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From quantum AN (Calogero) to H4 (rational) model
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Abstract

A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models

with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are charac-

terized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions,

(iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coor-

dinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a

discrete symmetry group (in space of orbits).
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In this Talk we will make an attempt to overview our constructive knowledge about

(quasi)-exactly-solvable potentials having a form of a meromorphic function in Cartesian

coordinates. All these models have a discrete group of symmetry, admit separation of

variable(s), possess an (in)finite set of polynomial eigenfunctions. They have an infinite

discrete spectrum which is linear in the quantum numbers. All of them are characterized

by the presence of a hidden (Lie) algebraic structure. Each of them is a type of isospectral

deformation of the isotropic harmonic oscillator.

Let us consider the Hamiltonian = the Schrödinger operator

H = −∆ + V (x) , x ∈ Rd . (1)

A problem of quantum mechanics is to solve the Schrödinger equation

HΨ(x) = EΨ(x) , Ψ(x) ∈ L2(Rd) (2)

finding the spectrum (the energies E and eigenfunctions Ψ). Since the Hamiltonian is an

infinite-dimensional matrix, solving the Schrödinger equation is equivalent to diagonalizing

the infinite-dimensional matrix. It is transcendental problem, the characteristic polynomial

is of infinite order and it has infinitely-many roots. Usually, we do not know how to make

such a diagonalizing exactly (explicitly) but we can ask: Do models exist for which the

roots (energies), some of the them or all, can be found explicitly (exactly)? Such models do

exist and we call them solvable. If all energies are known they are called Exactly-Solvable

(ES), if only some number of them is known we call them Quasi-Exactly-Solvable (QES).

Surprisingly, all such models I am familiar with are provided by integrable systems. The

Hamiltonians of these models are of the form

HES = −1
2
∆ + ω2r2 +

W (Ω)

r2
(3)

in the exactly-solvable case and

HQES = −1
2
∆ + ω̃2

kr
2 +

W (Ω) + Γ

r2
+ ar6 + br4 , (4)

in the quasi-exactly-solvable case, where ω, ω̃k,Γ are parameters, W (Ω) is a function on unit

sphere and r is the radial coordinate. In both cases there exists the integral

F =
1

2
L2 +W (Ω) , (5)
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where L is the angular momentum operator, due to the separation of variables in spherical

coordinates.

Now we consider some examples among which are known so far.

Case O(N)

The Hamiltonian reads

HO(N) =
1

2

N∑

i=1

(

− ∂2

∂xi
2
+ ω2xi

2

)

+
ν(ν − 1)
∑N

i=1 xi
2
, (6)

or, in spherical coordinates,

HO(N) = −
1

2rN
∂

∂r

(

rN
∂

∂r

)

+
1

2
ω2r2 +

F + ν(ν − 1)

r2
, (7)

F =
1

2
L2 . (8)

The Hamiltonian (6) is O(N) symmetric. It describes a spherical-symmetric harmonic oscil-

lator with a generalized centrifugal potential. Needless to say that the Hamiltonian HO(N)

and F commute,

[HO(N),F ] = 0 . (9)

Thus, F has common eigenfunctions with the Hamiltonian HO(N). The spectrum can be

immediately found explicitly, and all eigenfunctions are of the type

Pn(r
2)rℓ̃Y{ℓ}(Ω)e

−ωr2

2 ,

where Y{ℓ}(Ω) is a N -dimensional spherical harmonics, FY{ℓ}(Ω) = γY{ℓ}(Ω). The Hamilto-

nian (6) describes an N -dimensional harmonic oscillator with generalized centrifugal term.

Substituting in (7) the operator F by its eigenvalue γ and gauging away Ψ0 = rℓ̃e−
ωr2

2 we

arrive at the Laguerre operator

hO(N) ≡ (Ψ0)
−1(HO(N) − E0)Ψ0|r2=t = −2t∂2

t + (2ω − 1− N

2
− ℓ̃)∂t (10)

where E0 is the lowest energy and the parameter ℓ̃ is chosen in such a way as to remove

singular term ∝ 1
r2

in the potential in (7). (10) is the algebraic form of the Hamiltonian (7).

The gauge-rotated Hamiltonian hO(N) (10) is sl(2)-Lie-algebraic (see below), it has infinitely-

many finite-dimensional invariant subspaces in polynomials Pn, n = 0, 1, . . . forming the
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infinite flag (see below), its eigenfunctions Pn(r
2 = t) are nothing but the associated Laguerre

polynomials.

By adding to hO(N) (10) the operator

δh(qes) = 4(at2 − γ)
∂

∂t
− 4akt+ 2ωk , (11)

we get the operator hO(N) + δh(qes) which has a single finite-dimensional invariant subspace

Pk = 〈tp|0 ≤ p ≤ k〉 ,

of the dimension (k+1). Hence, this operator is quasi-exactly-solvable. Making the change

of variable t = r2 and gauge rotation with Ψ̃0 = tγ̂e−
ωt
2
− at2

4 we arrive at the O(N)-symmetric

QES Hamiltonian [2]

HO(N) = −
1

2rN
∂

∂r

(

rN
∂

∂r

)

+ a2r6 + 2aωr4 +
1

2
ω̃2r2 +

F + Γ

r2
, (12)

where γ̂,Γ, ω̃ are parameters and γ is replaced by the operator F . In (12) a finite number

of the eigenfunctions is of the form

Pk(r
2)r2γ̂Y{ℓ}(Ω)e

−ωr2

2
− at2

4 ,

they can be found algebraically. It is worth noting that at a = 0 the operator hO(N)+ δh(qes)

remains exactly-solvable, it preserves the infinite flag of polynomials P and the emerging

Hamiltonian has a form of (7).

