgdic
denotesthe contours given the Lickl data qf Fischer get@@ﬁ{)z that roughly corresponds to the period of companion d, despi
and blue is used to denote the contours given the Lick2 dataigk tact that the signal of this companion (and those of b and ¢
Wright et al. (2009). has been subtracted.
We continue the analyses ofAnd RV’s by neglecting the

AFOE data and by using the older Lickl data set (Fischer et al.
among the others in the analyses. We also note that the s#063), because of the inconsistencies of the AFOE and Lick2
inconsistency remains for the AFOE data when using the threkata with the rest of the data sets. The combined data set con-
companion modeM, 3 in the analyses. Therefore, as also noteslists of Lickl, HET, ELODIE, and HJS data that contain 248, 79
by|Curiel et al.|(2011), we conclude that the AFOE data has adt, and 41 measurements, respectively. This combined data s
ditional biases and should not be used together with theofestwith 439 measurements was analysed using two models, hamely
the data because the results would be prone to biases as well; and M, 4, because there are clearly three strong Keplerian
To further demonstrate the inconsistency of the AFOE dath asignals in the data as demonstrated already by Butler et al.
the other data sets, we show the RV residuals of the AFOE dét899), and because the noise levels of théedint data sets
when the three-companion model has been used to analyselittedy differ from one another based on the previous analyses.
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Table 7. The log-Bayes factors (Idg) and probabilities®) of (Dgg99 = [5220 6610]), roughly twice the MAP periodicity, but
model M, 4 being an inadequate descriptionwoAnd RV's for its posterior probability is more than a thousand times laven
each individual data set and the rest of the data with theécesd  that of the solution in Tablg 8.

data set of Lickl, HET, HJS, and ELODIE. We note that while _Curiel et all (2011) adopted a jitter of
10 ms' when analysing the RV’s off And, the estimate of
Set logB P Butler et al. (2006) is only 4.2 m&. Our results are consistent
Lickl 23.69 <101 with the latter estimate because the upper limit of exceseno
HET 3278 <10 including the stellar jitter, is 4.58 msbased on the lowest noise
HJIS 16.34 <107 level in the data sets of the HET data (Talble 8). According to
ELODIE 18.06 <10 our results, the jitter has likely an even lower value of rolyg

2.0 ms!. This also implies that the Lickl, ELODIE, and HJS
* ' * ' * ' L— data contain an additional source of RV variations — likélg t
telescope-instrument combination used to measure thégse da

