1107.5216v1 [physics.ed-ph] 26 Jul 2011

arXiv

Implementing and assessing computational modeling in introductory mechanics

Marcos D. Caballer(ﬂ and Michael F. Schatzﬂ
Center for Nonlinear Science and School of Physics,
Georgia Institute of Technology, Atlanta, GA 30332

Matthew A. Kohlmyerﬁ
Department of Physics, North Carolina State University, Raleigh, NC 27695
(Dated: July 27, 2011)

Students taking introductory physics are rarely exposed to computational modeling. In a one-
semester large lecture introductory calculus-based mechanics course at Georgia Tech, students
learned to solve physics problems using the VPython programming environment. During the term
1357 students in this course solved a suite of fourteen computational modeling homework questions
delivered using an online commercial course management system. Their proficiency with computa-
tional modeling was evaluated in a proctored environment using a novel central force problem. The
majority of students (60.4%) successfully completed the evaluation. Analysis of erroneous student-
submitted programs indicated that a small set of student errors explained why most programs failed.
We discuss the design and implementation of the computational modeling homework and evaluation,
the results from the evaluation and the implications for instruction in computational modeling in

introductory STEM courses.

PACS numbers: 01.40.Fk, 01.40.gb

Keywords: Research in Physics Education, Curricula and evaluation, Teaching methods and strategies

I. INTRODUCTION

Computation (the use of the computer to solve numer-
ically, simulate or visualize a physical problem) has revo-
lutionized scientific research and engineering practice. In
science and engineering, computation is considered to be
as important as theory and experiment.? Systems that
cannot be solved in in closed-form are probed using com-
putation; experiments that are impossible to perform in
a lab are studied numerically.22 Yet, in sharp contrast,
most introductory courses fail to introduce students to
computation’s problem solving powers.

Using computation in introductory physics courses has
several potential benefits. Students can engage in the
modeling process to make complex problems tractable.
This use of computation can be leveraged to explore the
generality and utility of physical principles. In a way,
students are participating in work that is more repre-
sentative of what they will do as professional scientists
and engineers.# 7 When constructing simulations, stu-
dents are constrained by the programming language to
certain syntactic structures. Hence, they must learn to
contextualize problems in a way that produces a precise
representation of the physical model. 22 Arguably, one of
computation’s key strengths lies in its utility in visualiz-
ing and animating solutions to problems. These visual-
izations can improve students’ conceptual understanding
of physics 10

We have used computation in a large enrollment in-
troductory calculus-based mechanics course at the Geor-
gia Institute of Technology to develop students’ model-
ing and numerical analysis skills. We have built upon
previous attempts to introduce computation in introduc-
tory physics laboratoriest12 by extending its usage to

other aspects of students’ coursework. In particular, we
have taught students to construct models that predict the
motion of physical systems using the VPython program-
ming environment.22 We describe the design and imple-
mentation of homework problems to develop students’
computational modeling skills in a high enrollment foun-
dational physics course (Sec. [IIl). We also provide the
first evaluation and explication of students’ skills when
they attempt individually to solve a novel computational
problem in a proctored environment (Secs. [VHVII). We
discuss implications for instructional design, considera-
tions regarding student epistemology and the assessment
of knowledge transfer as well as the broader implications
of teaching computation to introductory physics students

(Sec. [VIII)).

II. APPROACHES TO IMPLEMENTING
COMPUTATION

Since the development of inexpensive modern micro-
computers with visual displays, there have been a num-
ber of attempts to introduce computation into physics
courses. We review these attempts by decomposing them
along two dimensions (size of intended population and
openness of the environment) to indicate how our ap-
proach fits with previous work.

Some have worked closely with a small number of stu-
dents to develop computational models in an open com-
putational environment. Historical examples include the
Maryland University Project in Physics and Educational
Technology, 42 STELLAS? and the Berkeley BOXER
project.®2 Open computational environments are anal-
ogous to “user-developed” codes in scientific research.
Students who learn to use an open environment have the

http://arxiv.org/abs/1107.5216v1

advantage of viewing and altering the underlying algo-
rithm on which the computational model depends. More-
over, students might learn to develop their own models
that solve new problems. It is true, however, that stu-
dents must devote time and cognitive effort to learning
the syntax and procedures of the programming language
that the open environment supports. Ideally, it is most
desirable to have students focus on developing the phys-
ical model without spending excessive time and effort on
the details of constructing a working code (e.g., message
handling, drawing graphics, garbage collection). It is,
therefore, important to consider students’ experience (or
lack thereof) with computation when choosing an open
computational environment.

Others have developed closed computational environ-
ments for use at a variety of instructional levels. These
environments have been deployed in a number of settings
ranging from a few students to large lecture sections. Ex-
amples of closed environments include Physlets'# and the
University of Colorado’s Physics Educational Technology
simulations. 1216 Closed computational environments are
analogous to “canned” codes in scientific research. Stu-
dents can set up and operate the program but do not
construct it; nor do they have access to the underlying
model or modeling algorithm (“black box” environment).
User interaction in closed computational environments is
often limited to setting or adjusting parameters. Closed
computational environments are useful because they typ-
ically require no programming knowledge to operate, run
similarly on a variety of platforms with little more than
an Internet browser and produce highly visual simula-
tions.

It is possible for computational models created in any
open environment to be used as if they were developed
for a closed one. Users can be restricted (formally or in-
formally) from viewing or altering the underlying model.
Models developed using Easy Java Simulationst? (EJS)
have been used in a closed manner at a variety scales and
instructional levels 1819 However, all the features of the
physical and computational model in an EJS simulation
are available as it is an open environment. Furthermore,
EJS has made authoring high quality simulations acces-
sible to students with some (but not much) programming
experience. Some have proposed teaching upper-divison

science majors to develop computational models using
EJS.20

VPython/2 an open computational environment, has
been used to teach introductory physics students to cre-
ate computational models of physical phenomena.tt Typ-
ically, students write all the program statements nec-
essary to model the physical system (e.g., creating ob-
jects, assigning variables and numerical calculations).
The additional details of model construction (e.g., draw-
ing graphics, creating windows, mouse interactions) are
handled by VPython and are invisible to the students.
VPython supports full three dimensional graphics and
animation without the additional burden to students of
learning object-oriented programming.2! Given its roots

in the Python programming language, VPython can be
a powerful foundation for students to start to learn the
tools of their science or engineering trade. Moreover,
VPython is an open-source, freely available environment
that is accessible to users of all major computing plat-
forms.

The Matter & Interactions (M&I) textbook22 intro-
duces computational modeling as an integral part of the
introductory physics course. Many of the accompanying
laboratory activities are written with VPython in mind
and a number of lecture demonstrations are VPython
programs. In the traditional implementation of M&I, the
practice of constructing computational models is limited
to the laboratory. In a typical lab, students work in small
groups to complete a computational activity by following
a guided handout. They pause periodically to check their
work with other groups or their teaching assistant (TA).
Students’ computational modeling skills are evaluated by
solving fill-in-the-blank test questions in which they must
write in the VPython program statements missing from
a computational model.

