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Abstract. One-dimensional models are presented for transitional shear flows. The models
have two variables corresponding to turbulence intensity and mean shear. These variables
evolve according to simple equations based on known properties of transitional turbulence. The
first model considered is for pipe flow. A previous study modeled turbulence using a chaotic tent
map. In the present work turbulence is modeled instead as multiplicative noise. This model
captures the character of transitional pipe flow and contains metastable puffs, puff splitting,
and slugs. These ideas are extended to a limited model of plane Couette flow.

1. Introduction

The transition to turbulence in shear flows has been the subject of study since Reynolds’
pioneering studies over a century ago (Reynolds, 1883). The difficulty in understanding shear-
flow transition is largely attributable to the subcritical nature of the problem. In all of the
classic cases – pipe flow, channel flow, plane Couette flow, boundary layer flow and others –
turbulence is found at Reynolds numbers for which laminar flow is linearly stable. In such flows
turbulence appears abruptly following finite-sized disturbances of laminar flow and not through
a sequence of instabilities each increasing the dynamical complexity of the flow. This limits the
applicability of linear and weakly nonlinear theories in addressing transition in these cases.

One of the most intriguing aspects of shear turbulence is the intermittent form it takes in the
transitional regime, near the minimum Reynolds number for which turbulence can be triggered.
In pipe flow, one observes localized turbulent patches, known as puffs, surrounded upstream and
downstream by laminar flow (Wygnanski & Champagne, 1973; Nishi et al., 2008; Mullin, 2011).
In planar cases, such as plane Couette flow and boundary layer flow, one commonly observes
turbulent spots surrounded by laminar flow (Wygnanski et al., 1976; Tillmark & Alfredsson,
1992). Even more intriguing is the regular alternation of turbulent and laminar regions that is
now known to arise spontaneously in many shear flows with sufficiently large aspect ratio (Prigent
et al., 2002; Barkley & Tuckerman, 2005).

Minimal models of spatiotemporal intermittency have been useful in understanding generic
features of intermittent shear turbulence (Chaté & Manneville, 1988; Bottin & Chaté, 1998).
Here, I consider models that contain more of the physics specific to shear turbulence and from
this I obtain models that produce quite realistic dynamics. For pipe flow it is possible to
reproduce nearly all of the large-scale phenomena associated with transition using only two
scalar equations. Other shear flows are more difficult, but I point to some ideas for plane
Couette flow.
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2. Pipe flow

In this section I consider pipe flow. As concerns the large-scale features, pipe flow is effectively
a one-dimensional system and this makes it a particularly good problem to tackle first. I will
summarize basic features of pipe flow and recall the modeling proposed in Barkley (2011). Then
I will consider an alternative approach to that in Barkley (2011) and here model turbulence by
multiplicative noise.

2.1. Phenomenology
Figure 1 summarizes the three important dynamical regimes of transitional pipe flow from direct
numerical simulations (DNS) (Blackburn & Sherwin, 2004; Moxey & Barkley, 2010). Quantities
are nondimensionalized by the pipe diameter D and the mean (bulk) velocity Ū . The Reynolds
numbers is Re = DŪ/ν, where ν is kinematic viscosity. Flows are well represented by two
quantities, the turbulence intensity q and the axial (streamwise) velocity u, sampled on the pipe
axis. Specifically, q is the magnitude of transverse fluid velocity (scaled up by a factor of 6).
The centerline velocity u is relative to the mean velocity and is a proxy for the state of the
mean shear that conveniently lies between 0 and 1. At low Re, as in Fig. 1(a), turbulence occurs
in localized patches propagating downstream with nearly constant shape and speed. These
are called equilibrium puffs (Wygnanski et al., 1975; Darbyshire & Mullin, 1995; Nishi et al.,
2008), a misnomer since at low Re puffs are only metastable and eventually revert to laminar
flow, i.e. decay (Faisst & Eckhardt, 2004; Peixinho & Mullin, 2006; Hof et al., 2006; Willis &
Kerswell, 2007; Schneider & Eckhardt, 2008; Hof et al., 2008; Avila et al., 2010; Kuik et al., 2010).
Asymptotically the flow will be laminar parabolic flow, (q = 0, u = 1), throughout the pipe. For
intermediate Re, as in Fig. 1(b), puff splitting frequently occurs (Wygnanski et al., 1975; Nishi
et al., 2008; Moxey & Barkley, 2010; Avila et al., 2011). New puffs are spontaneously generated
downstream from existing ones and the resulting pairs move downstream with approximately
fixed separation. Further splittings will occur and interactions will lead asymptotically to a
highly intermittent mixture of turbulent and laminar flow (Rotta, 1956; Moxey & Barkley, 2010).
At yet higher Re, turbulence is no longer confined to localized patches, but spreads aggressively
in so-called slug flow (Wygnanski & Champagne, 1973; Nishi et al., 2008; Mullin, 2011), as
illustrated in Fig. 1(c). The asymptotic state is uniform, featureless turbulence throughout the
pipe (Moxey & Barkley, 2010).

