arXiv:1107.4459v1 [physics.gen-ph] 22 Jul 2011

Ultra High Energy Particles

B.G. Sidharth
International Institute for Applicable Mathematics & Information Sciences
Hyderabad (India) & Udine (Italy)
B.M. Birla Science Centre, Adarsh Nagar, Hyderabad - 500 063 (India)

Abstract

We revisit considerations of temporal order in relativistic effects,
taking into account Heisenberg’s Uncertainty Principle. We then use
a formulation of relativistic Quantum Mechanical equations given by
Feshbach and Villars to exhibit novel particle antiparticle effects.

1 Introduction

In the context of the collision energies of a few T'eV being attained at the LHC
in CERN, Geneva we consider some ultra relativistic effects, particularly for
the Klein-Gordon (KG) and Dirac equations. Following Weinberg [1] let us
suppose that in one reference frame S an event at x5 is observed to occur
later than one at zy, that is, xJ > z9 with usual notation. A second observer
S’” moving with relative velocity ¥ will see the events separated by a time
difference
zy — ) = Ag(v) (2§ — af)

where A?(v) is the "boost” defined by or,

wy —x)) = y(ah — aY) + 7T (22 — x1)
and this will be negative if

v (@2 — 1) < (25 — ) (1)

We now quote from Weinberg [1]:
7 At first sight this might seem to raise the danger of a logical paradox.
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Suppose that the first observer sees a radioactive decay A — B + C' at xq,
followed at xo by absorption of particle B, for example, B+ D — E. Does
the second observer then see B absorbed at zs before it is emitted at 2,7 The
paradox disappears if we note that the speed |v| characterizing any Lorentz
transformation A(v) must be less than unity, so that () can be satisfied only
if

|22 — 1| > |y — 2| (2)
"However, this is impossible, because particle B was assumed to travel from
x1 to x93, and (2]) would require its speed to be greater than unity, that is,
than the speed of light. To put it another way, the temporal order of events
at x1 and x4 is affected by Lorentz transformations only if x1 — x5 is spacelike,
that is,

Nap (1 — T2)* (21 — 22)° > 0

whereas a particle can travel from x; to x5 only if x1 — x5 is timelike, that is,
ﬂag(l’l — LL’Q)a(LL’l — SL’Q)B <0

” Although the relativity of temporal order raises no problems for classical
physics, it plays a profound role in quantum theories. The uncertainty prin-
ciple tells us that when we specify that a particle is at position x; at time ¢4,
we cannot also define its velocity precisely. In consequence there is a certain
chance of a particle getting from x; to x5 even if x; — x5 is spacelike, that
is, |21 — @] > |2 — 23]. To be more precise, the probability of a particle
reaching x5 if it starts at x; is nonnegligible as long as

(o1 = 2) = (o} = a)? < 3)

where h is Planck’s constant (divided by 27) and m is the particle mass.
(Such space-time intervals are very small even for elementary particle masses;
for instance, if m is the mass of a proton then 7i/m = w x 107*c¢m or in
time units 6 x 10™*sec. Recall that in our units 1sec = 3 x 101%m.) We are
thus faced again with our paradox; if one observer sees a particle emitted at
z1, and absorbed at x5, and if (v — x9)? — (29 — 29)? is positive (but less
than h?/m?), then a second observer may see the particle absorbed at a5 at
a time ¢9 before the time ¢; it is emitted at z;”.

To put it another way, the temporal order of causally connected events cannot

be inverted in classical physics, but in Quantum Mechanics, the Heisenberg



Uncertainty Principle leaves a loop hole. To quote Weinberg again:

"There is only one known way out of this paradox. The second observer
must see a particle emitted at x5 and absorbed at x;. But in general the
particle seen by the second observer will then necessarily be different from
that seen by the first. For instance, if the first observer sees a proton turn
into a neutron and a positive pi-meson at x; and then sees the pi-meson and
some other neutron turn into a proton at x,, then the second observer must
see the neutron at xy turn into a proton and a particle of negative charge,
which is then absorbed by a proton at x; that turns into a neutron. Since
mass is a Lorentz invariant, the mass of the negative particle seen by the
second observer will be equal to that of the positive pi-meson seen by the
first observer. There is such a particle, called a negative pi-meson, and it
does indeed have the same mass as the positive pi-meson. This reasoning
leads us to the conclusion that for every type of charged particle there is an
oppositely charged particle of equal mass, called its antiparticle. Note that
this conclusion does not obtain in nonrelativistic quantum mechanics or in
relativistic classical mechanics; it is only in relativistic quantum mechanics
that antiparticles are a necessity. And it is the existence of antiparticles
that leads to the characteristic feature of relativistic quantum dynamics that
given enough energy we can create arbitrary numbers of particles and their
antiparticles”.