Our approach to teaching computation uses an open
environment (in VPython) and builds on our experience
with M&I to extend the computational experience be-
yond the laboratory. We chose to use an open environ-
ment to teach computation in order to provide students
with the opportunity to look inside the computational
“black-box” and alter or construct the model. Further-
more, we aimed to teach students how to develop solu-
tions to non-analytic problems. We chose VPython (e.g.,
instead of Java, C or Matlab) because it has a number
of helpful features for novice programmers, can be used
to construct high-quality three-dimensional simulations
easily and is freely available to our students. VPython is
also conveniently coupled to M&I allowing us to leverage
our years of experience with teaching M&I. While our
implementation builds on our M&I experience, it is not
limited to it. We describe our implementation philosophy
in the next section.

IIT. DESIGN AND IMPLEMENTATION OF
COMPUTATIONAL HOMEWORK

We aimed to develop an instructional strategy that
helps computation permeate the course but does not re-
quire that students have previous programming experi-
ence. Furthermore, this implementation had to be eas-
ily deployable across large lecture sections; the setting
in which most introductory calculus-based courses are
taught. Our philosophy was that students should learn
computation by altering their own lab-developed pro-
grams to solve slightly modified problems. This design
philosophy was informed by what research scientists do
quite often; they write a program to solve a problem and
then alter that program to solve a different problem that
is of interest to them. We envisioned developing compu-
tational activities that would start with guided inquiry

and exploration in the laboratory followed by indepen-
dent practice on homework. Students would work with
TAs in the laboratory to develop a program that solves
a problem. Students would then use that program indi-
vidually to solve a different problem on their homework
by making any modifications that were necessary.

The class of problems that becomes available to stu-
dents who have learned computation is large and diverse;
we chose to focus our efforts on teaching students to ap-
ply Newton’s second law iteratively to predict motion.
Students taking a typical introductory mechanics course
would learn several equations to predict the motion that
emphasizes kinematics, a way of describing the motion
without explicitly connecting changes in the motion to
forces (dynamics). These kinematic formulas are quite
limited; students can only apply them to problems in
which the forces are constant. This can confuse stu-
dents when they are presented with a situation where
such formulas do not apply.23 Furthermore, the special
case of constant force motion is usually the capstone of
motion prediction in an introductory mechanics course.24
By contrast, computation allows instructors to start first
and foremost with Newton’s second law and emphasize
its full predictive power. Students can numerically model
the motion of a system as long as they are able to develop
a physical model of the interactions and express it in the
computational environment. The numerical integration
technique used to predict motion is a simple algorithm.

As a concrete example of our design, we show a mid-
semester laboratory activity and homework problem in
which students modeled the gravitational interaction be-
tween two bodies. In this example, students develop a
VPython program that models the motion of a craft as it
orbits the Earth (Fig. [[I). Students later make a number
of modifications to this program to solve a new problem
on their homework. This example is useful because it
illustrates not only the level of sophistication we expect
of students but it also illustrates the types of alterations
that students are asked to make on their homework.

In groups of three, students wrote a program in the
laboratory to model the motion of low-mass craft as it
orbits the Earth (Fig[). In VPython, they created the
objects (lines 4-6), assigned the constants and initial
conditions (lines 8-10, 12-13 and 15-17) and setup the
numerical integration loop (lines 19-29). The program
statements in this loop included those that calculated
the net force (lines 21-23) and updated the momentum
(using Newton’s second law) and position of the craft
(lines 25-26). When developing their physical model,
students discussed the motion of the Earth; it experiences
the same (magnitude) force as the space craft. Students
reasoned that its change in velocity is negligible. Hence,
students did not include the motion of the Earth in their
VPython program. When writing this program in the
lab, students could seek help from TAs at any time. The
accuracy of the students’ completed code was checked by
their TAs. After completing the lab, students had writ-
ten a VPython program that modeled the motion of the

future import division

visual *

1

2

3

4 craft = sphere(pos = vector(10e7,0,0), color = color.white, radius = le6)
5 Earth = sphere(pos = vector(0,0,0), color = color.blue, radius = 6.3e6)

6 trail = curve(color = craft.color)

7

8 G = 6.67e-11

9 mcraft = 1500

10 mEarth = 5.97e24 Initial Conditions
11

12 veraft = vector (0,2400,0)

13 pcraft = mcraft*vcraft

14

15t =0

16 deltat = 60

17 tf = 365%24%60%60

18

19 t < tf:

20

21 r = craft.pos-Earth.pos

22 rhat = r/mag(r) Force Calculation
23 Fgrav = -G*mEarth*mcraft/mag(r)**2*rhat

24

25 peraft = peraft+Fgravideltat Newton's Second Law
26 craft.pos = craft.pos + pcraft/mcraft*deltat Position Update
27

28 trail.append(pos = craft.pos)

29 t = t + deltat
30

31 print 'Craft final position: ', craft.pos, 'meters.’

FIG. 1. [Color] - Under the guidance of their TAs, students
wrote the VPython program above in the laboratory. This
program modeled the motion of a craft (size exaggerated for
visualization) orbiting the Earth over the course of one “vir-
tual” year. To construct this model, students must create
the objects and assign their positions and sizes (lines 4-6),
identify and assign the other given values and relevant initial
conditions (lines 8-10, 12-13 and 15-17), calculate the net
force acting on the object of interest appropriately (lines 21—
23) and update the momentum and position of this object in
each time step (lines 25-26).

craft moving around the Earth for any arbitrary amount
of time.

In the week following the lab, students solved a compu-
tational homework problem in which they used the com-
putational model that they had written in lab to solve a
modified problem. Students were asked to alter their ini-
tial conditions to predict the position and velocity of the
craft after some integration time. To solve this problem
successfully, students had to identify and make changes
to their initial conditions (lines 4, 6, 9-10 & 12) and in-
tegration time (line 17) In addition, students had to add
an additional print statement (after line 31) to print the
final velocity of the craft.

Computational homework problems were deployed us-
ing the WebAssign course management system, which
facilitated the weekly grading of students’ solutions. To
create the homework problem, we numerically integrated
several hundred initial conditions and stored the solu-
tions, including final quantitative and qualitative results.
Each student was assigned a random set of initial condi-
tions corresponding to a particular set of results. Ran-

domization ensured that each student received a unique
realization with high probability. Students used their as-
signed initial conditions and wrote additional statements
to answer the questions posed in the problem. Stu-
dents entered numeric answers into answer blanks and
selected check-boxes to answer to qualitative questions.
On these weekly assignments, only students’ final results
were graded; their code was uploaded for verification pur-
poses, but not graded. Grading programs for structure
and syntax at this large scale requires additional work
by TAs who are already charged with a number of other
teaching and grading tasks. Computational homework
problems were generally completed in the week that fol-
lowed the associated laboratory activity.

To facilitate student success and help them learn to
debug their programs, each assignment contained a test
case — an initial problem was posed for which the solu-
tion (i.e., the results from the numerical integration) was
given. When writing or altering any computer program,
making programming errors (bugs) is possible. Learning
to debug programs is part of learning how to develop
computational models. This test case ensured that a
student’s program worked properly and helped to instill
confidence in students who might otherwise have been
uncomfortable writing VPython programs without the
help of their group members or TAs. After a student
checked her program against the test case, she completed
the grading case, a problem without a given solution.

In keeping with our overall design philosophy, most
homework problems that students solved had similar de-
signs as the aforementioned example. In particular, stu-
dents built a computational model in the laboratory and
independently used that fully functioning model to solve
a modified problem on their homework. On the first four
homework assignments, of which the previous example
is the fourth, students made few modifications to their
programs; altering their initial conditions and adding a
new print statement. In the next several labs, students
learned to model more complicated systems (e.g., three
body gravitational problem, spring dynamics with drag)
while learning new algorithms such as decomposing the
net force vectors into radial and tangential components.
Students also learned to represent these force components
as arrows in VPython. On the homework problems as-
sociated with these labs, students still used their lab-
developed programs to solve new problems by changing
initial conditions and representing new quantities with
arrows.