2.2. PDE model
The modeling in Barkley (2011) is based on the following physical features of transitional
turbulence in pipes. At the upstream (left in Fig. 1) edge of turbulent patches, laminar
flow abruptly becomes turbulent. Energy from the laminar shear is rapidly converted into
turbulent motion and this results in a rapid change to the mean shear profile (Wygnanski &
Champagne, 1973; Hof et al., 2010). In the case of puffs, the turbulent profile is not able
to sustain turbulence and thus there is a reverse transition (Wygnanski & Champagne, 1973;
Narasimha & Sreenivasan, 1979) from turbulent to laminar flow on the downstream side of a
puff. In the case of slugs, the turbulent shear profile can sustain turbulence indefinitely; there is
no reverse transition and slugs grow to arbitrary streamwise length (Wygnanski & Champagne,
1973; Nishi et al., 2008). On the downstream side of turbulent patches the mean shear profile
recovers slowly (Narasimha & Sreenivasan, 1979), seen in the behavior of u in Fig. 1. The degree
of recovery dictates how susceptible the flow is to re-excitation into turbulence (Hof et al., 2010).

The following partial-differential equation (PDE) model captures the essence of these physical
features:

∂tq + U∂xq = q
(
u+ r − 1− (r + δ)(q − 1)2

)
+ ∂xxq, (1)

∂tu+ U∂xu = ε1(1− u)− ε2uq − ∂xu. (2)
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Figure 1. Regimes of transitional
pipe flow from simulations in a peri-
odic pipe 200D long. Shown are in-
stantaneous values of turbulence in-
tensity q and axial velocity u along
the pipe axis. (a) Equilibrium puff
at Re = 2000. (b) Puff splitting
at Re = 2275. (c) Slug flow at
Re = 3200.
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Figure 2. The distinction between puffs and
slugs seen as the difference between excitability and
bistablilty in the PDE model, Eqs. (1)-(2). Phase
planes show nullclines at (a) r = 0.7 and (b) r = 1.
The fixed point (1, 0) corresponds to stable laminar
flow. In (a) this is the only fixed point. In (b) the
additional stable fixed point corresponds to stable
turbulence. Solution snapshots show (c) a puff at
r = 0.7 and (d) a slug at r = 1. These solutions are
plotted in the phase planes with arrows indicating
increasing x.

In the model, the parameter r plays the role of Reynolds number Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically irrelevant since it can be removed
by a change of reference frame. The model includes minimum derivatives, qxx and ux, needed
for turbulent regions to excite adjacent laminar ones and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in Fig. 2. The trajectories are organized
by the nullclines: curve where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx = ux = 0).
For all r the nullclines intersect in a stable, but excitable, fixed point corresponding to laminar
parabolic flow. The u dynamics with ε2 > ε1 captures in the simplest way the behavior of the
mean shear. In the absence of turbulence (q = 0), u relaxes to u = 1 at rate ε1, while in response
to turbulence (q > 0), u decreases at a faster rate dominated by ε2. Values ε1 = 0.04 and ε2 = 0.2
give reasonable agreement with pipe flow. The q-nullcline consists of q = 0 (turbulence is not
spontaneously generated from laminar flow) together with a parabolic curve whose nose varies
with r, while maintaining a fixed intersection with q = 0 at u = 1+δ, (δ = 0.1 is used here). The
upper branch is attractive, while the lower branch is repelling and sets the nonlinear stability
threshold for laminar flow. If laminar flow is perturbed beyond the threshold (which decreases



with r like r−1), q is nonlinearly amplified and u decreases in response.
The (excitable) puff regime occurs for r < rc ' ε2/(ε1 +ε2), Figs. 2(a) and (c). The upstream

side of a puff is a trigger front (Tyson & Keener, 1988) where abrupt laminar to turbulent
transition takes place. However, turbulence cannot be maintained locally following the drop
in the mean shear. The system relaminarizes (reverse transition) on the downstream side in
a phase front (Tyson & Keener, 1988) whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains susceptibility to turbulent perturbations.
The slug regime occurs for r > rc, Figs. 2(b) and (d). The nullclines intersect in additional fixed
points. The system is bistable and turbulence can be maintained indefinitely in the presence of
modified shear. Both the upstream and downstream sides are trigger fronts, moving at different
speeds, giving rise to an expansion of turbulence.

