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Abstract: The definition of local hardness by the derivative of the chemical potential with 

respect to the electron density has raised several questions, and its potential applicability as 

the local counterpart of chemical hardness has proved to be limited to (globally) hard 

molecules. Here, we point out that this traditional way of defining a local hardness concept is 

inherently incapable of yielding a proper local measure of hardness. To enlighten this fact 

more, we apply the same technique for defining a local version of the chemical potential 

itself. 
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I. Introduction 

 

 Chemical reactivity indices [1,2], defined within the framework of density functional 

theory (DFT), have found successful application in the study of chemical phenomena. The 

three most well known reactivity descriptors, the electronegativity [3] (or, in the language of 

DFT, chemical potential [4]), the chemical hardness, and softness [5] are basic constituents of 

essential principles governing chemical reactions – the electronegativity equalization principle 

[4,6], the hard/soft acid/base principle [5], and the maximum hardness principle [7]. An 

important aim of conceptual DFT [2] is to establish local versions of the global indices, on the 

basis of which predictions can be made regarding the molecular sites a given reaction happens 

at. Defining a local softness can be done in a natural way [8], following from the definition of 

softness as the derivative of the electron number N with respect to the chemical potential µ . 

However, defining a local counterpart of hardness [9,10], the inverse of softness, has met 

essential difficulties [11-17], which undermine the applicability of the local hardness concept 

[17-19]. To cure these difficulties, very recently, a new approach to local hardness has been 

proposed [17], defining a local chemical potential (with the help of the concept of constrained 

derivatives [20]) first, the derivative of which with respect to the electron number then 

delivers a local hardness, just as the derivative of the chemical potential with respect to N 

gives the hardness. This new local hardness has the advantageous properties of (i) integrating 

to the hardness, and (ii) being in a local inverse relation with the Fukui function [21], which 

has proved to be a proper measure of local softness in the case of (globally) soft electron 

systems (as regards hard systems, this is not the case, as has been found recently [18,19]). 

Numerical tests [17] have also justified this choice as a proper local measure of hardness, 

giving proper results for the critical test molecule benzocyclobutadiene, for which the 

traditional definitions [9,10] have failed. It is not yet clear, however, (i) why the traditional 

way of defining a local hardness concept, via the derivative of the chemical potential with 

respect to the electron density )(rn
v

, could not yield a (generally) correct local indicator of 

chemical hardness, and (ii) whether there is any possibility to gain a generally valid local 

hardness quantity from the traditional approach. Therefore, we will re-examine the idea of 

defining a local hardness concept, and also, a local chemical potential concept, via 

differentiation with respect to )(rn
v

. We will show that in general the local quantities obtained 

in this way cannot yield proper regional indicators of hardness, and of chemical potential; 

consequently, they cannot be considered as proper local counterparts of η , and µ , 
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respectively. However, they may still serve as useful quantities for quantum chemistry, as will 

be pointed out. 

 

II. Traditional concept of local hardness 

 

 The inverse of chemical hardness, defined by [22] 
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which is called softness, and for which a corresponding local quantity, termed the local 

softness, can be readily introduced [8]: 
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This has a direct connection to the Fukui function [21] 
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a well-established chemical reactivity index: Applying the chain rule of differentiation, one 

obtains 

        Srf
N

N

rn
rs

rvrv

)(
)(

)(
)()(

v
v

v

vv

=








∂

∂









∂

∂
=

µ
 .       (5) 

)(rs
v

 integrates to S (just as the Fukui function integrates to 1), and it is natural to interpret it 

as a pointwise, i.e. local, softness. However, defining a corresponding local quantity for the 

hardness, Eq.(1), has met essential difficulties, due to the fact that there is no such obvious 

way to do this as in the case of softness. A local hardness concept was first introduced by 

Berkowitz et al. [9], who defined the local hardness as 
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This local index is then not a local quantity in the sense the local softness is, since it does not 

integrate to the hardness; consequently, its integral over a given region in the molecule won’t 

give a regional global hardness. In fact, )(r
v

η  times the Fukui function is what gives η  by 

integration over the whole space, 
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which emerges via an application of the chain rule, as can be seen from the definitions Eqs.(4) 

and (6). 