As can be seen from the above, the two observers S and S’ see two differ-
ent events, viz., one sees, in this example the protons while the other sees
neutrons. Moreover, this is a result stemming from (3]), viz.,

0 < (w1 =) = (2 —23)*(< —) (4)
The inequality (4)) points to a reversal of time instants (¢1, t5) as noted above.
However, as can be seen from (4l), this happens within the Compton wave-
length.
We now consider the KG and Dirac equations in the above context of time
"reversals”. It is well known that the KG relativistic equation displays the
phenomenon of negative energies. The problems of the KG equation can be
traced to the second time derivative. To avoid this Dirac considers a first
order equation, but here also there were negative energies and he had to fur-
ther propose his Hole Theory to circumvent this, whereas Pauli and Wieskopf
overcame the difficulties by treating the KG equation in a field theoretical
sense, where the two degrees of freedom would represent distinctly charged



particles.

2 The Feshbach Villars Formulation

Feshbach and Villars [2] interpreted the KG equation in a single particle
rather than field theoretic context. Infact they showed that this (F-V) for-
mulation also applies to the Dirac equation. To see this, we can rewrite
the K-G equation in the Schrodinger form, invoking a two component wave

function,
(¢
v=(2). 6

The K — G equation then can be written as (Cf.ref.[2] for details)
h(09/0t) = (1/2m)(h/1V — eA/c)* (¢ + x)
+(eAo + mc®) e,

(DX /0t) = —(1/2m)(1/1V — eAJe)2 (b + x) + (eAg —mcP)x  (6)

It will be seen that the components ¢ and x are coupled in ([6]). In fact we can
analyse this matter further, considering free particle solutions for simplicity.

We write,
U = < (Z)O(p) ) 62/h(p-w—Et)
Xo(p)
U = Wy(p)e " (7)

Introducing () into (@) we obtain, two possible values for the energy F, viz.,

(8)

=

E=+Ey; B, =/[(cp)’ + (mc)’]
The associated solutions are

mc?
E=E, (25(()+) e T
2(mc2Ep)2 ¢2 N2 1
(+) (p) . X(+) _ mc?—Ep 0 Xo = L,
0 ' 0 2(mc2Ep)2

FE— _FE ¢(—) _ mc2—Ep
P 0 2(mc2Epg% ¢2 . X2 — (9)
0 0o —

(=) . (—): Ep+mc
Yo (P) X W
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It can be seen from this that even if we take the positive sign for the energy
in (8), the ¢ and x components get interchanged with a sign change for the
energy. Furthermore we can easily show from this that in the non relativistic
limit, the x component is suppressed by order (p/mc)? compared to the ¢
component exactly as in the case of the Dirac equation [3]. Let us investigate
this circumstance further [4, [5].

It can be seen that ([6]) are Schrodinger equations and so solvable. However
they are coupled. We have from them,

b+ x = (eAy +mc®) (¢ + x) — 2mc*x (10)

In the case if
me® >> eAy  (or Ag = 0) (11)

that is we are dealing with energies or interactions much greater than the
electromagnetic, (or in the absence of an external field) we can easily verify
that

¢ — 62px—EtandX — ezp:c—i—Et (12>

is a solution.

That is ¢ and x belong to opposite sign of E(m # 0) (Cf. equation (9)). The
above shows that the K-G equation mixes the positive and negative energy
solutions.

If on the other hand mg ~ 0, then (I0) shows that y and ¢ are effectively
uncoupled and are of same energy. This shows that if ¢ and y both have
the same sign for E, that is there is no mixing of positive and negative
energy, then the rest mass mg vanishes. A non vanishing rest mass requires
the mixing of both signs of energy. Indeed it is a well known fact that for
solutions which are localized, both signs of the energy solutions are required
to be superposed [3|16]. This is because only positive energy solutions or only
negative energy solutions do not form a complete set.

Interestingly the same is true for localization about a time instant t,. That
is physically, only the interval (to — At,to + At) is meaningful. This was
noticed by Dirac himself when he deduced his equation of the electron [7].
Strictly speaking, the electron would have the velocity of light, if we work
with spacetime points.