The last two homework problems which students
solved were not related to the laboratory; we intended
to emphasize the utility of learning to predict motion
using Newton’s second law. To solve these problems,
students wrote all the statements missing from a par-
tially completed code to predict the motion of two inter-
acting objects. These were interactions which students
had not seen before (e.g., the anharmonic potential and
Lennard-Jones interaction). In these problems, we omit-
ted the appropriate initial conditions and the statements

that numerically integrated the equations of motion. Stu-
dents had to contextualize the word problem into a pro-
gramming task and produce a precise representation of
the problem in the VPython programming environment.
With regard to programming tasks, students had to do no
more than identify and assign variables and implement
the motion prediction algorithm for these two problems.
A similarly designed problem was used as an evaluative
assignment and is discussed in detail in Sec. [Vl

IV. EVALUATING COMPUTATIONAL
MODELING SKILLS

Students experienced no greater difficulty when solving
computational modeling homework problems than they
did when solving their analytic homework. We found no
statistical difference in students’ performance on their
computational homework and their performance on ana-
lytic homework using a rank-sum test (Analytic 84.6% vs
Computational 85.8%).25 However, this result did not in-
dicate what fraction of students were able to solve these
computational homework problems without assistance.
While randomizing initial conditions between each stu-
dent’s realization ensured that students’ solutions dif-
fered with high probability, working programs could be
distributed easily from student to student by email. We
note that the distribution of students’ programs might
not, be deleterious; students who receive these programs
must still read and interpret the program statements to
enter in their initial conditions, make changes to the force
law or print additional quantities. This is a more com-
plex interaction than simply plugging numbers into a al-
gebraic solution that they discovered online. In a sense,
students who work with shared code are using a “closed”
computational environment.

Nevertheless, we wanted to measure how effective stu-
dents were at individually solving computational prob-
lems. We delivered a proctored laboratory assignment
during the last lab of three different semesters to eval-
uate students’ computational skills on an individual ba-
sis. Students received a partially completed program that
created two objects (one low-mass and one high-mass),
initialized some constants and defined the numerical in-
tegration loop structure. We aimed to evaluate students’
engagement of the modeling process by contextualizing
a physics problem into programming task. Furthermore,
certain programming skills were being assessed, namely,
students’ abilities to identify and assign variables and
implement the numerical integration algorithm. The as-
signment was delivered using WebAssign in a timed mode
(30 minutes), and TAs were not permitted to help stu-
dents debug their programs. A timed assignment opens
with a pop-up dialog box that informs the student of the
time limit. After the student acknowledges the limit (by
clicking the “OK” button) the full assignment opens with
a countdown clock in the upper corner of the browser win-
dow. When the time runs out, the answers that have been

TABLE I. As part of a final proctored lab assignment, stu-
dents completed a partially constructed program that mod-
eled the motion of an object under the influence of a cen-
tral force. The partially written program defined the objects,
some constants and the numerical integration loop structure.
Delivered initial conditions, the sign () and distance depen-
dence (r™) of the force and object names were randomized on
a per student basis. Slightly modified versions (Ver.) of this
assignment were given at the end of three different semesters.
Modifications were made to streamline delivery (Version 1 to
Version 2), minimize transcription errors and improve pre-
sentation (Version 2 to Version 3). Students’ performance
on Version 1 was likely inflated because some students were
allowed to work the problem on two separate occasions.

Ver. Correct Incorrect % Correct

1 303 168 64.3
2 201 193 51.0
3 316 176 64.2
Overall 820 537 60.4

selected or entered are automatically submitted and the
student is locked out of the assignment. The format of
the assignment was identical to students’ final two home-
work problems; students were given a test case to check
their solution before solving the grading case.

For this assignment, students modeled the motion of
the low-mass object as it interacted with the high-mass
object through a central force. The nature of the force
(attractive or repulsive) and its distance dependence ()
were randomized on a per student basis. We also random-
ized some of the variable names in the partially com-
pleted program to hinder copying. After adding and
modifying the necessary program statements, students
ran their program and reported the final location and
velocity of the low-mass object. During the assignment,
students did not receive feedback from the WebAssign
system about the correctness of their solution, but they
were given three attempts to enter their answers. Simi-
lar to students’ online homework, only the final numerical
answer was graded.

Performance varied from semester to semester (Table
M) because the assignment was modified slightly between
each semester in order to streamline delivery (Version 1 to
Version 2), reduce transcription errors and improve pre-
sentation (Version 2 to Version 3). In the first semester,
students were permitted to attempt Version 1 of the as-
signment twice due to a logistical issue with the initial
administration of the assignment. The majority of stu-
dents (64.3%) were able to model the grading case suc-
cessfully on the second administration of the assignment.
Students’ performance on Version 1 was likely inflated
because some students were able to work the problem
twice.2¢ Students solved Version 2 only once, and stu-
dent performance dropped. A number of students were
confused by the randomized exponent on the units of one
of their initial conditions (Sec. [VI). About half of the

TABLE II. Incorrectly written programs were subjected to an
analysis using a set of codes developed from common student
mistakes. The codes focused on three procedural areas: using
the correct given values (IC), implementing the force calcula-
tion (FC) and updating with the Newton’s second law (SL). We
reviewed each of the incorrectly written student programs for
each of the features listed below. These codes are explained
in detail in Appendix [Al

Using the correct given values (IC)

IC1 Used all correct given values from grading case

IC2 Used all correct given values from test case

IC3 Used the correct integration time from either the
grading case or test case

IC4 Used mixed initial conditions

IC5 Exponent confusion with & (interaction constant)

Implementing the force calculation (FC)

FC1 Force calculation was correct

FC2 Force calculation was incorrect but the calculation
procedure was evident

FC3 Attempted to raise separation vector to a power

FC4 Direction of the force was reversed

FC5 Other force direction confusion

Updating with Newton’s second law (SL)

SL1 Newton’s second law (N2) was correct

SL2 Incorrect N2 but in an update form

SL3 Incorrect N2 attempted update with scalar force

SL4 Created new variable for py

Other (O)

01 Attempted to update (force/momentum/position)
for the massive particle

02 Did not attempt the problem

students (51.0%) were able to model the grading case
successfully. Students were more successful on Version 3
of the assignment; 64.2% modeled the grading case cor-
rectly.

Overall, roughly 40% of the students were unable to
model the grading case. To determine exactly what chal-
lenges they faced while completing this assignment, we
reviewed the program of each student who failed to model
the grading case. Through a ~60% bonus on the proc-
tored assignment, we encouraged all students to upload
their programs to the WebAssign system. We limited our
review to the programs submitted for Versions 2 and 3
of the assignment.

V. SYSTEMATICALLY UNFOLDING
STUDENTS’ ERRORS

Students must to perform several tasks to successfully
write and execute the program for the proctored assign-
ment. Students must interpret the problem statement;
that is, they must contextualize a word problem into a
programming task. They must review the partially com-
pleted program and identify the variables to update. Stu-
dents need to apply their knowledge of predicting motion

using VPython to the problem. They must identify that
the force is non-constant and then write the appropriate
programming statements to calculate the vector force.
Students need to then complete the motion prediction
routine by writing a statement to update the momentum
of the low-mass object.