 The biggest problem with the local hardness defined by Eq.(6) has been that it is not 

clear how to understand the fixed external potential [ )(rv
v

] condition on the differentiation in 

Eq.(6). If we consider that the hardness is defined by Eq.(1) as the partial derivative of the 

chemical potential ],[ vNµ  (a function(al) of the electron number and the external potential) 

with respect to N, Eq.(6) suggests that )(rv
v

 as one of the variables in ],[ vNµ  should be fixed 

when differentiating with respect to the electron density )(rn
v

. However, this yields a trivial 

definition: 
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i.e., the local hardness equals the global hardness at every point in space. If one utilizes the 

DFT Euler-Lagrange equation 
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emerging from the minimization principle for the ground-state energy density functional 
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for the determination of the ground-state density corresponding to a given )(rv
v

, ],[ vNµ  can 

be given as 
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Differentiating this expression with respect to N yields 
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On the basis of this, then, it is natural to identify the local hardness yielding Eq.(8) with 
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Eq.(13) was proposed by Ghosh [10], and was discovered to be a constant giving the global 

hardness everywhere (for the ground-state density) by Harbola et al. [11]. Eq.(13) thus cannot 

be a local counterpart of hardness, on the basis of which one could differentiate between 

molecular sites; however, it still is a useful conceptual and practical tool since a local 
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hardness equalization principle can be based on it [10,23,24], which says that )(r
v

η  of Eq.(13) 

should be constant for the whole molecule for the real ground-state density – but only for that 

density. This principle is closely related with the long-known chemical potential (or 

electronegativity) equalization principle [4,24,25]; see also the discussion in Appendix below. 

 To gain other definition for the local hardness than the one yielding the global 

hardness in every point of space, one may consider the fixed- )(rv
v

 constraint in Eq.(6) as a 

constraint on the differentiation with respect to the density, 
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instead of a simple fixation of the variable )(rv
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 of ],[ vNµ . That is, the density domain over 

which the differentiation is carried out is restricted to the domain of densities that yield the 

given )(rv
v

, through the first Hohenberg-Kohn theorem [1], which constitutes a unique 

)()( rvrn
vv
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 functional. The result will be an ambiguous restricted 

derivative (see Sec.II of [26]), similarly to the case of derivatives restricted to a domain of 

densities with a given normalization N, which derivatives are determined only up to an 

arbitrary additive constant [1,27]. Harbola et al. [11], to characterize the ambiguity of the 

local hardness concept, first recognized by Ghosh [10], have given the explicit form 
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for the possible local hardness candidates, where )(r
v

λ  is an arbitrary function that integrates 

to 1. The second derivative of ][nF , appearing in Eq.(15), is called the hardness kernel. The 

choice )()( rfr
vv

=λ  gives back Eq.(13), while another natural choice is Nrnr /)()(
vv

=λ , 

which yields the original local hardness formula of Berkowitz et al. [9], who proposed it as a 

consequence of Eq.(6). Besides these two definitions for )(r
v

η , another one, termed the 

unconstrained local hardness, has been proposed by Ayers and Parr [15,28]: 
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where the fixed- )(rv
v

 constraint on the differentiation with respect to )(rn
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 is simply dropped. 

A substantial difficulty with this definition when used in practice [15] is the explicit 

appearance of the derivative of )(rv ′
v

 with respect to )(rn
v

, as can be seen by 
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where the well-known fact 
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and Eqs.(1) and (4) have been utilized. We note that Eq.(16) is embraced by Eq.(14), since for 

a restricted derivative, a trivial choice is the unrestricted derivative itself (if exists), being 

valid over the whole functional domain, hence over the restricted domain too. 

