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Abstract

The mathematical notion of a spectral singularity admits a physical interpretation as a

zero-width resonance. It finds an optical realization as a certain type of lasing effect that

occurs at the threshold gain. We explore spectral singularities of a complex spherical barrier

potential and study their realization as transverse spherical electromagnetic waves emitted by

a gain medium with a spherical geometry. In particular, for a typical dye laser material, we

obtain a lower bound on the size of the gain medium for the occurence of this kind of spectral

singularities.
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An interesting by-product of the recent study of complex potentials supporting a real spectrum

[1, 2] is the discovery of the optical realizations [3, 4, 5, 6] of the mathematical notion of a spectral

singularity [7]. For a complex scattering potential defined on the real line, these are certain points

of the continuous spectrum of the corresponding non-Hermitian Schrödinger operator at which the

reflection and transmission coefficients diverge [3]. As a result, they correspond to scattering states

that behave exactly like resonances. This observation has also found applications in condensed

matter systems [8] and triggered further study of the subject [9].

The study of the optical realizations and applications of spectral singularities has so far been

confined to effectively one-dimensional models involving infinitely long waveguides [3, 4] or infinite

planar slab gain media [5, 6]. In the present article we examine spectral singularities of a three-

dimensional complex spherical barrier potential that admits a physical realization involving an

optical gain medium with a spherical geometry.
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Consider the propagation of electromagnetic (EM) fields in a linear source-free isotropic dielec-

tric with time-independent (complex) permittivity ε = ε(~r) and constant permeability µ = µ0. The

electric and magnetic fields, ~E and ~B, satisfy Maxwell’s equations

~∇ · ~D = 0, ~∇ · ~B = 0, (1)

~∇× ~E + ~̇B = 0, ~∇× ~H − ~̇D = 0, (2)

where ~D := ε(~r) ~E, ~H := µ0
~B, and a dot represents the time-derivative. Following the standard

derivation of the wave equation, we can use (2) to obtain

~̈E + Ω2 ~E = 0 (3)

where Ω2 := [µ0ε(~r)]
−1~∇× ~∇.

For a time-harmonic EM field propagating in a spherically symmetric dielectric we have ~E(~r, t) =

e−iωt ~E(~r, t) and ε(~r) = ε0z(r), where r is the radial spherical coordinate and

z : [0,∞) → C is a complex-valued function. In this case (3) reduces to the time-independent

Schrödinger equation:

−∇2 ~E(~r) + ϑ(r) ~E(~r) = k2 ~E(~r), (4)

where k := w/c and ϑ(r) := k2[1−z(r)]. The latter is a spherical complex barrier potential provided

that the dielectric medium is confined in a spherical region. This is the case for

z(r) =

{

n
2 for r < a,

1 for r ≥ a,
ϑ(r) =

{

k2(1− n
2) for r < a,

0 for r ≥ a,
(5)

where n is the complex refractive index of the dielectric medium that is supposed to be constant.

Consider spherically symmetric solutions of (4) that define transverse radially propagating

spherical waves. They have the general form ~E(~r) = Eθ(r)θ̂ + Eφ(r)φ̂, where θ̂ and φ̂ are the

unit vectors along the θ- and φ-directions. Inserting this ansatz in (4) we find that either θ = π/2

or Eθ = 0. In what follows we consider the latter case, so that ~E(~r) = Eφ(r)φ̂, and (4) reduces to
[

d2

dr2
+

2

r

d

dr
+ k2 − ϑ(r)− 1

r2

]

Eφ = 0. (6)

For r < a and r ≥ a where ϑ takes constant values, we can transform (6) to the Bessel equation

of order ν :=
√
5/2, [10]. The electric field inside and outside the dielectric region are respectively

given by

~Eoutside = [A1h
(1)
ν (kr) + A2h

(2)
ν (kr)]φ̂, (7)

~Einside = [B1jν(k̃r) +B2nν(k̃r)]φ̂, (8)

where the coefficients A1,2 and B1,2 are related via the appropriate boundary conditions at r = a,

jν and h
(1,2)
ν are respectively the spherical Bessel and Hankel functions, and k̃ := n k. Demanding

the electric field to disappear at the origin, we have B2 = 0 and

~Einside = B1jν(k̃r) φ̂. (9)

