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It has recently been shown that the Casimir-Polder potential of a particle in an energy eigenstate
near a conducting body can be virtually temperature independent, provided the separation between
particle and body is small enough so that retardation effects are negligible. In the present paper we
study the leading residual temperature dependence due to retardation and imperfect conductivity
for an atom near a metal sphere. For this prototype of a curved geometry, we obtain a closed-form
expression for the temperature-dependent potential which is found numerically to be an excellent
approximation.

PACS numbers: 31.30.jh, 12.20.–m, 34.35.+a, 42.50.Nn

I. INTRODUCTION

Recent times have witnessed a blossoming of experi-
mental set-ups holding great promise, in which the de-
tailed interaction of particles with nearby surfaces is im-
portant. Some such systems are not necessarily in ther-
mal equilibrium, such as Bose-Einstein condensates in
magnetic traps close to surfaces [1], beams of cold po-
lar molecules [2] and Rydberg atoms [3]. In the conven-
tional literature on London-van der Waals forces [4] and
its more general version, the Casimir-Polder (CP) forces
[5], it has, with some notable exceptions, been common to
assume thermal equilibrium (for reviews, c.f. Refs. [6, 7]),
so a description of these important experimental situ-
ations demanded a new theory. For a full theoretical
background of different non-equilibrium Casimir-Polder
scenarios the reader may refer to Refs. [8–13], although
precursors considering excited atoms go back further (e.g.
Refs. [14–16]). The theories for different non-equilibrium
situations, albeit apparently disparate, may be shown to
concord as they should [17].
In the following we consider a particle prepared in an

energy eigenstate |n〉 placed in an environment of macro-
scopic bodies at uniform temperature T , the situation
originally considered in Ref. [12]. The CP potential of
the particle may be written as

Un =
∑

k

Unk (1.1)

where the sum runs over all other eigenstates |k〉 to
which there is an allowed dipole transition. Both for
cold molecules [18] and Rydberg atoms [19] it was found
that although the number of states |k〉 to be summed
over in Eq. (1.1) is formally infinite, only a few transi-
tions give significant contributions. To wit, the impor-
tant transitions were found to be those corresponding to
the smallest difference in eigenenergy ∆Ekn = Ek − En,

i.e. the smallest transition frequency ωkn = ∆Ekn/~ or
correspondingly the longest transition wavelength λkn =
2πc/ωkn. Because of this fact the typical values of λkn for
cold polar molecules and Rydberg atoms alike are usually
much larger than the typical distance z from the particle
to a nearby body in experiments involving surfaces. In
other words, for the dominating transitions |n〉 → |k〉,

z

λkn
=

ωknz

2πc
≫ 1, (1.2)

so the interaction is essentially non-retarded.
Recently, it was found that in the non-retarded regime

the CP interaction near a metallic half-space is virtu-
ally temperature independent[20]. The thermal CP po-
tential then agrees with its zero-temperature counter-
part for all temperatures. This was later shown to be a
reasonable approximation for bodies of arbitrary shape
[21]. Temperature-dependent corrections to the zero-
temperature potential were identified to stem from re-
tardation and imperfect conductivity. The magnitude of
the latter corrections were found to strongly depend on
the body shape and curvature, demonstrating that ge-
ometry and temperature are closely intertwined [22].
In the present paper we study these corrections in de-

tail for an atom interacting with a metal sphere, being
a prototype of a body with a curved surface. Various
embodiments of the particle–sphere interactions at zero
temperature have been treated by a number of authors
[23–30]. We study the linear temperature-dependent cor-
rection in the spectroscopic high-temperature regime

kBT ≫ ~ωkn, (1.3)

and for nonretarded distances. We quote here the final re-
sult, to be derived below, for the thermal Casimir-Polder
potential of an atom at distance r from the center of a
metal sphere of radius R:
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Unk(r) =− |dkn|2
24πε0r3

φ3(6− 3φ2 + φ4)

(1− φ2)3
+

|dkn|2
24πε0r3

(

kBT

~ωkn
− 1

2

)