Case Z
N
2

The Hamiltonian reads

HZ
N
2
=

1

2

N∑

i=1

(

− ∂2

∂xi
2
+ ω2xi

2

)

+
1

2

N∑

i=1

νi(νi − 1)

xi
2

, (13)

or, in spherical coordinates,

H
Z
N
2
= − 1

2rN
∂

∂r

(

rN
∂

∂r

)

+
1

2
ω2r2 +

F + WZN
(Ω)

r2
, (14)

where

W
Z
N
2
(Ω) =

1

2

N∑

i=1

νi(νi − 1)

(
r

xi

)2

,
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and F is given by (8). The Hamiltonian (13) is Z
N
2 symmetric. It defines the so-

called Smorodinsky-Winternitz integrable system [1] which is in reality the maximally-

superintegrable (there exist (2N − 1) integrals including the Hamiltonian) and exactly-

solvable. Gauging away in (13) the ground state, Ψ0 =
∏N

i=1(x
2
i )

νi
2 exp (−ωx2

i

2
), and changing

variables to ti = x2
i we arrive at the algebraic form. Also it admits QES extension. The

system described by the Hamiltonian (13) at νi = ν is a particular case of the BCN−rational
system (see below).

Case AN−1

This is the celebrated Calogero Model (AN−1 Rational model) which was found in [3]. It

describes N identical particles on a line (see Fig.1) with singular pairwise interaction.

1 2 3
.   .   .   .<x x x x< < < N

FIG. 1: N -body Calogero model

The Hamiltonian is

HCal =
1

2

N∑

i=1

(

− ∂2

∂xi
2
+ ω2xi

2

)

+ ν(ν − 1)
N∑

i>j

1

(xi − xj)2
, (15)

where the singular part of the potential can be written as

N∑

i>j

1

(xi − xj)2
=

WAN−1
(Ω)

r2
, WAN−1

(Ω) =

N∑

i=1

(
1

xi

r
− xj

r

)2

, (16)

Here r is the radial coordinate in the space of relative coordinates (see below for a definition)

and WAN−1
(Ω) is a function on the unit sphere.

Symmetry: Sn (permutations xi → xj) plus Z2 (all xi → −xi). The ground state of the

Hamiltonian (15) reads

Ψ0(x) =
∏

i<j

|xi − xj |νe−
ω
2

∑
x2
i . (17)

Let us make the gauge rotation

hCal = 2Ψ−1
0 (HCal − E0) Ψ0 ,

and introduce center-of-mass variables

Y =
∑

xi , yi = xi −
1

N
Y , i = 1, . . . , N ,
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and then permutationally-symmetric, translationally-invariant variables

(x1, x2, . . . xN )→
(
Y, tn(x) = σn(y(x))| n = 2, 3 . . .N

)
,

where

σk(x) =
∑

i1<i2<...<ik

xi1xi2 . . . xik , σk(−x) = (−)kσk(x) ,

are elementary symmetric polynomials, and

t1 = 0 , t2 ∼
∑

i<j

(xi − xj)
2 = r2 ,

hence, the variable t2, which plays fundamental role, is defined by radius in space of relative

coordinates. After the center-of-mass separation, the gauge rotated Hamiltonian takes the

algebraic form [4]

hCal = Aij(t)
∂2

∂ti∂tj
+ Bi(t)

∂

∂ti
, (18)

where

Aij =
(N − i+ 1)(1− j)

N
ti−1 tj−1 +

∑

l≥max(1,j−i)

(2l − j + i)ti+l−1tj−l−1 ,

Bi =
1

N
(1 + νN)(N − i+ 2)(N − i+ 1) ti−2 + 2ω (i− 1) ti .

Eigenvalues of (18) are

ǫ{p} = 2ω
N∑

i=2

(i− 1) pi ,

hence, the spectrum is linear in the quantum numbers p2,3,...,N = 0, 1, . . ., it corresponds to

anisotropic harmonic oscillator with frequency ratios 1 : 2 : 3 : ... : (N − 1).

It is easy to check that the gauge-rotated Hamiltonian hCal has infinitely many finite-

dimensional invariant subspaces

P(N−1)
n = 〈t2p2t3p3 . . . tNpN | 0 ≤ Σpi ≤ n〉 .

where n = 0, 1, 2, . . . . As a function of n the spaces P(N−1)
n form the infinite flag (see below).

Remark.

gld+1-algebra (acting in Rd), for the Young tableaux as a row (n, 0, 0, . . . 0
︸ ︷︷ ︸

d−1

), has

a form
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J −
i =

∂

∂ti
, i = 1, 2 . . . d ,

Jij
0 = ti

∂

∂tj
, i, j = 1, 2 . . . d ,

J 0 =
d∑

i=1

ti
∂

∂ti
− n , (19)

J +
i = tiJ 0 = ti

(
d∑

j=1

tj
∂

∂tj
− n

)

, i = 1, 2 . . . d .

The total number of generators is (d+1)2. If n = 0, 1, 2 . . ., the finite-dimensional

irreps occur

P(d)
n = 〈t1p1t2p2 . . . tdpd| 0 ≤ Σpi ≤ n〉 ,

for which there is a property

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ . . .P .

Such a nested construction is called infinite flag (filtration) P. It is worth noting

that the flag P(d) is made out of finite-dimensional irreducible representation

spaces P(d)
n of the algebra gld+1 taken in realization (19). It is evident that any

operator made out of generators (19) has finite-dimensional invariant

subspace which is finite-dimensional irreducible representation space.

It seems evident that the Hamiltonian (18) has to have a representation as a second order

polynomial in generators (19) at d = N − 1 acting in RN−1,

hCal = Pol2(J −
i , Jij

0) ,

where the raising generators J +
i are absent. Thus, gl(N − 1) (or, strictly speaking, its

maximal affine subalgebra) is the hidden algebra of N -body Calogero model. The eigen-

functions of N -body Calogero model are elements of the flag of polynomials P(N−1). Each

subspace P(N−1)
n is represented by the Newton polytope (pyramid). It contains CN−1

n+N−1

eigenfunctions, which is equal to the volume of the Newton polytope.