Using an iterative-design approach, we developed a
set of binary (affirmative/negative) codes to check which
tasks students performed correctly and which errors they
made. An initial review of students’ uploaded programs
yielded the mistakes that were made most often. These
common mistakes formed the basis for the codes. The
codes were developed empirically and several iterations
were made before they were finalized. Two raters tested
the codes by coding a single section of student submit-
ted programs (N = 45). The raters resolved their dif-
ferences which further explicated the codes and then re-
coded the section. The final codes (Table [[) were used
by both raters independently to code the remaining sec-
tions (N = 324). The final codes had high inter-rater
reliability; both raters agreed on 91% of the codes.

We classified the codes into one of three procedural
areas: using the correct given values (IC), implementing
the force calculation (FC) and updating with the New-
ton’s second law (SL). These areas were congruent with
the broad range of difficulties which students exhibited
through their erroneous programs. FEach code is ex-
plained in greater detail in Appendix [Al

Determining where students encountered difficulties
with these tasks might help explain how students learn
this algorithmic approach to use Newton’s second law to
predict motion. Because we reviewed students’ programs
after they were written, we are unable to comment di-
rectly on students’ challenges with contextualizing the
problem. Our work was limited to analyzing students’
procedural efforts (i.e., identifying variables and imple-
menting the numerical integration algorithm). However,
some information about students’ thoughts and actions
could be inferred from this analysis.

VI. FREQUENCY OF ERRORS IN STUDENTS’
PROGRAMS

We measured the frequency of students’ errors within
each category (IC, FC and MP) by mapping binary pat-
terns extracted from our coding scheme to common stu-
dent mistakes. The number of possible binary patterns
that we could observe in our data ranged from nine for
MP to seventeen for FC with 13 possible for IC. Not all
the codes within a given category are independent, hence,
the number of possible binary patterns is much less than
2™. Within a given category, we found that a large per-
centage of students could be characterized by just a few
error patterns (between four and seven).

The errors we observed were not necessarily unique
to computational problems. The most notable errors
involved calculating forces or updating the momentum.

TABLE III. Only seven of the fourteen distinct code patterns
for the IC category (Table [[I) were populated by more than
3% of the students. The patterns (ICx) are given by affirma-
tives (Y) and negatives (blank) in the code columns (IC#).
The percentage of students with each pattern is indicated by
the last column (%). These 7 patterns accounted for 88.8%
of students with erroneous programs.

Initial Condition Codes
Pattern IC1 IC2 IC3 IC4 IC5 %

ICa Y Y 27.6
ICb Y Y 16.0
ICc Y Y 14.4
ICd Y Y [13.8
ICe Y 7.9
ICf Y 5.2
ICg Y 3.8

Most of these errors appeared to be physics errors rem-
iniscent of those made on pencil and paper problems.
Many of them could have been mitigated by qualita-
tive analysis. Some errors were unique to computational
models and the iterative description of motion because
they could produce a program that ran but did not model
the system appropriately. Still others (e.g., replacing ini-
tial conditions) appeared to be simple careless mistakes,
but, when investigated, highlighted the fragility of stu-
dents’ knowledge.

A. Initial Condition Errors

Students had to identify and update a total of eight
given values: the interaction constant (k), the “interac-
tion strength” (n), the mass of the less massive particle,
the position and velocity of both particles and the in-
tegration time. Most students with incorrect programs
(88.8%) fell into one of seven IC patterns (Table [[II]).
Students in ICa (27.6%) identified and correctly replaced
all the initial conditions with those from the test case
(IC2), including the integration time (IC3). Those in
ICb (16.0%) mixed up the initial conditions (IC4), but
used the correct integration time (IC3). Students in ICc
(14.4%) identified and correctly replaced all the initial
conditions with those from the grading case (IC1), in-
cluding the integration time (IC3). Students who ap-
peared in ICd (13.8%) were confused by the exponent on
the units of the interaction constant (IC5), but used the
correct integration time (IC3). Students in ICe (7.9%)
used a variety of initial conditions and given values (IC4).
Those students in ICf (5.2%) and ICg (3.8%) used incor-
rect initial conditions (IC3) or the wrong integration time
(IC1), respectively. Most students might have simply for-
gotten to update one or more of the initial conditions
from either the default case or the test case (ICb, ICe,
ICf and ICg). A small fraction of students with mixed
initial conditions had values from all three cases.

Students in ICa were most likely stuck on the test case
because they had trouble with another aspect of the prob-
lem. These students were unable to obtain the solutions
provided in the test case and kept working on it. It is
possible a number of these students ran out of time while
trying to debug their programs.

It is difficult to say definitively if students with mixed
initial conditions (ICb and ICe) were unable to identify
the appropriate values, as we reviewed students’ pro-
grams only after they were submitted. It is possible that
these students were just careless when making changes,
but they might have been unable to identify and update
these quantities. Some students could have been in the
process of updating these quantities when they ran out
of time and uploaded their programs.

Identifying and updating variables in a program is not
a trivial task for students. In fact, their challenges with
updating variables highlights the fragility of their com-
putational knowledge. As an example, consider the stu-
dents who confused the exponent on the length unit of
the interaction constant (k) for the exponent in scien-
tific notation of £ when they defined it in their programs
(ICAd). The distance dependence of the central force was
randomized, and hence the units of the interaction con-
stant (k) were dependent on a student’s realization. In
Version 2 of the assignment, the exponent on the length
unit of k was colored red (WebAssign’s default behav-
ior for random values). A student in ICd would read
k = 0.1 Nm? to mean k£ = 100 rather than k = 0.1 New-
ton times meters cubed. In Version 3 of the assignment,
we changed the exponent’s text color to black like the
rest of the non-random text. The overall frequency of
this mistake dropped from 30.5% to 9.1%.

B. Force Calculation Errors

Students were given the magnitude of the force as an
equation (F = kr™) and told that their (attractive or
repulsive) force acted along the line that connected the
two objects. In solving this problem, students had to cor-
rectly calculate the magnitude of the central force and
identify the unit vector (#) and sign (+) for their own
realization. Almost all students (98.8%) appeared with
one of five FC patterns (Table [V]). Students in FCa
(23.9%) implemented the force calculation algorithm cor-
rectly (FC2), but reversed the direction of the net force
(FC4). Those in FCb (22.2%) performed the force cal-
culation correctly (FC1). Students in FCc (15.7%) im-
plemented the procedure correctly (FC2) but were likely
to include a force irrelevant to the problem (i.e., grav-
itational or electric interactions) or compute only the
magnitude of the net force. Students who appeared in
FCd (14.6%) attempted to raise the separation vector to
a power. Students in FCe (14.0%) showed no evidence
of an appropriate force calculation procedure; the proce-
dure was either completely incorrect (e.g., used the dif-
ferential form of the Impulse-momentum theorem) or was

TABLE IV. Only six of the nine distinct code patterns for the
FC category (Table [[I) were populated by more than 3% of
the students. The patterns (FCx) are given by affirmatives
(Y) and negatives (blank) in the code columns (FC#). The
percentage of students with each pattern is indicated by the
last column (%). These 6 patterns accounted for 98.8% of
students with erroneous programs.