2



In view of the asymptotic expression for the Hankel functions, namely

h(1)
ν (Z) =

eiZ

Z

[

−ie
−iπν

2 +O(Z−1)
]

, h(2)
ν (Z) =

e−iZ

Z

[

ie
iπν

2 +O(Z−1)
]

,

the terms on the right-hand side of (7) correspond to the reflected and incident spherical waves,

respectively. As a result, we identify R := |A1/A2|2 with the reflection coefficient of the system

whose real and positive poles in the k2-plane are the spectral singularities. In order to determine

these poles, we need to derive the relationship between the coefficients A1,2 and B1. First, we use

(2) to compute the magnetic field:

~Boutside =
i

ω

[

A1

{

h
(1)
ν (kr)

r
+

dh
(1)
ν (kr)

dr

}

+ A2

{

h
(2)
ν (kr)

r
+

dh
(2)
ν (kr)

dr

}]

θ̂, (10)

~Binside =
iB1

ω

[

jν(k̃r)

r
+

djν(k̃r)

dr

]

θ̂. (11)

Imposing the standard boundary conditions: ( ~E‖)inside = ( ~E‖)outside, ( ~H‖)inside = ( ~H‖)outside and

noting that ~H = µ0
~B, we have

B1jν(k̃a) = A1h
(1)
ν (ka) + A2h

(2)
ν (ka), (12)

B1

[

jν(k̃a)

a
+

djν(k̃r)

dr

∣

∣

∣

r=a

]

= A1

[

h
(1)
ν (ka)

a
+

dh
(1)
ν (kr)

dr

∣

∣

∣

r=a

]

+ A2

[

h
(2)
ν (ka)

a
+

dh
(2)
ν (kr)

dr

∣

∣

∣

r=a

]

.(13)

We can easily eliminate B1 in (12) and (13), and compute the reflection amplitude:

A1

A2
=

h
(2)
ν (ka)

[

jν(k̃a)
a

+ djν(k̃r)
dr

∣

∣

∣

r=a

]

− jν(k̃a)
[

h
(2)
ν (ka)

a
+ dh

(2)
ν (kr)
dr

∣

∣

∣

r=a

]

jν(k̃a)
[

h
(1)
ν (ka)

a
+ dh

(1)
ν (kr)
dr

∣

∣

∣

r=a

]

− h
(1)
ν (ka)

[

jν(k̃a)
a

+ djν(k̃r)
dr

∣

∣

∣

r=a

] (14)

Setting the denominator of this quantity equal to zero we find the following condition for the

existence of a spectral singularity.

d

dr
ln h(1)

ν (kr)
∣

∣

∣

r=a
=

d

dr
ln jν(k̃r)

∣

∣

∣

r=a
. (15)

Recalling the recursion formula [10] for h
(1)
ν and jν :

duν(Z)

dZ
=

ν uν−1(Z)− (ν + 1)uν+1(Z)

2ν + 1
, (16)

with uν = jν or h
(1)
ν , we can express (15) in the form

[νh
(1)
ν−1(ka)− (ν + 1)h

(1)
ν+1(ka)]

h
(1)
ν (ka)

=
n [νjν−1(k̃a)− (ν + 1)jν+1(k̃a)]

jν(k̃a)
, (17)

where we have used the fact that k̃ = n k. Because n and consequently k̃ take complex values,

this is a complex equation. Equating the real and imaginary parts of both sides of this equation we
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find two real equations for the three real variables η := Re( n ), κ := Im( n ), and x := ka. Because

the determination of the explicit form of these equations is not easy, we examine their asymptotic

expressions that are valid for x ≫ 1. For typical situations the radius of the dielectric ball is much

larger than the wavelength of the wave. Therefore, for practical purposes that we will consider, the

condition x ≫ 1 holds and the asymptotic treatment of (17) provides extremely reliable results.