Making the gauge rotation of the integral (5) with WAN−1
(Ω) given by (16)

fCal = Ψ−1
0 (FCal − F0) Ψ0 , (20)
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where F0 is the lowest eigenvalue of the integral, FCalΨ0 = F0Ψ0, the integral gets the

algebraic form,

fCal = fij(t)
∂2

∂ti∂tj
+ gi(t)

∂

∂ti
,

where fij is 2nd degree polynomial in t, f2j = 0, and gi is 1st degree polynomial in t, g2 = 0.

It also can be rewritten as the second degree polynomial in the gl(N − 1) generators,

fCal = Pol2(J −
i , Jij

0) .

sl(2)-Quasi-Exactly-Solvable generalization of the Calogero model

By adding to hCal (18), the operator

δh(qes) = 4(at22 − γ)
∂

∂t2
− 4akt2 + 2ωk , (21)

we get the operator hCal + δh(qes) having finite-dimensional invariant subspace

Pk = 〈tp2|0 ≤ p ≤ k〉 .

By making a gauge rotation of hCal + δh(qes) and changing of variables to Cartesian one we

arrive at the Hamiltonian [5]

H(qes)
Cal =

1

2

N∑

i=1

(

− ∂2

∂xi
2
+ ω2x2

i

)

+ ν(ν − 1)
N∑

j<i

1

(xi − xj)2
+

2γ [γ − 2n(1 + ν + νn) + 3]

r2
+

+ a2r6 + 2aωr4 − a [2k + 2n(1 + ν + νn)− γ − 1] r2 . (22)

For the Hamiltonian, (k + 1) eigenfunctions are of the form

Ψ
(qes)
k (x) =

n∏

i<j

|xi − xj |ν(r2)γPk(r
2) exp

[

−ω
2

n∑

i=1

x2
i −

a

4
r4

]

= (r2)γPk(r
2) exp(−a

4
r4)Ψ0 ,

where Ψ0 is given by (17), Pk is a polynomial of degree k in r2 =
∑

i<j(xi − xj)
2 = t2. All

remaining eigenfunctions can be represented in the same form but Pk’s are not polynomials

anymore being functions depending on all variables xi. It is worth noting that at a = 0 the

operator hCal + δh(qes) remains exactly-solvable, it preserves the flag of polynomials P(N−1)

and the emerging Hamiltonian has a form of (15) with the extra term Γ
r2

in the potential.

Its ground state eigenfunction is (r2)γΨ0. It is the exactly-solvable generalization of the

Calogero model (15) with the Weyl group W (AN−1) as the discrete symmetry group,

HW(AN−1) = HCal +
Γ

r2
.
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Case: Hamiltonian Reduction Method

(for review and references see e.g. Olshanetsky-Perelomov [6])

In this method a family of integrable and exactly-solvable Hamiltonians associated with

Weyl (Coxeter) symmetry was found with the Calogero model as one of its representatives.

The idea of the method is beautiful and sufficient transparent,

• Take a simple group G,

• Define the Laplace-Beltrami (invariant) operator on its symmetric space

(free/harmonic oscillator motion)

• Radial part of Laplace-Beltrami operator is the Olshanetsky-Perelomov Hamilto-

nian relevant from physical point of view. The emerging Hamiltonian is the Weyl-

symmetric, it can be associated with root system, it is integrable with integrals given

by the invariant operators of higher than two orders with a property of solvability.

Rational case:

This case appears when the coordinates of the symmetric space are introduced in

such a way that the zero-curvature surface occurs. Emerging Calogero-Moser-Sutherland-

Olshanetsky-Perelomov Hamiltonian in Cartesian coordinates has the form,

H =
1

2

N∑

k=1

[

− ∂2

∂x2
k

+ ω2x2
k

]

+
1

2

∑

α∈R+

ν|α|(ν|α| − 1)
|α| 2

(α · x)2 , (23)

where R+ is a set of positive roots, x is a position vector and ν|α| are coupling constants

(parameters) which depend on the root length. If roots of the same length, then ν|α| have to

be equal, if all roots are of the same length like for An, then all ν|α| = ν. In the Hamiltonian

Reduction the parameters ν|α| take a set of discrete values, however, they can be generalized

to any real value without loosing a property of integrability as well as of solvability with the

only constraint of the existence of L2-solutions of the corresponding Schrödinger equation.

Configuration space for (23) is the Weyl chamber. Ground state wave function is written

explicitly,

Ψ0(y) =
∏

α∈R+

|(α · x)|ν|α| e−ωx2/2 . (24)
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The Hamiltonian (23) is completely-integrable: there exists a commutative algebra of

integrals (including the Hamiltonian) of dimension which is equal to the dimension of the

configuration space (for integrals, see Oshima [7] with explicit forms of those). For each

Hamiltonian (23) after separation of center-of-mass coordinate (if applicable) the radial

coordinate (in the space of relative coordinates) can be also separated. It gives rise to the

existence of one more integral of the second order (5). Hence, the Hamiltonian (23) is super-

integrable. The Hamiltonian (23) is invariant with respect to the Weyl (Coxeter) group

transformation, which is the discrete symmetry group of the corresponding root space.

The Hamiltonian (23) has a hidden (Lie)-algebraic structure. In order to reveal it we

need to

• Gauge away the ground state eigenfunction making similarity transformation

(Ψ0)
−1 (H− E0)Ψ0 = h

• Consider the Hamiltonian in the space of orbits of Weyl (Coxeter) group by taking

the Weyl (Coxeter) polynomial invariants as new coordinates), these invariants are

t(Ω)
a (x) =

∑

α∈Ω

(α · x)a ,

where a’s are the degrees of the Weyl (Coxeter) group, Ω is an orbit.

The invariants t are defined ambiguously, up to invariants of lower degrees, they depend on

chosen orbit.

Case BCN

The BCN -Rational model is defined by the Hamiltonian,

HBCN
= −1

2

N∑

i=1

(
∂2

∂xi
2
− ω2x2

i

)

+

ν(ν − 1)
∑

i<j

[
1

(xi − xj)2
+

1

(xi + xj)2

]

+
ν2(ν2 − 1)

2

N∑

i=1

1

x2
i

, (25)

where ω, ν, ν2 are parameters. If ν = 0, the Hamiltonian (25) is reduced to (13). The

symmetry of the system is SN ⊕ (Z2)
N (permutations xi → xj and xi → −xi).