{

x2
[

3(1 + 3φ4)artanhφ− φ(3 − φ2)

+ 2φ3 log(1− φ2)
]

+ 2xφ2Re
{ i
√

ε(ω)

}[3 + 7φ2 − 4φ4

(1− φ2)2
− log(1− φ2)

]

+ ...
}

+O(T−1) (1.4)

where we have introduced the dimensionless distance

x =
rωkn

c
(1.5)

and a geometry parameter

φ = R/r. (1.6)

The expression (1.4) holds when x ≪ 1, but Im{√ε}xφ =
Im{√ε}ωknR/c still significantly exceeds unity. The dots
indicate higher-order contributions in the small parame-
ters x and 1/(x

√
ε). For definitions of the various quan-

tities in Eq. (1.4), see Sec. II below.

II. GENERAL FORMALISM

The general formalism for the temperature-dependent
CP force on a particle in an energy eigenstate is found
in Ref. [12]. Here we shall restrict our attention to the
special case of an isotropic particle, and consider a single
transition |n〉 → |k〉 so that the particle can be treated
as an effective two-level system. The generalisation to
anisotropic particles (c.f. Ref. [12]), and inclusion of more
levels can be achieved immediately by summing up con-
tributions from several dipole transitions according to
Eq. (1.1). For a cold polar molecule or a Rydberg atom
only a small number of transitions are of significance, and
these all have transition wavelengths of the same order
of magnitude. Our considerations for a single transition
will then hold for all significant transitions.
This section reviews the general framework for treat-

ing the small temperature correction in the non-resonant
regime for arbitrary geometries, which we apply below to
a metal sphere. In the notation of Ref. [21], the CP po-
tential of an isotropic non-magnetic particle in state |n〉
due to a possible transition to state |k〉 splits naturally
into a non-resonant (nr) and a resonant (r) part [12]

Unk(r) = Unr
nk(r) + U r

nk(r), (2.1)

where the two parts are given by

Unr
nk(r) =− 2kBT |dnk|2ωkn

3~ε0

∞
∑

j=0

′ Γiξj (r)

ω2
kn + ξ2j

; (2.2a)

U r
nk(r) =

|dkn|2
3ε0

n(ωkn)Re Γωkn
(r). (2.2b)

Here, dkn = 〈k|d|n〉 is the transition dipole matrix ele-
ment and

ξj = 2πjkBT/~ (2.3)

are the Matsubara frequencies. The photon number at
frequency ω and temperature T is given by the Bose-
Einstein distribution,

n(ω) =
1

exp(~ω/kBT )− 1
= −[n(−ω) + 1]. (2.4)

The function

Γω(r) ≡
ω2

c2
lim
r
′→r

trG(1)(r, r′, ω) (2.5)

is given in terms of the scattering part G(1) of the total
dyadic Green’s function satisfying
[

∇×∇× − ω2

c2
ε(r, ω)

]

G(r, r′, ω) = δ(r− r
′)1. (2.6)

(1: unit tensor). The relative permittivity ε(r, ω) of the
present bodies is isotropic and we have assumed the bod-
ies to be non-magnetic. Due to causality, Γiξj is real,
being a generalized susceptibility evaluated at imaginary
frequency, so in particular Γi0 = Γ0 is real.
In the following, we consider a single transition |n〉 →

|k〉 and simplify our notation according to

|dkn|2 → |d|2; ωkn → ω; Unk(r) → U(r).