In any case both the positive and negative energy solutions are required to
form a complete set and to describe a point particle at zq in the delta function
sense. The narrowest width of a wave packet containing both positive and



negative energy solutions, which describes the spacetime development of a
particle in the familiar non-relativistic sense, as is well known is described
by the Compton wavelength. As long as the energy domain is such that the
Compton wavelength is negligible then our usual classical type description is
valid. In particular, the time inversion conditions stemming from equation
[B) of Section 1 does not happen.

However as the energy approaches levels where the Compton wavelength can
no longer be neglected, then new effects involving the negative energies and
anti particles begin to appear (Cf.ref.[2]).

Further, we observe that from (I2I)

t——t=F——-E, ¢ x (13)

(Moreover in the charged case e — —e). It can be shown that the Schrodinger
equation goes over to the Klein-Gordon equation if we allow ¢ to move for-
ward and also backward in (to — At, g + At) (Cf.ref.[5]). Here we have done
the reverse of getting the Klein-Gordon equation into two Schrodinger equa-
tions. This is expressed by ().

In any case we would like to reiterate that the two degrees of freedom associ-
ated with the second time derivative can be interpreted, following Pauli and
Weisskopf as positive and negatively charged particles or particles and anti
particles.

3 Remarks and Discussion

We summarize the following:

i) From the above analysis it is clear that a localized particle requires both
signs of energy. At relatively low energies, the positive energy solutions pre-
dominate and we have the usual classical type particle behaviour. On the
other hand at very high energies it is the negative energy solutions that
predominate as for the negatively charged counterpart or the anti particles.
More quantitatively, well outside the Compton wavelength the former be-
haviour holds. But as we approach the Compton wavelength we have to deal
with the new effects.

ii) To reiterate if we consider the positive and negative energy solutions given
by £E,, as in (), then we saw that for low energies, the positive solution
¢y predominates, while the negative solution xq is ~ () compared to the
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positive solution. On the other hand at very high energies the negative solu-
tions begin to play a role and in fact the situation is reversed with ¢y being
suppressed in comparison to xo. This can be seen from ().

iii) We could now express the foregoing in the following terms: It is well
known that we get meaningful probability currents and subluminal classical
type situations using positive energy solutions alone as long as we are at
energies low enough such that we are well outside the Compton scale. As
we near the Compton scale however, we begin to encounter negative energy
solutions or these anti-particles.

From this point of view, we can mathematically dub the solutions according
to the sign of energy (po/|po|) of these states: +1 and —1. This operator
commutes with all observables and yet is not a multiple of unity as would
be required by Schur’s lemma, as it has two distinct eigen values. This is a
superselection principle or a superspin with two states and can be denoted
by the Pauli matrices. The two states would refer to the positive energy
solutions and the negative energy solutions (Cf.refs.[4] [5]).

iv) We could now think along the lines of SU(2) and consider the transfor-
mation [§]

1
9(w) = eaplagr - w(@) (). (14)
This leads to a covariant derivative
1 _
Dy =0, — 3197 Wi, (15)

as in the usual theory, remembering that w in this theory is infinitessimal.
We are thus lead to vector Bosons W), and an interaction rather like the weak
interaction. However we must bear in mind that this new interaction between
particle and anti-particle [9] would be valid only within the Compton time,
inside this Compton scale Quantum Mechanical bridge.

v) We have already seen that even given the Lorentz transformation, due to
Quantum Mechanical effects, there could be an apparent inversion of events,
though at the expense of the exact description of either observer. This has
been brought out in Section 1 in the case of the observer seeing protons and
another seeing neutrons. We now observe that in the above formulation for

the wave function
U= < ) s
X



¢ (or more correctly ¢q) represents a particle while y represents an antipar-
ticle. So, for one observer we have

\p~<g> (16)

and for another observer we can have

m~<i> (17)

that is the two observers would see respectively a particle and an antiparticle.
This would be the same for a single observer, if for example the particle’s
velocity got a boost so that (I7) rather than (I6]) would dominate after some-
time.

Interestingly, just after the Big Bang, due to the high energy, we would ex-
pect, first (I7) that is antiparticles to dominate, then as the universe rapidly
cools, particles and antiparticles would be in the same or similar number as
in the Standard Model, and finally on further cooling (I6]) that is particles
or matter would dominate.

vi) We now make two brief observations, relevant to the above considerations.
Latest results in proton-antiproton collisions at Fermi Lab have thrown up
the Bs mesons which in turn have decayed exhibiting CP violations in excess
of the predictions of the Standard Model, and moreover this seems to hint at
a new rapidly decaying particle. Furthermore, in these high energy collisions
particle to antiparticle and vice versa transformations have been detected.
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