Force Calculation Codes
Pattern FC1 FC2 FC3 FC4 FC5 %

FCa Y Y 23.9
FCb Y 22.2
FCc Y 15.7
FCd Y Y 14.6
FCe 14.0
FCf Y Y |84

calculated outside the numerical integration loop (i.e., a
constant force). Those students in FCf (8.4%) had an ap-
propriate force calculation procedure (FC2) but invented
a unit vector for the net force (FC5).

The difficulties that students’ faced when numerically
computing the net force could stem from a weak grasp of
the concept of vectors. Students in FCa made directional
mistakes (e.g., changing the sign of one of lines 21-23 in
Fig.) that could have been easily identified and rectified
by drawing a sketch of the situation, a problem-solving
strategy that is practiced in the laboratory. Those who
raised the separation vector to a power (FCd) likely tran-
scribed the central force equation (replacing r by) with-
out thinking that this operation was mathematically im-
possible (F ~ k(7)™ vs. F ~ k|7"#). We have found that
students attempt a similar operation on pencil and pa-
per problems; raising components of a vector to a power
(e.g., (M"™ = (ry,ry,r7)). However, in the pencil and
paper case, students are not immediately directed to
their mistake as they are in a programming environment.
VPython raised an exception error when this operation
was attempted. These students appeared to be unable
to parse this error into any useful information. Students
who make this type of error might be helped by addi-
tional exposure to translating force equations to precise
programmatic representations.? Some students invented
a unit vector (FCf) for the net force. This was most likely
because they had computed a scalar force and tried to
add a scalar impulse to the vector momentum. VPython
raised a different exception error if an attempt to add a
scalar to a vector was made. These students were able
to parse this error, but resolved it incorrectly.

Other students (FCc) might have incorrectly contex-
tualized the problem by including an irrelevant force
(i.e., gravitational or electric interactions). The prob-
lem clearly stated that the two objects were far from all
other objects. It did not explicitly state to neglect the
gravitational interaction between the objects. However,
the gravitational interaction could be safely neglected for
the range of masses and distances we had chosen. Fur-

thermore, nothing about the charge of the objects was
mentioned in the problem statement. It is surprising
that students included these interactions in their mod-
els. One possible explanation for the inclusion of these
interactions is that students had memorized how to solve
the gravitational and Coulomb problems because these
problems had appeared on their homework several times
and on an exam. They might have panicked and simply
wrote all possible forces they could remember.

A number of students (FCe) did not employ the force
calculation algorithm at all. Some of these students com-
puted the net force (e.g., lines 21-23 in Fig. [l) outside
the numerical integration loop (e.g., before line 19 in Fig.
). In this case, the net force was effectively constant and
therefore only correct at ¢t =0 . A program with correct
syntax will run regardless of the physical implications.
This error is unique to computational problems in which
motion is predicted iteratively. Students in introductory
physics rarely use Newton’s second law to predict motion
due to non-constant forces. Other students who fell into
FCe wrote “creative” program statements. Students in
this group manipulated some quantities in the loop but
did not perform any physically relevant calculations. The
number of students with “creative” program statements
was relatively small.

C. Newton’s Second Law Errors

Students had to write a program statement similar to
line 25 in Fig. [to properly update the momentum us-
ing Newton’s second law. Most students demonstrated
no difficulty in remembering the formula for the momen-
tum update but some met challenges with making that
description precise.? Nearly all students (95.7%) fell into
one of four SL patterns (Table [V]). Most students ap-
peared in SLa (69.7%) because they wrote the momen-
tum update correctly (SL1). A much smaller number of
students fell into SLb (13.2%) and attempted to update
the vector momentum with a scalar force. Students in
SLc (7.9%) were unable to write Newton’s second law
in any form that updated (all codes negative). A small
fraction (SLd, 4.9%) wrote Newton’s second law in an
iterative form, but did so incorrectly (SL2).

Students who attempted to update the momentum
with a scalar force (SLb) might still face difficulties with
understanding vectors. The momentum update is pre-
sented as a vector equation (py = p; + FAt). These
students might be unable to unpack that representa-
tion into a precise programmatic description, but it was
more likely that they calculated a scalar force (FCc) and
then simply wrote the correct (vector) second law syntax.
VPython raised an exception error if an attempt to add
a vector to a scalar was made. The students appeared
unable to parse this error into any useful information.

Students who were unable to write Newton’s second
law in any form that updated (SLc) might have expe-
rienced difficulties with converting the second law for-

TABLE V. Only four of the nine distinct code patterns for
the SL category (Table [[)) were populated by more than 3%
of the students. The patterns (SLx) are given by affirmatives
(Y) and negatives (blank) in the code columns (SL#). The
percentage of students with each pattern is indicated by the
last column (%). These 4 patterns accounted for 95.7% of
students with erroneous programs.

Second Law Codes
Pattern SL1 SL2 SL3 SL4 %

SLa Y 69.7
SLb Y Y 13.2
SLc 7.9
SLd Y 4.9

mula into a precise and useful programmatic represen-
tation. Students in this category either wrote Newton’s
second law in a non-update form (e.g. writing deltap =
Fnetxdeltat or pf - pi = Fnet*deltat as line 25 in
Fig. [d) or wrote a number of program statements that
manipulated quantities but performed no useful calcula-
tions. In either case, these students could benefit from
the precision required by a programming language.? By
forcing them to accurately represent Newton’s second law
in their programs, they might begin to distinguish be-
tween the utility and applicability of its various algebraic
forms.

Students who wrote Newton’s second law in form that
updated incorrectly (SLd) either remembered the for-
mula for the second law incorrectly or made a typo.
These students would generally leave off the time step
in the momentum update (e.g., p = p + F) or divide by
it (p = p + F/deltat). Dividing by the time step is
a particularly egregious error because the it was quite
small. Hence, the impulse added in this case would be
large. Students who made this error were unable to as-
sess the state of the visualization (the particle flew off to
“infinity”) to debug this error.

VII. COMMON ERROR PATTERNS IN
STUDENTS’ PROGRAMS

The patterns within individual categories (IC, FC and
SL) indicated the frequency of common mistakes students
made when solving the proctored assignment, but a single
student could make one or more of these mistakes. Eval-
uating a student’s complete solution requires an analysis
using all the codes (Table [[I). In principle, the codes we
developed could have up to ~ 4300 possible error pat-
terns using all sixteen codes. In fact, the intersections of
code categories indicated that the number of distinct er-
rors made by students across all categories was relatively
small; we found only 111 distinct binary patterns. It is
possible to relate these unique patterns in a manner that
suggests dominant common errors.

Cluster analysis, a technique borrowed from data min-

ing, is particularly well suited for this application because
it characterizes patterns in complex data sets.27:28 This
technique has been used previously to classify students’
responses to questions about acceleration and velocity in
two dimensions.2? It was used here to determine the ma-
jor features in students’ incorrect programs which were
responsible for their failure.

We applied the cluster analysis technique to the data
generated from our set of binary codes. We used
the Jaccard metric3? to measure inter-cluster distances
and linked clusters using their average separation.3! We
tested several other metrics (e.g., Hamming, city block,
etc.). The Jaccard metric was chosen because it ne-
glects negative code pairs. Both the Hamming and city
block metrics produced similar pairings at low levels, but
higher order clusters were difficult to interpret. We used
average linkage to avoid the effects of “chaining” that ap-
peared when nearest3? and because useful clusters were
more difficult to distinguish when farthest33 neighbor
linkage was used.

