Comment on "A new exactly solvable quantum model in N dimensions" [Phys. Lett. A 375(2011)1431]

B. L. Moreno Ley and Shi-Hai Dong*
Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D. F. 07738, Mexico

Abstract

We pinpoint that the work about "a new exactly solvable quantum model in N dimensions" by Ballesteros et al. [Phys. Lett. A 375 (2011) 1431] is not a new exactly solvable quantum model since the flaw of the position-dependent mass Hamiltonian proposed by them makes it less valuable in physics.

Keywords: Position-dependent mass; Arbitrary dimension N; Solvable quantum model

In recent work [1] the authors Ballesteros et al. claimed that they have found a new exactly solvable quantum model in N dimensions given by

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2\left(1+\lambda r^{2}\right)} \nabla^{2}+\frac{\omega^{2} r^{2}}{2\left(1+\lambda r^{2}\right)}, \tag{1}
\end{equation*}
$$

where we prefer to use variable r instead of original one q for convenience.
They found that the spectrum of this model is shown to be hydrogen-like (should be harmonic oscillator-like), and their eigenvalues and eigenfunctions are explicitly obtained by deforming appropriately the symmetry properties of the N-dimensional harmonic oscillator. It should be pointed out that such treatment approach is incorrect since the kinetic energy term should be defined as [2]

$$
\begin{equation*}
\nabla_{N} \frac{1}{m(r)} \nabla_{N} \psi(\mathbf{r})=\left(\nabla_{N} \frac{1}{m(r)}\right) \cdot\left[\nabla_{N} \psi(\mathbf{r})\right]+\frac{1}{m(r)} \nabla_{N}^{2} \psi(\mathbf{r}) \tag{2}
\end{equation*}
$$

[^0]For N-dimensional spherical symmetry, we take the wavefunctions $\psi(\mathbf{r})$ as follows [3]:

$$
\begin{equation*}
\psi(\mathbf{r})=r^{-(N-1) / 2} R(r) Y_{l_{N-2, \ldots, l_{1}}^{l}}^{l}(\hat{\mathbf{x}}) . \tag{3}
\end{equation*}
$$

Substituting this into the position-dependent effective mass Schrödinger equation

$$
\begin{equation*}
\nabla_{N}\left(\frac{1}{m(r)} \nabla_{N} \psi(\mathbf{r})\right)+2[E-V(r)] \psi(\mathbf{r})=0 \tag{4}
\end{equation*}
$$

allows us to obtain the following radial position-dependent mass Schrödinger equation in arbitrary dimensions

$$
\begin{equation*}
\left\{\frac{d^{2}}{d r^{2}}+\frac{m^{\prime}(r)}{m(r)}\left(\frac{N-1}{2 r}-\frac{d}{d r}\right)-\frac{\eta^{2}-1 / 4}{r^{2}}+2 m(r)[E-V(r)]\right\} R(r)=0 \tag{5}
\end{equation*}
$$

where $m(r)=\left(1+\lambda r^{2}\right), m^{\prime}(r)=d m(r) / d r$ and $\eta=|l-1+N / 2|$. Since the operator ∇_{N} does not commutate with the position-dependent mass $m(r)$, then this system does not exist exact solutions at all. This can also be proved unsolvable to Eq.(5) if substituting the position-dependent mass $m(r)$ into it.

On the other hand, the choice of the position-dependent mass $m(r)$ has no physical meaning since the mass $m(r)$ goes to infinity when $r \rightarrow \infty$. Moreover, it is shown from Eq.(1) that the position-dependent mass $m(r)$ in kinetic term is equal to $\left(1+\lambda r^{2}\right)$, but it was taken as $1 /\left(1+\lambda r^{2}\right)$ for the harmonic oscillator term. Accordingly, the wrong expression of the Hamiltonian in position-dependent mass Schrödinger equation in arbitrary dimensions N, the flaw of the chosen position-dependent mass $m(r)$ as well as its inconsistence between the kinetic term and the harmonic oscillator term make it less valuable in physics.

Acknowledgments: This work was supported partially by 20110491-SIP-IPN, COFAA-IPN, Mexico.

References

[1] A. Ballesteros, A. Enciso, F. J. Herranz, O. Ragnisco, D. Riglioni, Phys. Lett. A $375(2011) 1431$.
[2] G. Chen, Phys. Lett. A 329(2004)22.
[3] S. H. Dong and Z. Q. Ma, Phys. Rev. A 65(2002)042717.

[^0]: *Corresponding author. E-mail address: dongsh2@yahoo.com; Tel:+52-55-57296000 ext 55255; Fax: $+52-55-57296000$ ext 55015 .