The asymptotic expansion of the spherical Bessel and Hankel functions, jν and h
(1)
ν , that are

valid in the large argument limit (|Z| ≫ 1), have the form

jν(Z) =
sin(Z − πν

2
)

Z

∞
∑

s=0

(−1)sA2s(ν)

Z2s
+

cos(z − πν
2
)

Z

∞
∑

s=0

(−1)sA2s+1(ν)

Z2s+1
, (18)

h(1)
ν (Z) =

ei(Z−
πν

2
)

Z

[

−i

∞
∑

s=0

(−)sA2s(ν)

Z2s
+

∞
∑

s=0

(−1)sA2s+1(ν)

Z2s+1

]

, (19)

where

Ak(ν) :=
Γ(ν + k + 1)

2kk!Γ(ν − k + 1)
=

∏2k−1
ℓ=0 (ν + k − ℓ)

2kk!
,

and Γ stands for the Gamma function. Substituting (18) and (19) in (17), neglecting the quadratic

and higher order terms in x−1 and noting that A0(ν) = 1 and A1 := A1(ν) =
ν(ν+1)

2
, we find

tan( nx− πν

2
) ≈ −i n +

( n 2 − 1)A1

n x
. (20)

Next, we wish to compute the real and imaginary parts of (20) and express them in terms of

the real parameters η, κ and x. To this end, first we recall the identity:

tan−1(Z) = πm+
1

2i
ln

(

1 + iZ

1− iZ

)

, (21)

where Z is a complex variable, m is an integer, and “ln” denotes the principal part of the natural

logarithm. If we set Z = −i n + A1( n 2−1)
n x

and use (20) and (21), we obtain

nx− πν

2
≈ πm+

1

2i

[

ln

(

n + 1

n − 1

)

+ ln

(

−1 +
2iA1

nx

)]

. (22)

Note that

ln

(

−1 +
2iA1

nx

)

= ln(−1) + ln

(

1− 2iA1

nx

)

≈ πi− 2iA1

nx
.

Therefore, if we only keep the first two largest powers of x in (22), the term proportional to A1

drops out of the calculations and we obtain

nx ≈ π

(

m+
ν + 1

2

)

+
1

2i
ln

(

n + 1

n − 1

)

. (23)

Next, we employ n = η + iκ to obtain

n + 1

n − 1
=

√

(η + 1)2 + κ2

(η − 1)2 + κ2
exp

[

i arctan

( −2κ

η2 + κ2 − 1

)]

≈
(

η + 1

η − 1

)

exp

( −i2κ

η2 − 1

)

, (24)
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where “arctan” stands for the principal part of “tan−1” with values in (−π
2
, π
2
). Furthermore,

because for realistic gain media κ ≪ 1 ≈ η, we neglect the quadratic and higher order terms in κ.

Substituting n = η + iκ and (24) in (23), we arrive at

x η ≈ π

(

m+
ν + 1

2

)

, (25)

xκ ≈ −1

2
ln

(

η + 1

η − 1

)

. (26)

Equivalently,

κ ≈
−η ln

(

η+1
η−1

)

π (2m+ ν + 1)
, (27)

x ≈ − 1

2κ
ln

(

η + 1

η − 1

)

. (28)

Because η and x take positive values and x ≫ 1, the integer m that we view as a mode number

take large positive integer values. This implies that κ < 0. Therefore, in order to create a spectral

singularity the dielectric must consist of a gain medium. This is an intriguing mathematical mani-

festation of the law of conservation of energy. The same results is obtained in [4, 5] while studying

the optical spectral singularities of a one-dimensional waveguide including a gain region and an

infinite planar slab gain medium.

Equation (27) determines the approximate location of the spectral singularities in the η-κ plane

(complex n -plane). It yields an infinite family of curves parameterized by the mode number m.

Given that x = ak, for each point (η⋆, κ⋆) that lies on one of the spectral singularity curves,

Equation (28) specifies the value of k2 for the corresponding spectral singularities.

In practice the refractive index n depends on the properties of the gain medium and the

wavelength λ := 2π/k = 2πc/ω of the propagating EM wave. In order to realize an optical spectral

singularity, we need to impose the dispersion relation that determines the dependence of n on λ

and other relevant physical parameters.

Following [5], we consider a gain medium that is obtained by doping a host medium of refraction

index n0 and modeled by a two-level atomic system with lower and upper level population densities

Nl and Nu, resonance frequency ω0, and damping coefficient γ. Then the dispersion relation takes

the form

n
2 = n2

0 −
ω̂2
p

ω̂2 − 1 + iγ̂ ω̂
, (29)

where ω̂ := ω/ω0, γ̂ := γ/ω0, ω̂p := (Nl − Nu)e
2/(meε0ω

2
0), e is electron’s charge, me is its mass,

and ε0 is the permittivity of the vacuum. We can express ω̂2
p in terms of the imaginary part κ0 of

n at the resonance wavelength λ0 := 2πc/ω0 according to [5]

ω̂2
p ≈ 2n0γ̂κ0, (30)
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where the approximation symbol means that we neglect quadratic terms in κ0.