Note that ω can be either positive or negative depending
on whether the transition is upwards or downwards.
We concentrate on the spectroscopic high-temperature

regime, Eq. (1.3), in which one easily verifies that the
contribution of the lowest Matsbubara frequency (j = 0)
dominates in Eq. (2.2a),

Unr(r) = −|d|2
3ε0

kBT

~ω
Γ0(r) +O(T−1). (2.7)

The photon number in this regime is

n(ω) =
kBT

~ω
− 1

2
+O(T−1), (2.8)

so the resonant potential (2.2b) reads

U r(r) =
|d|2
3ε0

(

kBT

~ω
− 1

2

)

ReΓω(r). (2.9)

Combining these results, we find for the full potential in
the spectroscopic high-temperature regime,

U(r) =− |d|2
6ε0

Γ0(r) +
|d|2
3ε0

(

kBT

~ω
− 1

2

)

Re∆Γω(r)

+O(T−1) (2.10)
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where ∆Γω = Γω − Γ0.
For comparison, in the zero-temperature limit, in

which the Matsubara sum becomes an integral accord-
ing to standard procedures (e.g. the Euler-Maclaurin for-
mula), one obtains

U(r)
∣

∣

T=0
=− |d|2ω

3πε0

∫

∞

0

dξ
trΓ

(1)
iξ (r)

ω2 + ξ2

− |d|2
3ε0

Θ(ω)ReΓω(r) (2.11)

with Θ(x) denoting the unit step function.
In the nonretarded and perfect-conductor limits, we

have Γiξ(r) ≃ ReΓω(r) ≃ Γ0(r) [20] which implies
Re∆Γω(r) ≃ 0. In this case, both Eqs. (2.10) and (2.11)
reduce to

U0(r) = −|d|2
6ε0

Γ0(r) (2.12)

and the CP potential is independent of temperature
throughout.
In this article, we are interested in the corrections to

the temperature-independent result (2.12) that arise due
to small violations of the non-retarded limit and perfect
reflectivity. As seen from Eq. (2.10), they are governed
by Re∆Γω(r). When all present macroscopic bodies are
perfectly conducting (PC), then Γω satisfies [21]

ΓPC
ω = ΓPC

0 +
ω2

2c2
d2ΓPC

ω

dω2

∣

∣

∣

ω=0
+ ... ; ω → 0, (2.13)

so that

∆ΓPC
ω ≈ ω2

2c2
d2ΓPC

ω

dω2

∣

∣

∣

ω=0
; ω → 0, (2.14)

is quadratic in ω. This correction accounts for the fact
that electromagnetic interactions are transmitted at the
finite speed of light; we will refer to it as the retardation
correction in the following.
For an imperfect conductor, the corrections to the

Green’s function for small frequencies includes a second
correction due to the frequency-dependence of the reflec-
tivity of the bodies. We write

∆Γω = ∆Γret.
ω +∆Γrefl.

ω (2.15)

due to retardation and reflectivity, respectively. When
treating ω and ε(ω) as independent variables, the re-
tardation correction ∆Γret.

ω is the leading-order term in

1/
√

ε(ω) and next-to-leading in ω; whereas the reflec-

tivity correction ∆Γrefl.
ω is the contribution sub-leading

in 1/
√

ε(ω) and leading in ω. Note that the perfect-
conductor limit ε(ω) → ∞ does not commute with the
nonretarded limit ω → 0 in this case. The incompati-
bility of the two limits was first pointed out in Ref. [31]
and is at the heart of the debate over the temperature
correction to the Casimir effect [32]. For a metal body at
typical frequencies and distances, the perfect-conductor

r

Au

R

FIG. 1: The geometry considered: a quantum particle pre-
pared in eigenstate |n〉 outside a gold sphere.

limit has to be performed before the nonretarded limit,
see Sect. III below.
With the leading corrections to the Green’s func-

tion being given by Eq. (2.15), the thermal CP poten-
tial (2.12) can be given as

U(r) = U0(r) + ∆Uret.(r) + ∆Urefl.(r) +O(T−1) (2.16)

with

∆Ui(r) =
|d|2
3ε0

(

kBT

~ω
− 1

2

)

Re∆Γi
ω(r), (2.17)

i = ret., refl. The relative corrections due to retardation
and reflection read

∆Ui(r)

U0(r)
= −2

(

kBT

~ω
− 1

2

)

Re∆Γi
ω(r)

Γ0(r)
. (2.18)

Note that Re∆Γω(r) is an even function of ω, as fol-
lows directly from definition (2.5) together with the
Schwarz reflection principle G(r, r′;−ω) = G

∗(r, r′;ω).
As a consequence, the leading temperature corrections
in the high-temperature limit, being proportional to
Re∆Γω(r)/ω, change sign when comparing downward
and upward transitions.