The ground state function for (25) reads

Ψ0 =

[
∏

i<j

|xi − xj |ν |xi + xj |ν
N∏

i=1

|xi|ν2
]

e−
ω
2

∑N
i=1

x2
i , (26)
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(cf.(24)). Making the gauge rotation

hBCN
= (Ψ0)

−1 (HBCN
− E0) Ψ0 ,

and changing variables

(x1, x2, . . . xN )→
(
σk(x

2)| k = 1, 2, . . . , N
)
,

where

σk(x
2) =

∑

i1<i2<···<ik

x2
i1
x2
i2
· · ·x2

ik
,

σ1(x
2) = x2

1 + x2
2 + . . .+ x2

N = r2 ,

where r is radius, we arrive at [8]

hBCN
= Aij(σ)

∂2

∂σi∂σj
+ Bi(σ)

∂

∂σi
, (27)

with coefficients

Aij = −2
∑

l≥0

(2l + 1 + j − i) σi−l−1 σj+l ,

Bi = [1 + ν2 + 2ν(N − i)] (N − i+ 1) σi−1 + 2ω i σi .

This is the algebraic form of the BCN Hamiltonian. Assuming polynomiality of the eigen-

functions we find the eigenvalues:

ǫn = 2ω

N∑

i=1

i ni ,

hence, the spectrum is equidistant, linear in the quantum numbers and corresponds to

anisotropic harmonic oscillator with frequency ratios 1 : 2 : 3 : ... : N . The Hamiltonian

hBCN
has infinitely many finite-dimensional invariant subspaces of the form

P(N)
n = 〈σ1

p1σ2
p2 . . . σN

pN | 0 ≤ Σpi ≤ n〉 ,

where n = 0, 1, 2, . . .. They naturally form the flag P(N). The Hamiltonian can be immedi-

ately rewritten in terms of generators (19) as a polynomial of the second degree,

hBCN
= Pol2(J −

i , Jij
0) ,

11



where the raising generators J +
i are absent. Hence, gl(N) is the hidden algebra of BCN

rational model, the same algebra as for AN+1-rational model. The eigenfunctions of BCN -

rational model are elements of the flag of polynomials P(N). Each subspace P(N)
n contains

CN
n+N eigenfunctions (volume of the Newton polytope (pyramid) P(N)

n ).

The BCN Hamiltonian admits 2nd order integral as result of separation of radial variable

HBCN
= − 1

2rN−1

∂

∂r

(

rN−1 ∂

∂r

)

+ ω2r2 +
1

2r2
(−∆(N−1)

Ω +W(Ω)
︸ ︷︷ ︸

FBCN

) . (28)

Evidently, the commutator

[HBCN
, FBCN

] = 0 .

Gauge-rotated integral

fBCN
= Ψ−1

0 (FBCN
− F0) Ψ0 ,

where FBCN
Ψ0 = F0Ψ0, takes the algebraic form in t-coordinates,

fBCN
= fij(t)

∂2

∂ti∂tj
+ gi(t)

∂

∂ti
,

where fij is 2nd degree polynomial, f1j = 0, and gi is 1st degree polynomial, g1 = 0,

fBCN
= Pol2(J −

i , Jij
0) ,

in terms of the gl(N) generators. It is worth mentioning that the commutator of [h, f ]

vanishes only in the realization (19), otherwise,

[hBCN
(J ), fBCN

(J )] 6= 0 .

sl(2)-Quasi-Exactly-Solvable generalization

By adding to hBCN
the operator

δh(qes) = 4(aσ2
1 − γ)

∂

∂σ1
− 4akσ1 + 2ωk ,

which is the similar to one for Calogero model, we get the operator hBCN
+ δh(qes) which has

the finite-dimensional invariant subspace

Pk = 〈σp
1|0 ≤ p ≤ k〉 .

12



Making a gauge rotation of hBCN
+ δh(qes) and changing the variables σ’s back to Cartesian

one the Hamiltonian becomes

H(qes)
BCN

= −1
2

N∑

i=1

(
∂2

∂xi
2
− ω2x2

i

)

+

ν(ν − 1)
∑

i<j

[
1

(xi − xj)2
+

1

(xi + xj)2

]

+
ν2(ν2 − 1)

2

N∑

i=1

1

x2
i

+

2γ [γ − 2N(1 + 2ν(N − 1) + ν2) + 3]

r2
+

a2r6 + 2aωr4 − a [2k + 2N(1 + 2ν(N − 1) + ν2)− γ − 1] r2 , (29)

for which (k + 1) eigenfunctions are of the form

Ψ
(qes)
k (x) =

n∏

i<j

|x2
i − x2

j |ν
n∏

i=1

|xi|ν2(r2)γPk(r
2) exp

[

−ωr
2

2
− a

4
r4
]

,

where Pk is a polynomial of degree k in r2 =
∑N

i=1 x
2
i .

It is worth noting that at a = 0 the operator hBCN
+ δh(qes) remains exactly-solvable,

it preserves the flag of polynomials P(N) and the emerging Hamiltonian has a form of (25)

with the extra term Γ
r2

in the potential. Its ground state eigenfunction is (r2)γΨ0. It is

the exactly-solvable generalization of the BCN -Rational model (25) with the Weyl group

W(BCN) as the discrete symmetry group,

HW(BCN) = HBCN
+

Γ

r2
.

Now we are in a position to draw an intermediate conclusion about AN and BCN rational

models.

• Both AN− and BCN− rational (and trigonometric) models possess algebraic forms

associated with preservation of the same flag of polynomials P(N). The flag is invariant

wrt linear transformations in space of orbits t 7→ t+A. It preserves the algebraic form

of Hamiltonian.