 

III. An inherent problem with the local hardness concept of Eq.(14) 

 

 A proper local hardness is expected to yield proper regional hardness values, on the 

basis of which one can predict the molecular region (or site) a reaction with another species 

happens at. The only known, and plausible, way of obtaining regional hardnesses from an 

)(r
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i.e., the integral in Eq.(7) is carried out over the considered region Ω  of space instead of the 

whole space. Eq.(19) has been applied in practical calculations to characterize the hardness of 

a given atom(ic region) or functional group in a molecule. Eq.(19) yields an extensive 

hardness concept: The total hardness of a species can be obtained as a sum of its regional 

hardnesses corresponding to a given (arbitrary) division of the species into regions. That is, 

roughly saying, a molecule that contains regions having high values of hardnesses in a 

majority will have a high global hardness, while a molecule that contains mainly soft regions, 

with low )(Ωη , will have a low global hardness. 

 A problem with this local hardness/regional hardness scheme is that if η  is extensive, 

with regional hardnesses given by Eq.(19), the quantity )()( rfr
vv
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At the same time, however, it seems plausible to take )(r
v

η  of Eq.(14) as the local hardness 

since it characterizes the change of the chemical potential induced by a small (infinitesimal) 

change of the electron density )(rn
v

 at a given point of space in a given external potential – 

which seems to be a proper local counterpart of the hardness, given by Eq.(1). Although this 

view is intuitively appealing, one should be careful with such an approach, because then we 
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may argue that a change (even if infinitesimal) of the density at a single r
v

 will yield a 

discontinuous density, so why should one bother himself with chemical potential changes 

corresponding to unphysical density changes? But there is a more physical/real argument 

against an )(r
v

η  of Eq.(14). If we add a small fraction dN of number of electrons to a 

molecule, it will be distributed over the whole molecule, no matter “where we added” that dN 

of electrons. Consequently, only a change of µ  that is induced by a density change that is due 

to a dN makes sense directly. 
)(rn
v

δ

µδ
 is, rather, an intermediate quantity that delivers the 

infinitesimal change in µ  due to an infinitesimal change of some quantity determining the 

given electron system on which )(rn
v

 depends – e.g., 
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(Of course, if an unconstrained/full derivative of µ  with respect to )(rn
v

, 
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v

δ

µδ
, exists, it 

can be used in both equations.) Thus, it may be more appropriate to term Eq.(14) as local 

hardness factor (instead of local hardness), which indicates its conceptual relevance for the 

hardness concept. 

 However, it can be shown that )()( rfr
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regional hardnesses given by Eq.(19), cannot be considered as local, or regional, measures of 

hardness, respectively. Consider Eqs.(20) and (21) with the integrals taken only over a given 

region of space. This gives Eq.(19) and 
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Eq.(21) being just the Fukui function, 
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due to Eq.(18). What these regional integrals tell us? They can be viewed as entities that give 

the contributions, to the infinitesimal changes of µ , that come from the change of the density 

over the given region due to an increment of N and )(rv
v

, respectively. To ease understanding, 
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compare this with the finite-dimensional example of a function ))(),(( tytxg  (with a 
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(It can be seen that if Ω  is chosen to be the whole space, Eq.(26) gives back the Fukui 

function.) As regards 
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With Eq.(27b), e.g., the ambiguity of Eq.(19) may be given as 
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On the basis of the argument given above regarding these regional integrals, there is no reason 

to expect that for any particular choice of )(rc
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, Eq.(28) will yield a proper regional hardness 
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 The above analysis is worth extending by the introduction of a local quantity 

corresponding to the chemical potential, which may be termed local chemical potential factor. 

It has been proposed in [17] that instead of replacing the electron number with the electron 

density in the hardness expression Eq.(1) to obtain a local hardness, the chemical potential 

should be replaced there by a local counterpart. In [17], by utilizing that the chemical 
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Then, a corresponding local hardness concept can be immediately obtained via 
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The question may naturally arise as to whether we may obtain a better, physically possibly 

more appealing local chemical concept by applying the idea behind Eq.(14) to µ  itself, i.e. by 
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Of course, we then have the same kind of ambiguity problem as in the case of Eq.(14). Fixing 
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We note here that the idea of a local chemical potential concept has already been raised by 