III. CASIMIER–POLDER POTENTIAL NEAR A

SPHERE

As depicted in Fig. 1, we consider a particle at distance
r from the center of a sphere of radius R and permittivity
ε = ε(ω). The dyadic Green’s function leads to [28]

Γω(r) =
ix

4πr3

∞
∑

l=1

(2l + 1)
{

x2rTE
l (φx)h

(1)
l (x)2

+ rTM
l (φx)

[

l(l + 1)h
(1)
l (x)2 + h̃

(1)′
l (x)2

]}

(3.1)

where h
(1)
l (x) is the spherical Hankel function of the first

kind, h̃
(1)′
l (x) [and for future reference, ̃′l(x)] is shorthand

for

h̃
(1)′
l (x) = [xh

(1)
l (x)]′; ̃′l(x) = [xjl(x)]

′ (3.2)

[jl(x): spherical Bessel function of the first kind]. For
convenience we are using the dimensionless distance and
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size parameters x = rω/c and 0 < φ = R/r < 1, recall
Eqs. (1.5) and (1.6). The reflection coefficients for TE
and TM-polarized waves read

rTE
l (z) =− ̃′l(z)jl(

√
εz)− ̃′l(

√
εz)jl(z)

h̃
(1)′
l (z)jl(

√
εz)− ̃′l(

√
εz)h

(1)
l (z)

; (3.3a)

rTM
l (z) =− ε̃′l(z)jl(

√
εz)− ̃′l(

√
εz)jl(z)

εh̃
(1)′
l (z)jl(

√
εz)− ̃′l(

√
εz)h

(1)
l (z)

. (3.3b)

In the following we assume both the particle–center
separation and the sphere size to be non-retarded, φx ≤
x ≪ 1. In addition, we perform the perfect-conductor
limit |ε| ≫ 1. To leading order, the two limits commute:
Taking the perfect-conductor limit first, the reflection co-
efficients reduce to

rTE
l (φx)

ε→∞−→ rTE,PC
l (φx) = − jl(φx)

h
(1)
l (φx)

; (3.4)

rTM
l (φx)

ε→∞−→ rTM,PC
l (φx) = − ̃′l(φx)

h̃
(1)′
l (φx)

, (3.5)

see the asymptotes (A1) and (A2) in App. A. Using the
expansions (A3) and (A4), they further simplify to

rTE,PC
l (φx)

φx→0−→ rTE,PC
l,0 (φx) = − i(φx)2l+1

(2l+1)!!(2l−1)!!
;

(3.6)

rTM,PC
l (φx)

φx→0−→ rTM,PC
l,0 (φx) =

l+1

l

i(φx)2l+1

(2l+1)!!(2l−1)!!
(3.7)

in the non-retarded limit. Here, (2l+1)!! = 1·3 · · · (2l+1).
In contrast, when taking the non-retarded limit first,

one finds

rTE
l (φx)

φx→0−→ rTE
l,0 (φx) = (ε−1)

i(φx)2l+3

(2l+3)!!(2l+1)!!
;

(3.8)

rTM
l (φx)

φx→0−→ rTM
l,0 (φx) =

(l+1)(ε−1)i(φx)2l+1

(lε+l+1)(2l+1)!!(2l−1)!!
,

(3.9)

and subsequently

rTE
l,0 (φx)

ε→∞−→ ε
i(φx)2l+3

(2l + 3)!!(2l+ 1)!!
; (3.10)

rTM
l,0 (φx)

ε→∞−→ l + 1

l

i(φx)2l+1

(2l+ 1)!!(2l − 1)!!
. (3.11)