Inserting (30) in (29) and using n = η + iκ, we obtain

η ≈ n0 + κ0f1(γ̂, ω̂), κ ≈ κ0f2(γ̂, ω̂), (31)

where

f1(γ̂, ω̂) :=
γ̂(1− ω̂2)

(1− ω̂2)2 + γ̂2ω̂2
, f2(γ̂, ω̂) :=

γ̂2ω̂

(1− ω̂2)2 + γ̂2ω̂2
. (32)

Now, we substitute (31) in (25), recall that x = ka = 2πa/λ, and keep the leading order term in

the small κ0 approximation. This yields

λ ≈ 4n0a

2m+ ν + 1
. (33)

Next, we recall that κ0 may be related to the gain coefficient g0 at the resonance frequency according

to g0 = −4πκ0/λ0. Using this relation and Equations (25) and (31), we obtain

g0 ≈
4n0 ln

(

n0+1
n0−1

)

λ0(2m+ ν + 1)f2(γ̂, λ0/λ)
. (34)

In view of (33) this relation takes the form

g0 ≈
1

a
ln

(

n0 + 1

n0 − 1

)[

1 +
f(λ)

γ̂2

]

, f(λ) :=

(

λ2 − λ2
0

λ0λ

)2

. (35)

These equations describe the dependence of the gain coefficient g0 necessary for generating a spectral

singularity on the radius a of the spherical gain medium, the normalized damping coefficient γ̂, and

the wavelength λ. g0 is inversely proportional to a. Its dependence on λ is given by the function

f which has a minimum at the resonance wavelength λ0 and increases monotonically as |λ − λ0|
increases. This shows that the spectral singularity with the wavelength closest to the resonance

wavelength of the gain medium requires the smallest necessary gain. This is in complete agreement

with the results of [6].

Because our model involves no mirrors, we need a high-gain medium to create a spectral sin-

gularity. In the following we consider a semiconductor diode laser (disregarding the difficulty of

manufacturing a spherical diode) and a dye laser.

Consider a spherical diode laser with the following characteristics [11]:

n0 = 3.4, λ0 = 1500 nm, γ̂ = 0.02, g0 ≤ 1000 cm−1. (36)

Then according to (33) the spectral singularity with wavelength closest to the resonance wavelength

λ0 corresponds to the mode number m = 679, if we take a = 150 µm. Its wavelength and the

required gain coefficient are respectively given by λ = 1499.870 nm and g0 = 40.412 cm−1. There

are a total of 66 spectral singularities with mode numbers in the range 647-712 whose realization

6
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Figure 1: Spectral singularities of a spherical dye gain medium with specifics (37) and radius

a = 3.300 mm. The mode number m ranges over 17746-17812 as the wavelength λ decreases. The

spectral singularity requiring the least gain coefficient g0 has a wavelength that is closest to the

resonance wavelength of the medium. This corresponds to m = 17779. The grey horizontal line

represents the experimental upper limit on g0.

requires a gain coefficient less that 1000 cm−1. Their wavelength decreases from 1573.930 nm to

1430.457 nm as m takes values from 647 to 712.

A more realistic choice for the gain medium that supports the above-examined spectral singu-

larities is a spherical dye laser. For definiteness consider a Rose Bengal-DMSO (Dimethyl sulfoxide)

solution with the following characteristics [11, 12].

n0 = 1.479, λ0 = 549 nm, γ̂ = 0.062, g0 ≤ 5 cm−1. (37)

Using these figures in (33) and (34) we find out that the smallest value of radius a that supports

a spectral singularity (and highest gain coefficient g0 = 5 cm−1) is 3.287825 mm which is within

the experimentally attainable range [11]. For a slightly larger sample with radius a = 3.300 mm,

we can generate 67 different spectral singularities by varying the gain coefficients in the range

4.981546 − 4.999727 cm−1. These correspond to the mode numbers 17746-17812. As m takes

values in this range, the wavelength of the corresponding spectral singularities decreases from