Chan and Handy [29], as a limiting case of their more general concept of shape chemical 

potentials; however, they automatically took the energy derivative with respect to the density 

as that of Eq.(33), ignoring other possibilities. 
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i.e., it gives the chemical potential after integration when multiplied by the Fukui function – 

analogously to Eq.(7). The ground-state energy as a functional of the ground-state density can 
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derivative, 

     
)(

]][],[[
)(

rn

nvnNE
r v
v

δ

δ
µ =  .      (36) 

This quantity gives to what extent the ground-state energy changes when the density is 

changed by an infinitesimal amount at a given point in space. There will be places r
v

 in a 

given molecule where the same amount of infinitesimal change of )(rn
v

 (at the given r
v

) 

would imply a greater change of the energy, while at other places, it would imply a smaller 

change in E, going together with a higher and a lower local value of )(r
v

µ , respectively. The 

unrestricted way of considering the change of E with respect to the density may be a 

reasonable way to obtain a relevant local reactivity index, since in reality, the density change 

always goes together with a change of the external potential setting, as another molecule 

approaches the considered system. The most sensitive site of a molecule towards receiving an 

additional amount of electron (density) will be the site with the lowest value of )(r
v

µ , 

implying the biggest decrease of the energy due to an increase of the density at r
v

 by an 

infinitesimal amount. Eq.(36) can be evaluated via 

      ∫∫ ′
′

′+=′
′

′
+

∂

∂
= rd

rn

rv
rnrd

rn

rv

rv

vNE

N

vNE
r

v
v

v
vv

v

v

v
v

)(

)(
)(

)(

)(

)(

],[],[
)(

δ

δ
µ

δ

δ

δ

δ
µ  , (37a) 

or alternatively, 

       ∫∫ ′
′

′+=′
′

′
+= rd

rn

rv
rnrd

rn

rv

rv

nE

rn

nE
r vv v

v

v
vv

v

v

vv
v

)(

)(
)(

)(

)(

)(

][

)(

][
)(

δ

δ
µ

δ

δ

δ

δ

δ

δ
µ  ,  (37b) 

where Eqs.(9) and (10) have been utilized. Note that the second term of Eq.(27) integrates to 

zero when multiplied by the Fukui function. 

 However, irrespective of the concrete choice of Eq.(32), the same conceptual and 

mathematical problems arise as in the case of )(r
v

η  of Eq.(14). Most importantly, the regional 

integral 

          ∫∫ ΩΩ
≡









∂

∂
=Ω rdrfrrd

N

rn
r

v

vvvv
v

v
)()(

)(
)()( µµµ       (38) 

will not deliver a regional measure of µ . This fact can be nicely exhibited by considering the 

regional version of 
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         ∫ ′






 ′

′
=








rd

rv

rn

rn

E

rv

E

NNN

v
v

v

vv
)(

)(

)()( δ

δ

δ

δ

δ

δ
 ;     (39) 

namely, 

            ∫ΩΩ
′







 ′

′
= rd

rv

rn

rn

E
rn

NN

v
v

v

v
v

)(

)(

)(
)(

δ

δ

δ

δ
 .     (40) 

Eq.(40) gives a density component that can be viewed as the contribution of the given region 

Ω  to )(rn
v

. 

 Eq.(40) offers a possible application of Eq.(36). A natural decomposition of the 

density is the one in terms of the occupied Kohn-Sham orbitals, 

      ∑
=

=
N

i

i rrn
1

2
|)(|)(

vv
φ  .      (41) 

One may then look for regions 
iΩ  (i=1,…,N) of the given molecule that contribute 

2|)(|)( rrn ii

vv
φ=  to )(rn

v
. Of course, this may imply a highly ambiguous result; however, the 

number of possible divisions of the molecule into iΩ  can be significantly reduced by 

searching for 
iΩ ’s around the intuitively expectable regions where the single )(rni

v
’s are 

dominant. In this way, one may find a spatial division of a molecule into subshells. This is 

probably an idea that is way too bold to be taken seriously, not to mention its practical 

evaluation, but is naturally suggested by Eq.(40). To go even further, one might assume that 

by applying the regions iΩ  found in this way in Eq.(22), the corresponding )(rf
i

v
Ω ’s might 

emerge to be Nrnrf ii
∂∂=Ω )()(

vv
. 