While the TM-coefficient takes the same form regardless
of the order of the limits, the TE-coefficient yields dif-
ferent results, depending on which of the two limits is
performed first.
However, the Green tensor in the non-retarded limit is

dominated by rTM
l . Substituting the results for the reflec-

tion coefficients into (3.1), using the approximation (A4)

from App. A and retaining only the leading order in x,
one finds

ΓPC
0 (r) =

1

4πr3

∞
∑

l=1

(2l + 1)(l + 1)φ2l+1

=
1

4πr3
φ3(6− 3φ2 + φ4)

(1− φ2)3
. (3.12)

With this result, the temperature-invariant CP poten-
tial (2.12) reads

U0(r) = − |d|2
24πε0r3

f(φ) (3.13)

with

f(φ) =
φ3(6− 3φ2 + φ4)

(1 − φ2)3
→







6φ3 for φ → 0,
1

2(1− φ)3
for φ → 1.

(3.14)
This is in agreement with the zero-temperature potential
as found in Ref. [29] for a perfectly conducting sphere in
the non-retarded limit on the basis of image-charge tech-
niques. As discussed in Ref. [33], the atom-sphere geome-
try is a particular example of a two-parameter geometry,
conveniently described by a scaling function f(φ).
The accuracy of the temperature-independent result

is demonstrated numerically in Fig. 2 for a ground-state
two-level particle outside a gold sphere. The permittiv-
ity of the sphere has been described by a Drude model
ε(ω) = 1−ω2

P/[ω(ω+iγ)] with parameters ωP = 9eV and
γ = 35meV. For comparison, the same situation but with
a smaller sphere is shown in Fig. 3. We see that Eq. (3.13)
yields a very good approximation. The exact potential
is slightly smaller by at most 5% for rω/c = 0.1. Recall
that the leading correction in the high-temperature limit
has opposite signs for ground-state and excited atoms.
For an excited two-level atom, we would hence find that
the exact potential is slightly larger than its approxima-
tion (3.13). In the following, we derive analytical expres-
sions for the leading temperature-dependent corrections
to Eq. (3.13).

A. Correction from retardation

When considering the full thermal CP potential (3.13),
the non-retarded and perfect-conductor limits do not
commute. We have φx ≤ x ≪ 1 and |ε| ≫ 1, which is
compatible with both large and small values of |√ε|φx.
For a metal sphere at typical experimental distances
of order micrometers and x ∼ 0.01 − 0.001, we have
Im

√
εφx ≫ 1, meaning that the perfect-conductor limit

has to be applied first. The opposite limit |√ε|φx ≪ 1
may be realised for some dielectrics with large electro-
static permittivity, in which case the nonretarded limit
would have to be performed first.
The correction from retardation effects is found by us-

ing the perfect conductor values (3.4) and (3.5) of the
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FIG. 2: Numerical comparison of the exact CP potential U(T )
of a two-level model particle (transition energy ~ck) outside
a gold sphere with the T -independent result U0 for a perfect
conductor in the non-retarded limit. Parameter values: R =
1

2
r = 10µm.
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FIG. 3: Same as figure 2, but with a smaller gold sphere:
R = 1

2
r = 1µm.

reflection coefficients and expanding ΓPC
ω (r) as given by

Eq. (3.1) in powers of x, the leading correction term being
of order x2. We obtain such quadratic corrections from
three sources: (A) from the TM-mode reflection coeffi-

cient rTM,PC
l ; (B) from TM-mode propagators h

(1)
l (x)2

and h̃
(1)′
l (x)2; and (C) from the leading-order TE-mode

contribution. The technical details of the small x expan-
sions of the different cases are found in App.A 1.

As shown therein, correction (A) takes the form

rTM,PC
l (φx) =rTM,PC

l,0 (φx)

{

1− (φx)2

2

[

l + 3

(2l + 3)(l + 1)

+
l − 2

l(2l− 1)

]

+ ...