550.028673 nm to 547.991700 nm. Figure 1 shows the location of these spectral singularities in

the λ-g0 plane. The dependence of the quantities m, λ and g0 on one another is similar to that of

the spectral singularities of the one-dimensional system studied in [5, 6]. As one starts pumping

the gain medium there arises no spectral singularities unless the gain coefficient reaches its first

critical value (g
(1)
0 = 4.981546 cm−1.) This is the gain required to excite the spectral singularity

with a wavelength (λ(1) = 549.008297507 nm) that is closest to the resonance wavelength of the

medium. As g0 increases further this spectral singularity disappears and there are no other spectral

singularities until g0 takes its second critical value, namely g
(2)
0 = 4.981554 cm−1. This excites the

7



ℓ g
(ℓ)
0 (cm−1) m λ

(ℓ)
pert.(nm) λ

(ℓ)
exact(nm)

1 4.981546 17779 549.00830142 549.00829751

2 4.981554 17780 548.97742540 548.97743614

3 4.981572 17778 549.03918091 549.03916235

4 4.981594 17781 548.94655285 548.94657824

5 4.981630 17777 549.07006387 549.07003065

6 4.981668 17782 548.91568378 548.91572380

7 4.981720 17776 549.10095031 549.10090243

Table 1: The first seven critical values of the gain coefficient g0 and the wavelength of the corre-

sponding spectral singularities of the spherical dye gain medium (37) with radius a = 3.300 mm.

λ
(ℓ)
pert. and λ

(ℓ)
exact are respectively the values of the wavelength obtained using perturbation theory

and exact numerical calculations. m is the mode number.

spectral singularity with wavelength λ(2) = 548.977436136 nm. This process continues until one

saturates the upper experimental bound on the gain coefficient. As noted in [5, 6], it can be used

to generate a tunable laser whose wavelength may be adjusted by changing the pumping intensity.

Table 1 gives the values of the first seven critical values of g0 and λ that we have obtained

using perturbative and exact (numerical) calculations. The extremely good agreement between

the perturbative and exact results is related to the fact the perturbative calculations amount to

ignoring terms of order x−2 and κ2
0. For the dye laser we consider these are about 7 × 10−10 and

5× 10−10, respectively.

Figure 2 shows a logarithmic plot of the exact expression for the reflection coefficient, R :=

|A1/A2|2, as a function of the wavelength λ for the above spherical dye laser with radius a =

3.300 mm and gain coefficient g0 = g
(1)
0 . The highest peak with R > 5 × 1014 demonstrates the

spectral singularity with wavelength λ = λ(1). The other peaks with R < 4×1012 are the resonances

that turn into spectral singularities as one increases g0. If we use more and more date points to

produce this graph, the height of the central peak increases indefinitely while those of the others

remain essentially unchanged. This is a clear indication that the central peak corresponds to a

spectral singularity.

In conclusion, we have solved the problem of finding spectral singularities of a complex spherical

barrier potential and outlined a possible physical realization of the corresponding resonance effect.

This is done by examining spherical transverse electromagnetic waves emitted by a spherical gain

medium. We have obtained the particular values of the physical parameters of the system for which

a spectral singularity appears. In particular, we have performed a reliable perturbative analysis

of the problem that reveals the emergence of a mode number and leads to an explicit relationship

between the necessary gain coefficient, the radius of the sample, and the wavelength of the spectral

8
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Figure 2: (Color online) Logarithmic plot of the reflection coefficient as a function of the wavelength

for the spherical dye gain medium with specifics (37), radius a = 3.300 mm, and gain coefficient

g0 = g
(1)
0 = 4.981546 cm−1 that produces the spectral singularity with wavelength λ = λ(1) =

549.00329751 nm. This corresponds to the central peak. Other peaks represents resonances that

turn into spectral singularities if we increase g0. These have a height that is at least 100 times

smaller than that of the spectral singularity at λ = λ(1). The peak to the left of the central peak

appears at λ = λ(2). It is the first resonance that becomes a spectral singularity as g0 increases.

This explains why it has the second largest height.
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singularity. For definiteness, we examined the numerical values of these quantities for a concrete

dye laser and obtained a lower bound on the radius of the sample that would support a spectral

singularity. This gives a ≈ 3.29 mm that is much larger than the typical mirosphere dye lasers. The

reason is that the spectral singularities we study correspond to a lasing effect that is different from

the lasing due to the whispering gallery modes [13]. This is simply because we consider spherical

electromagnetic waves.
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