Thirty clusters with inter-cluster distances below 0.5
were reviewed in detail. This cutoff was selected to min-
imize the number of unique clusters while still render-
ing clusters with useful interpretations. Most students
(86.5%) appeared in seven of the thirty clusters (Table
[VI). These clusters had very few students (<1%) with
affirmatives in the “Other” category. Codes O1 and O2
were dropped from Table [VI] for this reason. Each of
the other 23 clusters were populated by less than 3%
(N =~ 10) of the students, and the bottom 18 clusters
had less than 1% (N =~ 3) each. Each of the dominant
clusters demonstrated a unique challenge that students
faced while solving the proctored assignment (Table [V).

Students in cluster A (23.8%) tended to remain stuck
on the test case (ICa) due to an error in their force cal-
culation. Reversing the direction of the force (FCa) was
the most common mistake, followed by raising the sep-
aration vector to a power (FCd). Most students in this
cluster had no trouble expressing Newton’s second law
(SLa). These students worked diligently to solve the test
case but were unable to do so. As a result, they did not
proceed to the grading case.

Cluster B (19.8%) contained students who made mis-
takes while replacing the given values and initial condi-
tions (any IC code except ICa). Some of these students
worked with the grading case (ICc and ICg). Others
might have been working with either case and had mixed
conditions (ICb and ICe) or simply incorrect ones (ICf).
Still others might have incorrectly assigned the exponent
on the units of k to the value of k£ (ICd). At any rate,
most students in this cluster were able to construct a
working albeit incorrect program. Given their unfamil-
iarity with general central force interactions, these stu-
dents might have believed their solutions were correct. In
fact, it is possible that students who were working with
the grading case (ICc and ICg) had solved the test case
correctly and simply made a typo.

Students in cluster C worked with either the grading or

test case and might have made a number of mistakes with
their initial conditions (any IC code except ICa). The
dominate error in cluster C were students who computed
the magnitude of the net force (FCc) and attempted
to update the vector momentum with this scalar force
(SLb). This mathematically impossible operation would
have raised a VPython error. Students in this cluster
were unable to parse this error into any useful informa-
tion.

Cluster D (10.8%), like cluster A, was populated by
students who tended to make errors in the force calcula-
tion (FCa and FCd), but students in Cluster D worked
with the grading case (ICc). The most common er-
ror in Cluster D was reversing the direction of the net
force (FCa) followed by raising the separation vector to
a power (FCd). Again, like cluster A, most students
met no challenges when updating the momentum using
Newton’s second law (SLb). These students might have
started working with the test case, but we think it is
more likely that they jumped right into working with the
grading case because the dominant error appears in their
force calculations.

Students in cluster E (7.6%) tended to raise the sep-
aration vector to a power (FCd) and have mixed ini-
tial conditions (ICbh, ICd, ICe and ICf). These students
generally had no difficulty with writing Newton’s second
law correctly (SLa). The dominant error for students in
cluster E was raising the separation vector to a power
(FCd). This mathematically impossible operation would
have raised a VPython error. Students in this cluster
were unable to parse this error into any useful informa-
tion.

Cluster F (7.1%) contained students who worked solely
with the test case (ICa) and either had no issue with their
force calculation (FCb) or had no evident force calcula-
tion procedure (FCe). Most of these students had no dif-
ficulty updating the momentum using Newton’s second
law (SLa). Students in cluster F were able to construct a
program which ran without raising any VPython errors.
Students who had no issue with their solution likely com-
pleted test case but simply ran out of time before turning
to the grading case. Students with no evident procedure
generally computed the net force outside the numerical
calculation loop, essentially making this force constant in
time. Given students’ unfamiliarity with general central
force interactions, it would not be surprising if students
who treated the central force outside the loop believed
their solutions were correct.

Students in cluster G (4.1%) all invented an incorrect
unit vector for the force rather than using # (FCf) re-
gardless of the case with which they worked (ICc, ICb
and ICf). These students generally had no difficulty up-
dating the momentum using Newton’s second law (SLa).
Most likely, these students computed the magnitude of
the force, similar to students in cluster C, but were able
to parse the resulting VPython error. Students in cluster
G corrected their mistake by assigning some unit vector
to the force before the momentum was updated.

10

TABLE VI. Only seven of the thirty clusters with an inter-cluster distance of less than 0.3 were populated by more than 3%
of the students. The bottom 18 clusters were populated by less than 1% of students each. These seven clusters accounted for
86.5% of students. The percentage of affirmatives for each code (Table[[l]) within any given cluster (A-G) is given to the nearest
whole percentage. Codes with affirmative percentages greater than 60% are bolded. These clusters had very few students
(< 1%) with any affirmatives in the ‘Other” category, hence the results from this category are not reported. The percentage of

students in each cluster is indicated in the last column (%).

Initial Conditions

Force Calculation

Second Law

Cluster IC1 IC2 IC3 IC4 IC5 FC1 FC2 FC3 FC4 FC5 SL1 SL2 SL3 SL4 %

VIII. CLOSING REMARKS

Students can develop the skills necessary to predict
the motion of sundry dynamical systems in large intro-
ductory physics courses. After a solving a suite of com-
putational homework problems, most students (~ 60%)
were able to model the motion of a novel problem suc-
cessfully. In our work, we discovered that most students
who were unsuccessful encountered challenges when cal-
culating the net force acting on the object in the motion
prediction algorithm (Clusters A and C through G in
Table [VI)). By contrast, there were fewer students whose
primary challenge was identifying and assigning variables
(Cluster B in Table [VI)). We acknowledge that we have
limited the development of our students’ computational
skill set to contextualizing a word problem into a pro-
gramming task, identifying and updating input variables
and applying a motion prediction algorithm. We believe
that further development of our homework problems and
other novel deployments could broaden the scope of the
skills students develop.

Procedural errors such as those we have documented
(Secs. [V & [VII) could be corrected through addi-
tional materials aimed at addressing each error in turn.
However, the results from this work indicate that in-
structional efforts should be focused not only on cor-
recting procedural mistakes but also on developing stu-
dents’ qualitative habits of mind. Training students to
write programs to predict motion might help them to be
successful in a highly structured environment, but they
would be better served by learning the practice of de-
bugging. Here, debugging includes identifying syntax
errors, of which we found few, and, more importantly,
performing the type of qualitative analysis that is typi-
cally taught for solving analytic problems. Students who
could synthesize their analytic and computational skills
would be better prepared to solve the open-ended prob-
lems they will face in their future work.

Developing the materials to teach these skills requires

A 00 68 93 18 15| 00 100 22 66 09 | 95 00 00 O1 [23.8
B 21 01 8 37 41 |8 00 00 00 00|97 00 00 00 |19.8
C 04 33 76 31 22|00 94 00 08 00 |00 98 98 08 [13.3
D 98 (00 85 00 00| 0O 8 18 50 00 |98 00 00 00 |10.8
E 00 00 57 75 36| 00 100 79 00 04 |8 00 00 00 |7.6
F 00 100 96 00 00| 65 00 OO0 OO0 OO0 |73 19 00 04 |7.1
G 27 00 93 53 07| 00 100 00O O7 100|93 00 00 00 |4.1

an evaluation of how students contextualize computa-
tional problems. We do not claim to understand this
presently, although we have been able to glean some sug-
gestive information based on students’ errors. Investi-
gating what students think about when solving compu-
tational problems requires structured student interviews
(i.e., a think-aloud study). In the future, we plan to
perform such a study to not only characterize students’
abilities to contextualize but also to elucidate the mech-
anism for some of the errors we reported in Secs. [VI] &
VI

Research into skill development in math and sci-
ence has shown a strong correlations with student
epistemology.2432 Epistemology is important because
the views that students hold affect how they learn3¢
and, utimately, how successful they are in their sci-
ence courses.3738 It is therefore crucial that we under-
stand students’ sentiments about learning a new tool such
as computation. Our students expressed anxiety and
demonstrated a lack of self confidence, even with their
additional exposure to computational problems. We are
developing an attitudinal survey aimed at exploring these
and other beliefs in detail. Students who learn to use
computational modeling and are confident in their abili-
ties will be better prepared to solve challenging problems.