}

(3.15)

with rTM,PC
l,0 being given by Eq. (3.7). The correction

(B) is found to be

rTM,PC
l,0 (φx)

[

l(l + 1)h
(1)
l (x)2 + h̃

(1)′
l (x)2

]

=
(l + 1)φ2l+1

ix

[

1 +
x2

2l+ 1
+ ...

]

. (3.16)

Finally, the correction (C) from the TE-mode takes the
simple form

rTE,PC
l (φx)h

(1)
l (x)2 = − φ2l+1

ix(2l + 1)
+ ... (3.17)

Substituting these corrections into Eq. (3.1), one finds

∆Γret.
ω =

x2

4πr3

∞
∑

l=1

{

lφ2l+1 − (2l+ 1)

[

l+ 3

2l+ 3

+
(l + 1)(l − 2)

(2l − 1)l

]

φ2l+3

2

}

(3.18)

The sum may be carried out in closed form by splitting
the expressions into partial fractions. One finds

∆Γret.
ω =

x2

8πr3
[

3(1 + 3φ4)artanhφ− φ(3 − φ2)

+ 2φ3 log(1− φ2)
]

. (3.19)

Substituting this result into Eq. (2.17), we obtain the
retardation correction

∆Uret.(r) =
|d|2x2

24πε0r3

(

kBT

~ω
− 1

2

)

gret.(φ) (3.20)

with scaling function

gret.(φ)

= 3(1 + 3φ4)artanhφ− φ(3 − φ2) + 2φ3 log(1− φ2)

→
{

2φ3 for φ → 0,

−4 log(1− φ) for φ → 1.
(3.21)

Its relative contribution (2.18) is given by

∆Uret.(r)

U0(r)
= −

(

kBT

~ω
− 1

2

)

x2 gret.(φ)

f(φ)
. (3.22)

B. Correction from imperfect reflection

The leading order corrections to the ideal reflection
coefficients are calculated in App. A 2 and have the form

rTE
l (φx) =rTE,PC

l,0 (φx)

[

1− i(2l+ 1)√
εφx

+ ...

]

; (3.23a)

rTM
l (φx) =rTM,PC

l,0 (φx)

[

1 +
iφx√
ε

2l + 1

l(l+ 1)
+ ...

]

(3.23b)
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for x ≪ 1, with rTE,PC
l,0 and rTM,PC

l,0 given by Eqs. (3.6)

and (3.7). Substituting these results into Eq. (3.1) and
using the leading-order small argument expansions in
Eqs. (3.16) and (3.17), we find

∆Γrefl.
ω =

ix

4πr3
√
ε

∞
∑

l=1

(2l + 1)

[

1 +
2l + 1

l
φ2

]

φ2l

=
ixφ2

4πr3
√
ε

[

3 + 7φ2 − 4φ4

(1− φ2)2
− log(1− φ2)

]

. (3.24)

Inserting this into Eq. (2.17), the reflectivity correction
is found to be

∆Urefl.(r) =
|d|2x

24πε0r3
Re

(

i√
ε

)(

kBT

~ω
− 1

2

)

grefl.(φ)

(3.25)
with scaling function

grefl.(φ) = 2φ2

[

3 + 7φ2 − 4φ4

(1− φ2)2
− log(1− φ2)

]

→







6φ2 for φ → 0,
3

(1− φ)2
for φ → 1.

(3.26)

Its relative contribution (2.18) reads

∆Urefl.(r)

U0(r)
= −

(

kBT

~ω
− 1

2

)

xRe

(

i√
ε

)

grefl.(φ)

f(φ)
.