• Their Hamiltonians (as well as higher integrals) can be written in the Lie-algebraic

form

h = Pol2(J (b ⊂ gl
(∗)
N+1)) ,

13



where Pol2 is a polynomial of 2nd degree in generators J of the maximal affine sub-

algebra of the algebra b of the algebra glN+1 in realization (∗). Hence, glN+1 is their

hidden algebra. From this viewpoint all four models are different faces of a single

model.

• Supersymmetric AN− and BCN− rational (and trigonometric) models possess alge-

braic forms, preserve the same flag of (super)polynomials and their hidden algebra

is the superalgebra gl(N + 1|N) (see [8]).

In a connection to flags of polynomials we introduce a notion ‘characteristic vector’. Let

us consider a flag made out of ”triangular” linear space of polynomials

P(d)

n, ~f
= 〈xp1

1 x
p2
2 . . . x

pd
d |0 ≤ f1p1 + f2p2 + . . .+ fdpd ≤ n〉 ,

where the “grades” f ’s are positive integer numbers and n = 0, 1, 2, . . .. In lattice space P(d)

n, ~f

defines a Newton pyramid.

DEFINITION. Characteristic vector is a vector with components fi :

~f = (f1, f2, . . . fd) .

From geometrical point of view ~f is normal vector to the base of the Newton pyramid. The

characteristic vector for flag P(d) is,

~f0 = (1, 1, . . . 1)
︸ ︷︷ ︸

d

.

Case G2

Take the Hamiltonian

HG2
=

1

2

3∑

i=1

(

− ∂2

∂xi
2

+ ω2x2
i

)

+ ν(ν − 1)

3∑

i<j

1

(xi − xj)2
+

3µ(µ− 1)
3∑

k<l,k,l 6=m

1

(xk + xl − 2xm)2
, (30)

where ω, ν, µ are parameters. It describes the Wolfes model of three-body interacting system

[9] or, in the Hamiltonian reduction nomenclature, G2 -rational model. The symmetry of

the model is dihedral group D6. The ground state function is

Ψ0 =

3∏

i<j

|xi − xj |ν
3∏

k<l, k,l 6=m

|xi + xj − 2xk|µe−
1

2
ω
∑3

i=1
x2
i .

14



Making the gauge rotation

hG2
= (Ψ0)

−1 (HG2
−E) Ψ0 ,

and changing variables

Y =
∑

xi , yi = xi −
1

3
Y , i = 1, 2, 3 ,

(x1, x2, x3)→
(
Y, λ1, λ2

)
,

where

λ1 = −y21 − y22 − y1y2 ∼ −r2 , λ2 = [y1y2(y1 + y2)]
2 ,

and separating the center-of-mass coordinate we arrive at

hG2
= λ1∂

2
λ1λ1

+ 6λ2∂
2
λ1λ2

− 4

3
λ2
1λ2∂

2
λ2λ2

+
{
2ωλ1 + 2[1 + 3(µ+ ν)]

}
∂λ1

+
[
6ωλ2 −

4

3
(1 + 2µ)λ2

1

]
∂λ2

,

which is the algebraic form of the Wolfes model. The eigenvalues of hG2
are

ǫ{p} = 2ω(p1 + 3p2) .

It coincides to the spectrum of anisotropic harmonic oscillator with frequency ratio 1 : 3 .

Separating the center-of-mass in (30) and introducing the polar coordinates (̺, ϕ) in the

space of relative coordinates we arrive at the Hamiltonian

H̃G2
(̺, ϕ; ν, µ) = −∂2

r −
1

r
∂r −

1

r2
∂2
ϕ + ω2r2 +

9ν(ν − 1)

r2 cos2 3ϕ
+

9µ(µ− 1)

r2 sin2 3ϕ
. (31)

It is evident that the integral of motion which appears due to separation of variables in polar

coordinates (cf.(5)) has the form

F = −∂2
ϕ +

9ν(ν − 1)

cos2 3ϕ
+

9µ(µ− 1)

sin2 3ϕ
. (32)

It is evident that after gauge rotation with Ψ0 and change of variables to (λ1, λ2) the integral

F takes algebraic form.

The Hamiltonian hG2
has infinitely many finite-dimensional invariant subspaces

P(2)
n,(1,2) = 〈λ1

p1λ2
p2| 0 ≤ p1 + 2p2 ≤ n〉 , n = 0, 1, 2, . . . ,

15



hence the flag P(2)
(1,2) with the characteristic vector ~f = (1, 2) is preserved by hG2

. The

eigenfunctions of hG2
are are elements of the flag of polynomials P(2)

(1,2). Each subspace

P(2)
n,(1,2) − P

(2)
n−1,(1,2) contains ∼ n eigenfunctions which is equal to length of the Newton line

Ln = 〈λ1
p1λ2

p2|p1 + 2p2 = n〉.
A natural question to ask: What about hidden algebra? Namely: Does algebra exist for

which P(2)
n,(1,2) is the space of (irreducible) representation? Surprisingly, this algebra exists

and it is, in fact, known.

Let us consider the Lie algebra spanned by seven generators

J1 = ∂t ,

J2
n = t∂t −

n

3
, J3

n = 2u∂u −
n

3
,

J4
n = t2∂t + 2tu∂u − nt , (33)

Ri = ti∂u , i = 0, 1, 2 , L ≡ (R0, R1, R2) .

It is non-semi-simple algebra gl(2,R)⋉R(2) ( S. Lie, [10] at n = 0 and A. González-Lopéz

et al, [11] at n 6= 0 (Case 24)). If the parameter n in (33) is a non-negative integer, it has

P(2)
n = (tpuq|0 ≤ (p + 2q) ≤ n) ,

as common (reducible) invariant subspace. By adding

T
(2)
0 = u∂2

t ,

to gl(2,R)⋉R(2) (see (33)), the action on P(2)
n,(1,2) gets irreducible. Multiple commutators

of J4
n with T

(2)
0 generate new operators acting on P(2)

n,(1,2),

T
(2)
i ≡ [J4, [J4, [. . . J4, T

(2)
0 ] . . .]