 For any possible application of Eqs.(16) and (36), a proper method to evaluate the 

derivative of )(rv
v

 with respect to the density is necessary, as shown by Eqs.(17) and (37). To 

close this study, we describe a route to carry out this task. )(rv
v

 is given as a functional of 

)(rn
v

 by Eq.(9); namely, 

        
)(

][
][])[(

rn

nF
nnrv

′
−=′ v

v

δ

δ
µ  .      (42) 

To obtain the derivative of Eq.(42) with respect to )(rn
v

, we need to determine 
)(rn
v

δ

µδ
, which 

is just the unconstrained local hardness of Eq.(16). We cannot determine 
)(rn
v

δ

µδ
 without 

further information on ][nµ , since 
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  ∫∫ ′








′
−′+=′

′

′
+

∂

∂
= rd

rn

nF
n

rn
rfrd

rn

rv

rv

vN

Nrn

n v
vv

vv
v

v

vv
)(

][
][

)(
)(

)(

)(

)(

],[

)(

][

δ

δ
µ

δ

δ
η

δ

δ

δ

µδµ

δ

µδ
 

  ∫ ′
′

′−+= rd
rnrn

nF
rf

rn

n v
vv

v
v

)()(

][
)(

)(

][ 2

δδ

δ

δ

µδ
η  ,       (43) 

which is an identity, involving Eq.(12). However, by restricting ourselves to external 

potentials with 0)( =∞v  (which embraces all the class of real Coulombic potentials), ][nµ  

can be determined – by applying this condition as a boundary condition in Eq.(42). With this, 

           
)(

][
][

∞
=

n

nF
n

δ

δ
µ  .       (44) 

Using Eqs.(42) and (44), then, Eq.(37) becomes 

   ∫ ′
′

′−
∞

+= rd
rnrn

nF
rn

nrn

nF
Nr

v
vv

v
v

v

)()(

][
)(

)()(

][
)(

22

δδ

δ

δδ

δ
µµ  .    (45) 

Similarly, 

     
)()(

][
)(

2

∞
=

nrn

nF
r

δδ

δ
η v

v
        (46) 

arises for Eq.(16). Notice that Eq.(46) corresponds to the choice )()( ∞−′=′ rr
vv

δλ  in Eq.(15). 

Eqs.(45) and (46) probably cannot be applied with using approximations for ][nF  that 

construct ][nF  simply in a form ∫ ∇∇= rdrnrnrngnF
vvvv

...)),(),(),((][ 2 , since in this case, delta 

functions )( ∞−r
v

δ  appear as multipliers in the components of the second term of Eq.(45), 

and in Eq.(46), making them zero. As pointed out by Tozer et al. [30], a proper density 

functional ][nF  should yield an exchange-correlation potential that has a non-vanishing 

asymptotic value, which then leads to a non-vanishing second term in Eq.(45) and Eq.(46). 

 Between Eqs.(16) and (36), a link can be established in the form of 

   ∫∫ ′′′′′
′′

′
′−









∂

∂
= rdrdrf

rnrn

rv
rn

N

r
r

v

vvv
vv

v
v

v
v

)(
)()(

)(
)(

)(
)(

2

δδ

δµ
η  .    (47) 

Finally, it is worth pointing out the relationship 

 ∫∫∫∫ ′








′
′=′







 ′

′
= rdrd

rvrv

E
rrrdrd

rv

rn

rnrn
NNvv

vv
vv

vvvv
v

v

vv
)()(

)()(
)(

)(

)()( δδ

δ
ηη

δ

δ

δ

µδ

δ

µδ
η  ,   (48) 

with )(r
v

η  given by Eq.(14), which can be obtained by insertion of Eq.(21) in Eq.(20) through 

Eq.(23). 
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