100
T
1

4, Discussion

We have proposed a simple method for assessing whether a sta-
tistical model is an inadequate description of multiplegpen-
dent data sets. This method is simply an application of the we
known Bayesian model selection theory and the law of condi-
tional probability but it also dfers from the common model se-
lection approach because it provides the means of detergini
] whether a single model, i.e. the best model in ghgriori se-
! ‘ ! ‘ ! ‘ L lected model set, is not an adequate description of the étda s
—2000 0 2000 4000 and needs to be improved.
t [JD—2450000] Using this Bayesian model inadequacy criterion and com-
mon model comparisons, we re-analysed three combined RV
Fig.4. The Lickl, ELODIE, HJS, and HET RV’s with the sig-data sets made using at least two telescope-instrument com-
nals of the three inner companion removed. The solid cupve résinations. According to our results, the Gliese 581 RV’s ob-
resents the Keplerian corresponding to planet candid#ed served using the HIRES and HARPS spectrographs can be de-
€. scribed reliably using the mode¥, 4, where their uncertain-
ties caused by stellar jitter and additional instrumeneutainty
have been modelled to havetgrent magnitudes — at least, the
Since we removed the AFOE data from the analyses, Wsur-companion model cannot be shown to be an inadequate de-
need to assess whether the resulting restricted data sdfecagcription of these two data sets. This suggests that thétsésu
shown inadequate or not. For this purpose, we re-calcut@te ffuomi (2011) are indeed reliable in this respect.
values in Tabl€]6 and show them in Table 7. According to these The RV’'s of HD 207107 showed that there can be
results, none of the four data sets can be said to conflict wilynificant telescope-instrument -induced uncertainifieshe
the others. Also, using the Bayesian model inadequacy fér mdata. Therefore, we were forced to describe these uncertain
tiple data sets by calculatirg(m, ..., my), wherem,i = 1,...,4, ties with diferent parameters for each telescope-instrument -
correspond to Lick1, ELODIE, HJS, and HET data sets, respe®mbination. According to our results, the telescoperimsent
tively, we receive a value of 1:4.0°, which means that these setsincertainties can fier considerably betweenttirent data sets,
are inconsistent with a probability of less than3@iven the which makes it more dicult to put reliable constraints to the
four-companion model. Therefore, these four sets can be costellar jitter. While the jitter of HD 217107 is not likely tex-
bined reliably and we calculate our final solutioroAnd RV’s  ceed 6.0 m3 based on the noise in the Euler data, the Lickl
using these four sets. data turned out to have excess noise of 5-10'msth respect
The posterior probability of the moda, 3 is less than 1@  to this jitter estimate (Tabl@ 3). Therefore, we concluds the
of the probability of modeM, 4. This implies that there are in- instrument uncertainties cannot be assumed as known, aiid ad
deed four periodic signals in the combined data set. Theeevi tional noise should always be assumed to exist in the datanwh
orbital parameters with respect to the four-companionsehodheglecting this additional uncertainty, the estimategbital pa-
are shown in Tablgl8. The RV variations corresponding to thameters can be biased and their uncertainty estimatesawvill
longest periodicity in the data are shown in [if. 4 togethién w tainly be unrealistically low with respect to the infornaatiin
the fitted Keplerian signal. The signals of the three innenco the measurements.
panions have been subtracted from the residuals inFig. 4. The RV’s of v Andromedae proved a challenging analysis
When comparing the orbital parameters of our solution pproblem on their own. These data consisted of five indepen-
Table[8 with the solution of Curiel etal. (2011), it can berseadent RV data sets. According to our results, the Lick2 data of
that the period of thes And e is significantly lower in our so- Wright et al. (2009) was not consistent with the other data se
lution. We received a MAP estimate for the orbital period ofvith respect to our model inadequacy criterion but the earli
2860 days Do.99 = [2600,3220]), whereas Curiel etial. (2011)Lickl data set of Fischer etlal. (2003) should be used instead
reported a period of 3848.86.74 days. This dierence can Unfortunately, it is not possible to tell where this inadaqy
arise from the fact that they used the more recent Lick2 dadses from. Also, the AFOE dala (Butler et al., 1999) turoet
set of Wright et al. [(2009), which is not consistent with thé& contradict with the rest of the data, likely because oféga
other RV’s according to our analyses. We also found anothiarthe process of making the measurements, as also noted by
solution for the period otr And e. This period is 5750 days/Curiel et al. (2011). This leaved only four consistent dats,s

RV Residuals, Data—Model [msgw]
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Table 8. The four-planet solution af Andromedae RV'’s from Lickl, HET, ELODIE, and HJS. MAP esttemof the parameters
and the limits of theiDg g9 Sets.

Parameter Planet b Planet c Planet d Planet e
P [days] 4.617098 [4.617047, 4.617174] 241.50 [241.31,2001. 1278.4[1271.2,1285.6] 2860 [2600, 3220]
e 0.022 [0, 0.047] 0.278[0.250, 0.311] 0.307 [0.272, 0.339] .1370, 0.28]

K [ms™?] 71.0[69.0, 72.7] 52.8 [51.0, 55.2] 61.6 [59.1, 64.3] 7.9[8.4]

w [rad] 1.4 0.0, 3.0] 4.15[3.99, 4.30] 4.46 [4.32, 4.62] 2067, 5.1]
Mo [rad] 2.8[1.4,4.4] 3.97[3.82, 4.11] 0.29[0.17, 0.41] 2040, 5.1]
m, sini [M] 0.683[0.617, 0.748] 1.91[1.70, 2.09] 3.85[3.47, 4.28] 580.40, 0.78]
a[AU] 0.0589 [0.0560, 0.0615] 0.823[0.783, 0.860] 2.50 R.3.62] 4.27 [3.95, 4.66]
v1 [ms™I] (Lick) 3.7[1.3, 6.0]

v2 [ms™] (ELODIE) -12.7 [-15.9, -7.9]

v3 [ms™] (HJS) -15.4 [-19.5, -10.8]

v4 [Ms™] (HET) -19.4 [-22.2, -16.8]

o1 [ms™] (Lick) 7.68 [5.89, 9.47]

o2 [ms™] (ELODIE) 16.3[12.2, 20.4]

o3 [ms™?] (HIS) 8.6 [1.5, 18.8]

o4 [MsY] (HET) 1.95[0, 4.58]