︸ ︷︷ ︸

i

= u∂2−i
t J0(J0 + 1) . . . (J0 + i− 1) , i = 0, 1, 2 ,

where J0 = t∂t + 2u∂u − n, and all of them are of degree 2. These new generators have a

property of nilpotency,

T
(2)
i = 0 , i > 2 ,

and commutativity:

[T
(2)
i , T

(2)
j ] = 0 , i, j = 0, 1, 2 , L ≡ (T

(2)
0 , T

(2)
1 , T

(2)
2 ) . (34)
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✲✛ ✻

gℓ2⋉ ⋉

L L

P2(gℓ2)

FIG. 2: Triangular diagram relating the subalgebras L, L and gℓ2. P2(gℓ2) is a polynomial of

the 2nd degree in gℓ2 generators. It is a generalization of Gauss decomposition for semi-simple

algebras.

(33) plus (34) span a linear space with a property of decomposition:

g(2)
.
= L⋊ (gl2 ⊕ J0)⋉ L (see Fig.2).

Eventually, infinite-dimensional, eleven-generated algebra (by (33) and J0 plus (34), so

that the eight generators are the 1st order and three generators are of the 2nd order differ-

ential operators) occurs. The Hamiltonian hG2
can be rewritten in terms of the generators

(33), (34) with the absence of the highest weight generator J4
n,

hG2
= (J2 + 3J3)J1 − 2

3
J3R2 + 2[3(µ+ ν) + 1]J1

+2ωJ2 + 3ωJ3 − 4

3
(1 + 2µ)R2 ,

where J2,3 = J
2,3
0 . Hence, gl(2,R)⋉R(2) is the hidden algebra of the Wolfes model.

(i) G2 Hamiltonian admits two mutually-non-commuting integrals: of 2nd order as the

result of the separation of radial variable r2 (see (32)) and of the 6th order. If ω = 0 the

latter integral degenerates to the 3rd order integral (the square root can be calculated in

closed form).

(ii) Both integrals after gauge rotation with Ψ0 take in variables λ1,2 the algebraic form.

Both preserve the same flag P(2)
(1,2).

(iii) Both integrals can be rewritten in term of generators of the algebra g(2): integral of

2nd order in terms of gl(2,R)⋉R(2) generators only and while one of the 6th order contains

generators from L as well [13].

sl(2)-Quasi-Exactly-Solvable generalization

By adding to hG2
, the operator (the same as for Calogero and BCN models)

δh(qes) = 4(aλ2
1 − γ)

∂

∂λ1
− 4akλ1 + 2ωk ,

17



we get the operator hG2
+ δh(qes) having single finite-dimensional invariant subspace

Pk = 〈λp
1|0 ≤ p ≤ k〉 .

Making a gauge rotation of hG2
+ δh(qes), changing of variables (Y, λ1,2) back to Cartesian

coordinates and adding the center-of-mass the Hamiltonian becomes

H(qes)
G2

= −1
2

3∑

i=1

(
∂2

∂xi
2
− ω2x2

i

)

+

ν(ν − 1)

3∑

i<j

1

(xi − xj)2
+ 3µ(µ− 1)

3∑

i<l, i,l 6=m

1

(xi + xl − 2xm)2
+

4γ(γ + 3µ+ 3ν)

r2
+ a2r6 + 2aωr4 + 2a [2k − 3(µ+ ν)− 2(γ + 1)] r2 , (35)

for which (k + 1) eigenfunctions are of the form

Ψ
(qes)
k =

3∏

i<j

|xi − xj |ν
3∏

i<j;i,j 6=p

|xi + xj − 2xp|µ(r2)γPk(r
2) exp

[

−ω
2

3∑

i=1

x2
i −

a

4
r4

]

,

where Pk is a polynomial of degree k in r2 .

It is worth noting that at a = 0 the operator hG2
+ δh(qes) remains exactly-solvable, it

preserves the flag of polynomials P(2)
(1,2) and the emerging Hamiltonian has a form of (30)

with the extra term Γ
r2

in the potential. Its ground state eigenfunction is (r2)γΨ0. It is the

exactly-solvable generalization of the G2-Rational model (30) with the Weyl group W(G2)

as the discrete symmetry group,

HW(G2) = HG2
+

Γ

r2
.

Cases F4 and E6,7,8

In some details these four cases are described in [12].

Case I2(k)

In some details this case is described in [13]. It is worth noting that the Hamiltonian Re-

duction nomenclature is assigned to this case the parameter k takes any real value. Discrete

symmetry group D2k of the Hamiltonian appears for integer k.

18



Case H3

The H3 rational Hamiltonian reads

HH3
=

1

2

3∑

k=1

[

− ∂2

∂x2
k

+ ω2x2
k +

ν(ν − 1)

x2
k

]

+

2ν(ν − 1)
∑

{i,j,k}

∑

µ1,2=0,1

1

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk]2
, (36)

where {i, j, k} = {1, 2, 3} and all even permutations, ω, ν are parameters and

ϕ± =
1±
√
5

2
,

the golden ratio and its algebraic conjugate. Symmetry of the Hamiltonian (36) is H3

Coxeter group (full symmetry group of the icosahedron). It has the order 120. In total, the

Hamiltonian (36) is symmetric with respect to the transformation

xi ←→ xj ,

ϕ+ ←→ ϕ− .

The ground state is given by

Ψ0 = ∆ν
1∆

ν
2 exp

(

−ω
2

3∑

k=1

x2
k

)

, E0 =
3

2
ω(1 + 10ν) ,

where

∆1 =
3∏

k=1

xk ,

∆2 =
∏

{i,j,k}

∏

µ1,2=0,1

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk] .

Making the gauge rotation

hH3
= −2(Ψ0)

−1(HH3
− E0)(Ψ0) ,

we arrive at new spectral problem

hH3
φ(x) = −2ǫφ(x) .