2.3. SPDE model
While the PDE model captures the essence of the puff-slug transition, the model of turbulence
is too simple to capture features such as puff decay and puff splitting. In Barkley (2011), a
more realistic model was obtained by employing a tent map to mimic shear turbulence. The
map was designed to give a local phase-space structure similar to the nullcline picture for the
PDE seen in Fig. 2, with the exception that the upper turbulent branch is instead a region
of transient chaos. This approach was motivated by the view that shear turbulence is locally
a chaotic saddle (Eckhardt et al., 2007) and it naturally extends previous ideas of modeling
chaotic transients with maps (Chaté & Manneville, 1988; Bottin & Chaté, 1998; Vollmer et al.,
2009). The resulting model has the advantage of being deterministic, as is fluid flow, at least at
the level of the Navier-Stokes equations.

Here I consider an alternative approach and model turbulence as noise. This is at the other
extreme from the low-dimensional map. Here the dynamics is infinite dimensional and not
deterministic. The simplest approach is to apply noise to the q equation and assume it is
proportional to q itself. This leads to the following stochastic PDE (SPDE) model:

∂tq + U∂xq = q
(
u+ r − 1− (r + δ)(q − 1)2

)
+ ∂xxq + σqη, (3)

∂tu+ U∂xu = ε1(1− u)− ε2uq − ∂xu. (4)

where η = η(x, t) is Gaussian noise. The parameter σ controls the noise strength. In reality,
shear turbulence has significant correlations on the scale of a puff, but these correlations are not
considered here and η(x, t) taken here to be space-time white.

A large advantage of modeling the effect of turbulence through a noise term is that one has a
direct connection to the simple PDE model. Moreover, analysis of the SPDE is likely to be easier
than analysis of the deterministic map model. The price is the loss of deterministic dynamics.

Figures 3 and 4 show the regimes of transitional pipe flow from simulations of Eqs. (3)-(4).
The deterministic parameters are as before: ε1 = 0.04, ε2 = 0.2, and δ = 0.1. The noise
strength is σ = 1.4. Figure 3 shows solution snapshots in terms of the model variable q and
u. Puffs, puff splitting, and slugs are found very similar to those observed in full DNS (see
Fig. 1) and in the deterministic map model (see Barkley, 2011). The dynamics of the different
regimes is seen in the space-time plots of Fig. 4. At low r, puffs are metastable. They persist
for long times before abruptly decaying. For intermediate r, puff splitting occurs. New puffs are
spontaneously nucleated downstream of existing puffs and the system evolves to an intermittent
mixture of turbulent and laminar phases. At larger r, slugs are observed which differ from the
deterministic PDE mainly in that they first occur at larger r and the upper branch is noisy
rather than constant. An investigation of the lifetime statistics of puff decay and puff splitting
in the SPDE is currently underway.

While all three regions shown in Figs. 3 and 4 strongly resemble their counterparts in full DNS
and experiment, the splitting regime is particularly significant and worthy of further comment.



q

u

q

u

q

u

i (space)

puff splitting

slug

downstream

equilibrium puff

split

expanding

(b)

(a)

(c) (f)

(e)

(d)

x

Figure 3. Three regimes of tran-
sitional pipe flow from simulations
of the SPDE (3)-(4). Shown are in-
stantaneous values of q and u. (a)
Puff at r = 0.7. (b) Puff splitting
at r = 0.94. (c) Slug at r = 1.2.
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Figure 4. Space-time diagrams illustrate (a)
decaying puff at r = 0.7, (b) puff splitting at r = 0.94,
and (c) slug formation at r = 1.2. Turbulence
intensity q is plotted on a logarithmic scale in a frame
co-moving with structures.