Lickl (Fischer et al 2003), ELODIE._(Naef et al., 2004), HETerion can be applied to any problem for which it is possible t
(McArthur et al., 2010), and HJS (Wittenmyer et al., 2009), tcalculate the likelihoods of the measurements using thestnod
be used in the analyses. Withfi@ring noise levels for each of  Finally, we note that if the model has been constructed prior
these sets, we calculated the revised orbital parametetisfo  to the measurements, the model inadequacy means that the ear
And planetary system with four planetary companions (T8ple lier data sets used to construct the model, i.e. to selechtuel
Because our four-planet solution of the RV’stoAnd differs  formulae and calculate the posterior densities of the mpéel
significantly from the proposed solution lof Curiel et al. 1A) rameters, conflict with the new ones with respect to the model
with respect to the orbital period of the outer planet, nuoadr It could also be that the model is being developed using desing
integrations of the orbits are needed to assess the spaifilitur data set in hand. Then, despite being the best model in tise sen
solution. The lower estimate for the orbital periodwfAnd e of having the greatest posterior probability, the modeldstill
does not support the conclusion that the d and e planets colainadequate in describing some part of the data set wipeceés
be in a 3:1 mean motion resonance (MMR). However, our st® another part_(Kaasalainen, 2011). Either way, the measur
lution coincides roughly with a 2:1 MMR, which could enablgnents cannot be described adequately using the selectegl mod
the stability of the system over long time-scales. Invesiigy and we say that the model is inadequate. Our criterion can be
the stability of our solution is necessary to be able to deitee used in these cases as well.
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We denote = s(1- 5)~* and leave the model out of the notation
by denotingP(m) = P(m|A) when it is clear which model has
Appendix A: Model inadequacy criterion been used. Now, we define the model inadequacy as follows.
The model used to describe the measuremenendm; is
not adequate with levelif

We start by defining what we mean by model inadequacy in de-

A.1. Two data sets

scribing two sets of data and derive its equations from time-cog(m, m;) = M i (A.3)
mon Bayesian model comparison theory. P(m)P(m;)

_We assume that there are independent measurements, o,z 16 tactoB is actually the Bayes factor in favour of model
ries of measurementsy : i = 1,...,N,N > 2, that have been

A and against mode$ andr is some (small) positive number

made to study the same system of interest. Because these nSS?r'esponding o the selected threshold probalslity

surements describe the same system, or at least contaimafo Because we have made no assumption on the exact nature

:_'nog dglr:etgsvi?ﬁr;tZt?sSti%Z(I:tric?éérsetr?gtsﬁmzr\?eogtlrg;?ztﬁ th?t;rano??he measurements, the model, or the modelled system, the
. ; ; ep above condition applies to anything that can be measured and
in common, namelyg € ®. Throughout this article the parame-

ter spac® is a bounded subset BK. The parametatis used to described with a statistical model. In fact, to be able tothse
uar?tif some features in the meésurefn t¥i. In addition Eq. [A.3), a sdicient condition is that the measurememtsand

q Y o1 ' m; are modelled using statistical models that have at least one

there are other parameters, namelye © : i = 1,...,N, that

. - - parameter, namelg, in common. The model of thith data set
eac?hqeur?]r;t;fgusr(;nr;ee rz?gdégtr)]nne:)l \fvet?éulﬁ: érlollﬂremco rf;?;:;;ng— may have other parameteis and these have to be treated as

tistical models using the Bayesian model selction theost. nggaﬂzreatrﬂg;e;ea;(\j/\éeplléntzju;r;[? g%/ tﬁg\gethré? (rj(;lé Ige’;he[E_E] (A-3)
P(Am, m;) be the posterior probability of modedl given the The Eg. [[A3B) in fact states that the measurements are not
measurementsy andm;. The modelA can be any model for yiqyib ited according to the model used. However, the amseve

which a It'ke“hOOd gurl}cttljon _ems:a. With this m(r)gg’é)%tﬁh € s not true. If the condition in Eq[{Al3) does not hold for sam
surements aré modetlied using the same pararieia er- measurementsy andm;, it cannot be said that they are drawn

ent parameters; andwj, respectively. Probabilit(BIm. m;) ., the same modelled density, even though it might be a rea-
is the corresponding probability when measuremeqntandm; sonable assumption in practice. '

are mOde"?d using the same model structure as mﬂdhasz b.Ut The Bayes factor in Eq[{AL3) has an interesting property
this time with parameteis andg;, wheregy = (6, wi).K=1. ], \yhen interpreted in terms of the information gain defined us-
respectively. ing the Kullback-Leibler (K-L) divergence (Kullback & L eliér,
$951) between prior and the posterior. The K-L divergence is
defined for two continuous random variables with probapilit
densitieu(x) andv(x) as

and the independence ¢f andg;, the marginal integral in Eq.
@ (g‘éhe measurements with respect to the m@ehn be writ-
ten

P(m, m;|B) Di{u(x)lIv(x)} = f u(x) log %dx. (A.4)