19



After changing variables (x1,2,3 → τ1,2,3):

τ1 =x2
1 + x2

2 + x2
3 = r2 ,

τ2 = −
3

10
(x6

1 + x6
2 + x6

3) +
3

10
(2− 5ϕ+) (x

2
1x

4
2 + x2

2x
4
3 + x2

3x
4
1)

+
3

10
(2− 5ϕ−) (x

2
1x

4
3 + x2

2x
4
1 + x2

3x
4
2)−

39

5
,

τ3 =
2

125
(x10

1 + x10
2 + x10

3 ) +
2

25
(1 + 5ϕ−) (x

8
1x

2
2 + x8

2x
2
3 + x8

3x
2
1)

+
2

25
(1 + 5ϕ+) (x

8
1x

2
3 + x8

2x
2
1 + x8

3x
2
2)

+
4

25
(1− 5ϕ−) (x

6
1x

4
2 + x6

2x
4
3 + x6

3x
4
1)

+
4

25
(1− 5ϕ+) (x

6
1x

4
3 + x6

2x
4
1 + x6

3x
4
2)

− 112

25
(x6

1x
2
2x

2
3 + x6

2x
2
3x

2
1 + x6

3x
2
1x

2
2)

+
212

25
(x2

1x
4
2x

4
3 + x2

2x
4
3x

4
1 + x2

3x
4
1x

4
2) ,

in the gauge-rotated Hamiltonian, it emerges in the algebraic form [14]

hH3
=

3∑

i,j=1

Aij
∂2

∂τi∂τj
+

3∑

j=1

Bj
∂

∂τj
,

where

A11 = 4τ1 , A12 = 12τ2 , A13 = 20τ3 ,

A22 = −
48

5
τ 21 τ2 +

45

2
τ3 , A23 =

16

15
τ1τ

2
2 − 24τ 21 τ3 , A33 = −

64

3
τ1τ2τ3 +

128

45
τ 32 ,

B1 = 6 + 60ν − 4ωτ1 , B2 = −
48

5
(1 + 5ν)τ 21 − 12ωτ2 ,

B3 = −
64

15
(2 + 5ν)τ1τ2 − 20ωτ3 ,

which is amazingly simple comparing the quite complicated and lengthy form of the original

Hamiltonian (36). The Hamiltonian hH3
preserves infinitely-many spaces

P(1,2,3)
n = 〈τn1

1 τn2

2 τn3

3 |0 ≤ n1 + 2n2 + 3n3 ≤ n〉 , n ∈ N ,

with characteristic vector is (1,2,3), they form an infinite flag. The spectrum of hH3
is given

by

ǫp1,p2,p3 = 2ω(p1 + 3p2 + 5p3) , pi = 0, 1, 2, . . . ,

with degeneracy p1 + 3p2 + 5p3 = integer. It corresponds to the anisotropic harmonic

oscillator with frequency ratios 1:3:5 . Eigenfunctions φn,i of hH3
are elements of P(1,2,3)

n ,
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The number of eigenfunctions in P(1,2,3)
n is maximal possible - it is equal to dimension of

P(1,2,3)
n .

The space P(1,2,3)
n is finite-dimensional representation space of a Lie algebra of differential

operators which we call the h(3) algebra. It is infinite-dimensional but finitely generated

algebra of differential operators with 30 generating elements of 1st (14), 2nd (10) and 3rd (5)

orders, respectively, plus one of zeroth order. They span 5 + 5 Abelian subalgebras [16]

and one Cartan type algebra (for details see [14]). The Hamiltonian hH3
can be rewritten

in terms of the generators of the h(3)-algebra.

By adding to hH3
(36) the operator (11) in the variable τ1 (of the same type as for

Calogero, BCN and G2 models) we get the operator hH3
+ δh(qes) which has the finite-

dimensional invariant subspace

Pk = 〈τ1p|0 ≤ p ≤ k〉 ,

of the dimension (k + 1). Hence, this operator is quasi-exactly-solvable. Making the gauge

rotation of this operator and changing variables τ back to Cartesian ones we arrive at the

quasi-exactly-solvable Hamiltonian of a similar type as for Calogero, BCN and G2 models

[14]. By adding to hH3
(36) the operator 4γ ∂

∂τ1
we preserve the property of exact-solvability.

This operator preserves the flag P(1,2,3) and the emerging Hamiltonian has a form of (36)

with the extra term Γ
r2

in the potential. Its ground state eigenfunction is (r2)γΨ0. It is the

exactly-solvable generalization of the H3-Rational model (36) with the Coxeter group H3 as

the discrete symmetry group,

HH3
= HH3

+
Γ

r2
.

Case H4

The H4 rational Hamiltonian reads

HH4
=

1

2

4∑

k=1

[

− ∂2

∂x2
k

+ ω2x2
k +

ν(ν − 1)

x2
k

]

+

2ν(ν − 1)
∑

µ2,3,4=0,1

1

[x1 + (−1)µ2x2 + (−1)µ3x3 + (−1)µ4x4]2
+ (37)

2ν(ν − 1)
∑

{i,j,k,l}

∑

µ1,2=0,1

1

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk + 0 · xl]2
,
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where {i, j, k, l} = {1, 2, 3, 4} and all even permutations, ω, ν are parameters and

ϕ± =
1±
√
5

2
,

the golden ratio and it algebraic conjugate. Symmetry of the Hamiltonian (37) is H4 Coxeter

group (the symmetry group of the 600-cell). It has order 14400. In total, the Hamiltonian

(37) is symmetric with respect to the transformation

xi ←→ xj , ϕ+ ←→ ϕ− .

The ground state function and its eigenvalue are

Ψ0 = ∆ν
1∆

ν
2∆

ν
3 exp

(

−ω
2

4∑

k=1

x2
k

)

, E0 = 2ω(1 + 30ν) ,

where

∆1 =

4∏

k=1

xk ,

∆2 =
∏

µ2,3,4=0,1

[x1 + (−1)µ2x2 + (−1)µ3x3 + (−1)µ4x4] ,

∆3 =
∏

{i,j,k,l}

∏

µ1,2=0,1

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk + 0 · xl] .