We have not claimed to have assessed a transfer of
computational knowledge. We designed a set of prob-
lems (Sec. [[)) that students solved over the course of
the semester with an eye towards a final assessment of
their skills using a novel problem. This problem (Sec.
V) was similar to some of the homework problems stu-
dents had solved previously. It focused on key skills that
we desired students to acquire: contextualizing a prob-
lem, identifying and assigning variables in a program and
carrying out the motion prediction algorithm. An evalu-
ation of transfer would require that students apply these
computational skills to a different domain (e.g., electro-
magnetism) or a different task (e.g., open-ended inquiry).
Demonstrating transfer of computational knowledge is a
necessary step in developing students into flexible prob-

lem solvers for the 21st century.

It is the goal of many reforms in physics education to
develop students into flexible problem solvers while ex-
ploring the practice of science. Teaching computational
modeling alongside physics provides support for that ef-
fort. Students learn the tools for doing science while
developing a qualitative understanding of physical sys-
tems, exploring the generality of physics principles and
learning broadly applicable problem solving methods in
computation.

ACKNOWLEDGMENTS

We would like to thank Edwin Greco for his help with
the deployment of our computational problems and Bal-
achandra Suri for his help in analyzing some of the stu-
dent written code. This work was supported by National

Science Foundation’s Division of Undergraduate Educa-
tion (DUE0618519 and DUE0942076).

Appendix A: More details on the evaluation codes

The codes shown in Table [[Il were developed empir-
ically. The procedure followed an iterative-design ap-
proach. We reviewed student work for common errors
and devised a rough coding scheme. We then tested the
scheme on a new set of student submitted programs. The
scheme was refined and re-tested. This iterative proce-
dure was repeated several times until we captured the
majority of students’ mistakes. Each code is explained
in detail below.

1. Using the correct given values (IC) Codes

We reviewed the variables in each student’s program.
The default values had to be updated with the values
given in the problem statement in the partially completed
program. We present the codes used to categorize each
student’s program with respect to identifying and updat-
ing the appropriate initial conditions for their realization.

IC1 — Student used all the correct given wvalues from
grading case. A student must replace the values of
all the variables (mass, position, and velocity, interac-
tion constant k and the exponent in the force law n in
F = kr™) with those given in the grading case. This code
excluded the integration time. It was intended that the
larger mass object was to remain at its location. This
was made explicit in the problem statement; the initial
position (5,4, 0) m and velocity (0,0,0) m/s of the larger
mass of object were given in the problem statement, even
though these same values appeared in the partially writ-
ten program.

I1C2 — Student used all the correct given values from
test case. A student must replace the values of all the

11

variables (mass, position, and velocity, interaction con-
stant k and the exponent in the force law n in F = kr™)
with those given in the test case. This code excluded the
integration time. It was intended that the larger mass
object was to remain at its location (See IC1).

IC3 — Student used the correct integration time from
either the grading case or test case. A student must re-
place the default integration time (1 s) with the values
given in the case with which they intended to work (grad-
ing or test). A student who mixed initial conditions was
given an affirmative on this code if the majority of their
initial conditions were from the same case as the integra-
tion time.

1C} — Student used mized initial conditions. A stu-
dent who used some but not all of the initial conditions
from any of the cases (default, test, or grading) was given
an affirmative on this code. This code excluded the inte-
gration time.

IC5 — Students confused the exponents on the units
the exponent of k (interaction constant). Many students
incorrectly thought the exponent on the length unit of the
interaction constant was the scientific notation exponent
for the interaction constant itself. For example, a student
thought £ = 0.1 Nm? meant k& = 100 rather than k = 0.1
Newton times meters cubed.

2. Implementing the force calculation (FC) Codes

We reviewed how the students employed the force cal-
culation algorithm in each of the programs written for
the proctored assignment. The partially written program
given to the students left out all statements related to the
force calculation. Students were required to fill in this
procedure using the appropriate VPython syntax. We
present the codes used to categorize each student’s pro-
gram with respect to computing the vector force acting
on the low-mass object.

FC1 ~The force calculation was correct. A student
must compute the separation vector, its magnitude, its
unit vector, the magnitude of the force and the vector
force correctly. Each of these steps may be combined as
long as the final result computes the vector force acting
on the less massive particle at each instant. These steps
must all appear in the numerical integration loop.

FC2 — The force calculation was incorrect, but the cal-
culation procedure was evident. In the numerical inte-
gration loop, the student must perform a position vec-
tor subtraction, a calculation of the force magnitude and
some attempt at combining magnitude with unit vector
(any unit vector was acceptable). If a student treated the
problem using components and had some force which is
a vector, it was coded as evident. If any part of the cal-
culation was performed outside the loop, it was coded as
not evident.

FC38 — The student attempted to raise the separation
vector (T) to a power. Students who raised the separa-
tion vector to a power generated a VPython exception

error:
unsupported operand type(s) for ** or pow():
’vector’ and ’int’.

This error told them that VPython cannot raise a
vector to a power, as it is a mathematically impossible
operation.

FC4 — The direction of the force was reversed. Stu-
dents had to assign the correct unit vector and sign to
the force depending on whether their force was attrac-
tive or repulsive. This code was not used if the student
calculated the force as a magnitude only, raised 7 to a
power, or invented a unit vector (e.g., (1,0,0)). Visual
feedback (i.e., the lower mass particle flying off to infin-
ity) indicated a simple sign mistake.

FC5 — Student had some other force direction confu-
sion. Some students used vectors other than 7 or —7
to compute F. Other students computed the force as a
magnitude and then multiplied it by an “invented” unit
vector (e.g., (1,0,0), p). Both of these errors were given
an affirmative for this code.

3. Updating with the Newton’s second law (SL)
Codes

We reviewed how the students employed the momen-
tum update in each of the programs written for the proc-
tored assignment. The partially written program given
to the students left out the one line of code necessary
to update the momentum. Students were required to
fill in this line using the appropriate VPython syntax.
We present the codes used to categorize each student’s
program with respect to updating the momentum of the
low-mass particle.

SL1 - Newton’s second law was correct. Correct New-
ton’s second law meant that it was “correct as a physics
principle” and also that it appeared “in the update form”.
This meant that pfinal = pinitial + Fnet*deltat
alone in a loop did not fall under “correct Newton’s sec-
ond law”. It is an incorrect update form.

12

SL2 — Newton’s second law was incorrect but in form
that updates. Newton’s second law updates the momen-
tum, but not necessarily correctly. (e.g., p = p + Fnet,
p = p + Fnet/dt,pf = p + Fnet, etc.)