2 The reader should refer to any basic text on conditional gt~ With this notation, we can write the K-L divergence of moving
ties and independence. from the prior to the posterior (given both data sets). Heitce
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follows that requirement cannot be considered very limiting, becaupedo-
(6m, m) tice, the data sets are commonly analysed _separately anyway
DKL{H(HImi, mj)”ﬂ(g)} = f,r(gm’ m;) log ———2d# In terms of K-L information loss of moving from the poste-
() rior to the prior, the Bayes factd can again be interpreted in

a simple manner using similar derivation as in Eq. {A.5). As a

= —logP(m, m) + f;r(9|m,mj)logl(mi,mj|0)d9 consequence, it follows that

I(my, m;|6)
= —logP(m, m;) + 7(6)m, m;) log ————do log B(my, ..., my) = Dk {7 (0)||7(6lmy, ..., my)
' kzjf 7T I(mde) § { |
& logB(m, m;) = DKL{n(Glm, mj)||n(9)} - DKL{”(9)||7T(9|m)}~ (A.10)

i=1

DKL{nw'm’ m,)||7r(9|m)} DKL{H(Glm’ m,)||7r(9|m,)}, (A-5) However, the information gains cannot be used in a similar-ma
where we have used the Bayes rule and the facts that integréi as in Eq.[(A). Instead, using the information gain & th
over a probability density equals unity anglandm; are inde- measurements the generalisation of g, [(A.5) to several mea
pendent. surements Is

This means that the logarithm of the Bayes factor used to ‘ _
determine the model inadequacy in describing measurements log [T; B, (M, - Mo .o Mlesi)
andm; can in fact be interpreted as the total information gain of B(my, ... My)
the two measurements minus the information gains of moving= DKL{n(9|m1, mN)||7r(9)}
from the posterior with respect to each measurement alone to
the full posterior.

Altefnatively, the Bayes factor can be written using theinf Z Dict fr(6IMy .. (6l .o Mo Ml (A1)
mation losses, or K-L divergences, of moving from the paster =
ors back to the prior (as opposed to the information gain of-mowhereB(m, (M, ..., M, ..., M\)lkz) 1S the Bayes factor describ-
ing from prior to the posterior). With this terminology, ansing ing the model inadequacy with respect to two data sets, namel
a similar derivation as for the information gain in Eg. (A.5)e m and the combined data sety, ..., my, ..., My)lkz, Which de-

expression in EqL(A]5) can be replaced by notes all the data except the measuremgnt
Therefore, the Bayes factor determining the model inade-
log B(m,, m;) = Dy {x(O)llx(eIm;, my) (A.6) quacy in Eq.[[AD) can be interpreted as a measure of informa-
tion loss that results from disregarding the measuremergain
_DKL{”(Q)””(Hlm‘)} - DKL{”(H)””(g'mi)}’ information on the posterior minus the corresponding imfar

jon losses of disregarding each measurement one at the time
aturally, the gain and loss EqE. (Al11) afid (A.10) are exmjuiv
éent if N = 2, as was seen in the previous subsection.
Assuming thaB(my, ..., my) > 1, which means that model
has a greater probability thafy has an interesting consequence.
A.2. Multiple data sets From this assumption, it follows that

which means that the logarithm of the Bayes factor can be-int
preted as the total information loss of the two measurenmmeiats
nus the information losses of the two measurements separat

When there are more than two data sets available, the model N
inadequacy criterion can be derived easily following thesid- Dy {x(6)llx(6lmy. ... my)} > Z DiL{r(@)lIx(@m)}.  (A.12)
erations in the previous subsection. For measurenmmants= izl

1,...,N, it can be seen that i . . . .
When again interpreted in terms of information loss, thisunge

N that given a model that cannot be shown inadequatemvttl,
P(my, ...,my|B) = 1_[ P(m|A). (A.7) the amount of information in the combined data set is greater
i=1 than the information in the individual data sets.

It then follows that the model inadequacy criterion cormsp
ing to that in Eq.[{A.R) can be written as

N

P(My, ..., MylA) < Tss 1_1[ P(m|A). (A.8)

We again us®to denote the Bayes factor and write this criterion
in the following way.

The model used to describe measuremenis.., my does
not describe the measurements adequately accuratelyewih |
rif

P(ml, ey mN)
B(my,...,my\) i= ———= <. (A.9)
[Ti P(m)

From the Eq.[(AB), it can be seen that fdrdata sets, the
marginal integral needs to be determiriéd 1 times to receive
the Bayes factor that is used to assess the model inadeqiésy.
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