Making a gauge rotation of the Hamiltonian

hH4
= −2(Ψ0)

−1(HH4
− E0)(Ψ0) ,

and introducing new variables τ1,2,3,4 as invariant wrt H4 Coxeter group polynomials in x of

degrees 2, 12, 20, 30 (degrees of H4), we arrive at the Hamiltonian in the algebraic form [15]

hH4
=

4∑

i,j=1

Aij
∂2

∂τi∂τj
+

4∑

j=1

Bj
∂

∂τj
, (38)

where

A11 = 4 τ1 , A12 = 24 τ2 , A13 = 40 τ3 , A14 = 60 τ4 ,

A22 = 88 τ1τ3 + 8 τ 51 τ2 , A23 = −4 τ 31 τ
2
2 + 24 τ 51 τ3 − 8 τ4 ,

A24 = 10 τ 21 τ
3
2 + 60 τ 41 τ2τ3 + 40 τ 51 τ4 − 600 τ 23 ,

A33 = −
38

3
τ1τ

3
2 + 28 τ 31 τ2τ3 −

8

3
τ 41 τ4 ,
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A34 = 210 τ 21 τ
2
2 τ3 + 60 τ 31 τ2τ4 − 180 τ 41 τ

2
3 + 30 τ 42 ,

A44 = −2175 τ1τ
3
2 τ3 − 450τ 21 τ

2
2 τ4 − 1350 τ 31 τ2τ

2
3 − 600 τ 41 τ3τ4 ,

B1 = 8(1 + 30ν)− 4ωτ1 , B2 = 12(1 + 10ν) τ 51 − 24ωτ2 ,

B3 = 20(1 + 6ν) τ 31 τ2 − 40ωτ3 , B4 = 15(1− 30ν) τ 21 τ
2
2 − 450(1 + 2ν) τ 41 τ3 − 60ωτ4 ,

which is amazingly simple comparing the very complicated and lengthy form of the original

Hamiltonian (37). It is easy to check that the algebraic operator hH4
preserves infinitely-

many finite-dimensional invariant subspaces

P(1,5,8,12)
n = 〈τn1

1 τn2

2 τn3

3 τn4

4 |0 ≤ n1 + 5n2 + 8n3 + 12n4 ≤ n〉 , n ∈ N ,

all of them with the same characteristic vector (1, 5, 8, 12), they form the infinite flag. The

spectrum of the Hamiltonian hH4
(38) has a form

ǫk1,k2,k3,k4 = 2ω(k1 + 6k2 + 10k3 + 15k4) , ki = 0, 1, 2, . . . ,

with degeneracy k1 + 6k2 + 10k3 + 15k4 = integer. It corresponds to the anisotropic har-

monic oscillator with frequency ratios 1:6:10:15 . Eigenfunctions φn,i of hH4
are elements of

P(1,5,8,12)
n . The number of eigenfunctions in P(1,5,8,12)

n is equal to dimension of P(1,5,8,12)
n .

By adding to hH4
(37) the operator (11) in the variable τ1 (of the same type as for

Calogero, BCN and G2, H3 models) we get the operator hH4
+ δh(qes) which has the finite-

dimensional invariant subspace

Pk = 〈τ1p|0 ≤ p ≤ k〉 ,

of dimension (k + 1). Hence, this operator is quasi-exactly-solvable. Making the gauge

rotation of this operator and changing variables τ back to Cartesian ones we arrive at the

quasi-exactly-solvable Hamiltonian of a similar type as for Calogero, BCN and G2 models

[15]. By adding to hH4
(37) the operator 4γ ∂

∂τ1
we preserve the property of exact-solvability.

This operator preserves the flag P(1,5,8,12) and the emerging Hamiltonian has a form of (37)

with the extra term Γ
r2

in the potential. Its ground state eigenfunction is (r2)γΨ0. It is the

exactly-solvable generalization of the H4-Rational model (37) with the Coxeter group H4 as

the discrete symmetry group,

HH4
= HH4

+
Γ

r2
.
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Conclusions

• For rational Hamiltonians for all classical AN , BCN and exceptional root spaces

G2, F4, E6,7,8 (also trigonometric) and non-crystallographic H3,4, I2(k) there exists an

algebraic form after gauging away the ground state eigenfunction and changing vari-

ables to symmetric (invariant) variables. Their eigenfunctions are polynomials in these

variables. They are orthogonal with the squared ground state eigenfunction as the

weight factor.

• Their hidden algebras are gl(N) for the case of classical AN , BCN and new infinite-

dimensional but finite-generated algebras of differential operators for all other cases.

All these algebras have finite-dimensional invariant subspace(s) in polynomials.

• Generating elements of any such hidden algebra can be grouped into even number of

(conjugated) Abelian algebras Li, Li and one Lie algebra B. They obey a (generalized)

Gauss decomposition (see Fig.3). A description of all these algebras will be given

elsewhere.

✛ ✲

✻

LL
Pp(B)

B

⋉
⋉

FIG. 3: Triangular diagram relating the subalgebras L, L and B. Pp(B) is a polynomial of the

pth degree in B generators. It is a generalization of Gauss decomposition for semi-simple algebras

where p = 1.

General view ((quasi)-exact-solvability)

There are two solvable potentials in 1D in [0,∞) generalized to D:

⋆ ES-case

ω2r2 +
γ

r2
→ ω2r2 +

γ(Ω)

r2
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(a generalization by replacing the symmetry O(N) by its discrete subgroup of symmetry

given by Weyl(Coxeter) group);

⋆

QES-case

ω2r2 +
γ

r2
+ ar6 + br4 → ω̃2r2 +

γ̃(Ω)

r2
+ ar6 + br4

(a generalization by replacing the symmetry O(N) by its discrete subgroup of symmetry

given by Weyl(Coxeter) group).

Concluding I must emphasize that the algebraic nature of the considered systems was

revealed when,

Invariants of the discrete group of symmetry of a system are taken as variables

(space of orbits).
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