SL3 — Newton’s second law was incorrect and the
student attempted to update it with a scalar force.
Some students computed the magnitude of the force
acting on the particle and then used this magnitude to
update the momentum. Students who did this raised a
VPython exception error:
unsupported operand type(s) for +:
and ’int’

This might have lead some to

’vector’

invent unit vec-

tors in the momentum update (e.g., p =7p +
vector (Fmag,0,0)*dt).
SL4 — Student created a new variable for pr. In com-

putational modeling, the equal sign in a update line
means “add and replace”. Some students used a new
symbol for the final momentum (e.g. pfinal) and then
replaced the momentum in the next step (e.g. p =
pfinal). Others only did the former, that is, they did
not replace the momentum with its updated value.

4. Other Codes

Two common errors were not included in the above
codes because they do not reflect errors in the proce-
dure of modeling the motion of the low-mass particle.
We present two miscellaneous codes which were common
enough to consider relevant.

01 — Student attempted to update force, momentum or
position for the massive particle. The massive particle
was intended to remain in place.

02 — Student did not attempt the problem. Some stu-
dents uploaded plain text files to the receive bonus credit
for uploading their code. We assumed they did not at-
tempt solving the problem.

Current Address: Department of Physics, University of
Colorado at Boulder, Boulder, CO 80309
Corresponding Author: michael.schatz@physics.gatech.edu
Current Address: Advanced Instructional Systems, Inc.,
Raleigh, NC 27696
' K. Jordan and C. Woodward, Siam state-
ment on compulational science and engineering.,
http://www.siam.org/students/resources/report.phpl
2 F. Fenton, E. Cherry, A. Karma, and W. Rappel, Model-
ing wave propagation in realistic heart geometries using the
phase-field method, Chaos: An Interdisciplinary Journal of
Nonlinear Science 15, 013502 (2005).
J. Gonzélez, U. Sperhake, and B. Briigmann, Black-hole
binary simulations: The mass ratio 10 1, Physical Review
D 79, 124006 (2009).

=

4 W. MacDonald, E. Redish, and J. Wilson, The MUPPET
manifesto, Computers in Physics 2, 23 (1988), ISSN 0894-
1866.

E. Redish and J. Wilson, Student programming in the in-
troductory physics course: MUPPET, American Journal of
Physics 61, 222 (1993).

H. Schecker, Learning physics by making models, Physics
Education 28, 102 (1993).

" H. Schecker, in Proceedings of the 1994 International
System Dynamics Conference (System Dynamics Society,
1994), pp. 74-84.

A. DiSessa and H. Abelson, Bozxer: a reconstructible com-
putational medium, Communications of the ACM 29, 859
(1986), ISSN 0001-0782.

B. Sherin, A. diSessa, and D. Hammer, Dynaturtle revis-
ited: Learning physics through collaborative design of a

ot

mailto:michael.schatz@physics.gatech.edu
http://www.siam.org/students/resources/report.php

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

computer model, Interactive Learning Environments 3, 91
(1993), ISSN 1049-4820.

N. Finkelstein, W. Adams, C. Keller, K. Perkins, and
C. Wieman, High-tech tools for teaching physics: The
physics education technology project, Journal of Online
Teaching and Learning (2006).

R. Chabay and B. Sherwood, Computational physics in
the introductory calculus based course, American Journal
of Physics 76(4&5), 307 (2008).

R. Beichner, R. Chabay, and B. Sherwood, Labs for the
Matter € Interactions curriculum, American Journal of
Physics 78, 456 (2010).

B. A. Sherwood and R. Chabay, Vpython — 8d program-
ming for ordinary mortals, http://www.vpython.org/
(2011).

W. Christian and A. Titus, Developing web-based curricula
using java physlets, Computers in Physics 12, 227 (1998).
K. Perkins, W. Adams, M. Dubson, N. Finkelstein, S. Reid,
C. Wieman, and R. LeMaster, PhET: Interactive sim-
ulations for teaching and learning physics, The Physics
Teacher 44, 18 (2006).

C. Wieman and K. Perkins, A powerful tool for teaching
science, Nature physics 2, 290 (2006).

F. Esquembre, Fasy java simulations: A software tool to
create scientific simulations in java, Computer Physics
Communications 156, 199 (2004).

W. Christian and F. Esquembre, Modeling Physics with
Easy Java Simulations, The Physics Teacher 45, 475
(2007).

M. Belloni and W. Christian (Presented at the 2007 AAPT
Topical Conference: Computational Physics for Upper-
Level Physics Programs, Davidson, NC, 2007).

F. Esquembre (Presented at the 2007 AAPT Topical Con-
ference: Computational Physics for Upper-Level Physics
Programs, Davidson, NC, 2007).

D. Scherer, P. Dubois, and B. Sherwood, Vpython: 3d in-
teractive scientific graphics for students, Computing in Sci-
ence & Engineering 2, 56 (2000).

R. Chabay and B. Sherwood, Matter and Interactions I:
Modern Mechanics (John Wiley and Sons, Inc., 2010), 3rd
ed.

M. Kohlmyer, Ph.D. thesis, Carnegie Mellon University
(2005).

We acknowledge that some courses might teach students to
solve the problem of an falling object subjected to linear

25

26

27

28

29

30

31

32

33

34

35

36

37

38

13

(F ~ v) air drag in one dimension analytically, but this
hardly demonstrates the full predictive power of Newton’s
second law.

W. Conover, Practical Nonparametric Statistics (John Wi-
ley and Sons, 1999).

The first administration of this assignment was during a
regular hour exam. Roughly, 40% of the students modeled
the motion correctly. However, students used their own lap-
top computers which created several logistical challenges.
P. Tan, M. Steinbach, and V. Kumar, Introduction to data
mining (Pearson Addison Wesley Boston, 2006).

B. Everitt, S. Landau, and L. M., Cluster Analysis (Oxford
University Press Inc., New York, NY, 2001).

R. Springuel, M. Wittmann, and J. Thompson, Apply-
ing clustering to statistical analysis of student reasoming
about two-dimensional kinematics, Physical Review Spe-
cial Topics-Physics Education Research 3, 20107 (2007).
P. Jaccard, Study of comparative distribution of flower in
the porition of alpes and jura, Bulletin of Society of Natural
Sciences Vaudoise 37, 241 (1901).

R. Sokal and C. Michener, A statistical method for evaluat-
ing systematic relationships, Multivariate statistical meth-
ods, among-groups covariation p. 269 (1975).

P. Sneath, The application of computers to taxonomy, Mi-
crobiology 17, 201 (1957).

T. Sorenson, A method of establishing groups of equal am-
plitude in plant sociology based on similarity of species
content, Kongelige Danske Videnskabernes Selskab 5, 1
(1948).

M. Schommer, Effects of beliefs about the nature of knowl-
edge on comprehension., Journal of Educational Psychol-
ogy 82, 498 (1990).

M. Schommer, Epistemological development and academic
performance among secondary students., Journal of Edu-
cational psychology 85, 406 (1993).

A. Elby, Helping physics students learn how to learn, Amer-
ican Journal of Physics 69, S54 (2001).

I. Halloun, in International Conference on Undergraduate
Physics Education. AIP Conference Proceedings (Ameri-
can Institute of Physics, 1997), vol. 399, p. 605.

K. Perkins, W. Adams, S. Pollock, N. Finkelstein, and
C. Wieman, in 2004 Physics Education Research Confer-
ence. AIP Conference Proceedings (American Institute of
Physics, 2005), vol. 790, p. 61.

http://www.vpython.org/