Unlike for puffs and slugs, which are essentially contained in the model by construction, splitting
is seen to arise naturally from the elementary puff-slug transition in the presence of complex
turbulent dynamics (either noise as here or chaotic dynamics as in Barkley (2011)). The space-
time plot in Fig. 4(b) could easily be mistaken for the corresponding plot from full DNS (e.g.
see Avila et al., 2011). Sufficient turbulence occasionally escapes from the irregular downstream
side of a puff to nucleate a new puff downstream. Visually, this is just as in real pipe flow and
is a strong qualitative validation of this modeling approach.



3. Model for plane Couette flow

One of the main difficulties in extending these ideas to other shear flows, such as channel flow
or plane Couette flow, is the complexity of the mean flow in these cases (Barkley & Tuckerman,
2007). It is not clear at the present time whether one can adequately model the mean shear
in these flows using simple scalar fields. Nevertheless, I discuss here some preliminary ideas on
how plane Couette flow might be approached within this modeling framework.

Figure 5 shows a sketch for plane Couette flow. A turbulent patch (red) is shown surrounded
to the left and right by laminar flow. One can view this as a cut through a single turbulent
band in the striped regime or through a localized patch of turbulence (Prigent et al., 2002;
Barkley & Tuckerman, 2005). However, the model is rather crude at present and the important
three-dimensional aspects of the problem are not taken into account.

x

y

Figure 5. Sketch of plane Couette flow. The
shaded region (red) represents a turbulent
patch surrounded by laminar flow. Arrows
indicate the motion of the bounding plates
and the direction of the mean flow in the
upper and lower halves of the domain. Three
shear profiles are sketched. The x-coordinate
is centered on the time-averaged flow which
has centro-symmetry.
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Figure 6. Solutions of the plane Couette
model, Eqs. (5)-(8). (a) Localized state at
r = 0.7 and (b) periodic state at r = 0.9.
Solid (dotted) curves represent variables in
the upper (lower) half of the domain. The
mean turbulence, (q1 + q2)/2, is plotted in
bold (red).

Recall that the geometry of plane Couette flow has translation symmetry in the streamwise
direction x and also centro-symmetry (rotation by π) about any point on the midplane y = 0.
Taking the point to be at x = 0, the centro-symmetry is the transformation (x, y)→ (−x,−y).
Time averaged turbulent-laminar patterns break translational symmetry, but do not break
centro-symmetry (Barkley & Tuckerman, 2007).

The idea is to model intermittent turbulence in plane Couette flow as two layers, each
described by one-dimensional equations similar to those for pipe flow. The turbulence in the two
layers is assumed to be coupled. Taking into account that the mean advection in the bottom



layer is opposite to that in the top layer, I propose the following PDE model

∂tq1 + U∂xq1 = q1
(
u1 + r − 1− (r + δ)(q1 − 1)2

)
+ ∂xxq1 + κ(q2 − q1), (5)

∂tu1 + U∂xu1 = ε1(1− u1)− ε2u1q1 − ∂xu1, (6)

∂tq2 − U∂xq2 = q2
(
u2 + r − 1− (r + δ)(q2 − 1)2

)
+ ∂xxq2 + κ(q1 − q2), (7)

∂tu2 − U∂xu2 = ε2(1− u2)− ε2u2q2 + ∂xu2. (8)

where q1 and u1 are the turbulence and mean shear in the upper layer and q2 and u2 are the
turbulence and mean shear in the lower layer. These equations are symmetric under translation
in x and the reflection defined by (x, q1, u1, q2, u2) → (−x, q2, u2, q1, u1), which is the model
equivalent of centro-symmetry.

Figure 6 shows solutions to Eqs. (5)-(8) with U = 1 and the coupling constant κ = 0.1. Other
parameter values are the same as for the model pipe simulations. For small r, stable localized
states appear from localized perturbations of laminar flow. At r ' 0.75 the localized states
became unstable and spread to form a periodic alternation of turbulent and laminar phases.
The localized and periodic structures both have centro-symmetry.

The choice of U and the coupling parameter κ are probably rather important in obtaining
steady patterns. The effect of noise is also not yet fully understood as this investigation is still
in a preliminary stage.

4. Conclusion

I have presented models of parallel shear flows in two scalar variables – turbulence and mean
shear. The model for pipe flow is based closely on physical features of transitional turbulence and
it reproduces nearly all large-scale features of transitional pipe flow. The model for plane Couette
flow necessarily misses many features of the real flow since the model is only one dimensional,
whereas plane Couette flow has two extended dimensions. Nevertheless, the plane Couette flow
model is an important starting point for further investigations of this and other parallel shear
flows such as plane channel and boundary layer flow.
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