(3.27)

C. Discussion and comparison

Combining the T -invariant result (2.12) with the re-
tardation and reflectivity corrections (3.20) and (3.25),
we obtain the weakly temperature-dependent CP poten-
tial (1.4), as stated in the introduction. The quality of
this analytic high-temperature result is demonstrated in
Fig. 4 where we compare it with the result of a numer-
ical simulation for a ground-state two-level particle out-
side a gold sphere. One sees that the analytic result is
an excellent approximation for temperatures T > 200K.
Recall from Fig. 2 that this is the range where deviations
from the temperature-independent result (2.12) exceed
the 0.5% level and start becoming noticeable.
According to Eqs. (3.22) and (3.27), the relative con-

tributions from retardation and finite reflectivity are gov-
erned by the ratios gi(φ)/f(φ) of the scaling functions as
given by Eqs. (3.14),(3.21) and (3.26). These ratios are
depicted in Fig. 5. The figure shows that both contribu-
tions strongly depend on the curvature of the sphere as
parametrised by φ. The retardation contribution takes a
value 1/3 for a strongly curved sphere and stays approxi-
mately constant for φ . 0.5. In the limit of a flat surface,
it rapidly falls off as −4(1 − φ)3 log(1 − φ). The reflec-
tivity correction grows as 1/φ in the limit of a strongly
curved sphere and falls off gently as 6(1− φ) in the limit
of a flat surface.
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-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000
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U

0
)/
U

0

Exact expression

High-T approximation

FIG. 4: Comparison of the exact temperature-correction to
the CP potential to the of a two-level model particle (tran-
sition energy ~ck) outside a gold sphere with the analytical
high-temperature approximation. Parameters are r = 2R =
20µm, x = ωr/c = 0.01.
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FIG. 5: Ratios of the scaling functions gret.(φ)/f(φ) (solid
line) and grefl.(φ)/f(φ) (dashed line) that govern the impact of
retardation and finite reflectivity on the thermal CP potential.

The ratio grefl.(φ)/f(φ) is greater than gret.(φ)/f(φ) by
at least an order of magnitude for all curvatures. One has
to bear in mind, however, that the reflectivity correction
carries an additional factor Re(i/

√
ε)/x ≪ 1. For a metal

described by a Drude model with ω, γ ≪ ωP , one finds

Re
[

i/
√

ε(ω)
]

= ω−1
P

[

1
2 (
√

ω2 + γ2 + |ω|)|ω|
]

1

2

≃
{

√

ωγ/2/ωP for ω ≪ γ,

ω/ωP for ω ≫ γ.
(3.28)

Depending on the actual value of Re(i/
√
ε)/x ≪ 1 for a

given molecule and material, either one of the reflectivity
or retardation may dominate for given curvatures. How-
ever, the asymptotic behaviour observed in Fig. 5 shows
that the reflectivity correction will always dominate in
the limits of small or large curvature.
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IV. SUMMARY

In recent publications it has been shown that the
Casimir–Polder potential acting on a particle prepared in
an eigenstate at a non-retarded distance from a macro-
scopic body can be virtually independent of the sur-
rounding temperature. It has been shown that this fea-
ture is not a property of simple planar geometry, but
applies to bodies of arbitrary shape, when these are per-
fectly conducting, or to many geometries when they are
described by more realistic metallic permittivity models.
weakly temperature-dependent corrections to the poten-
tial of a metal body have been identified to stem from
retardation and imperfect reflectivity.
In the present paper, we have studied the weakly

temperature-dependent CP potential of a particle near a
metal sphere. We have assumed both the particle–sphere
distance and the particle’s transition frequency to be
small enough so that retardation and imperfect reflectiv-
ity present only small perturbations to the temperature-
independent result. Such is typically the case in exper-
imental set-ups in which cold polar molecules or Ryd-
berg atoms are used, whose interaction potential is dom-
inated by long wavelength transitions for which the non-
retarded regime extends to tens and hundreds of microm-
eters, respectively. A numerical study has shown that
the temperature-independent potential may underesti-
mate the exact thermal result for a ground-state particle
by about 5%.
In addition, we have obtained analytic expressions for

the perturbative retardation and reflectivity corrections.
Our results show that reflectivity is the dominant correc-
tion for very large or small curvatures, while intermediate
curvatures may be governed by either retardation and re-
flectivity corrections, depending on particle and material.
Our analytic result provides a description of the weakly
temperature-dependent CP potential of a particle near a
metal sphere at non-retarded distances that is faithful to
about 0.5%.
We thank Ho Trung Dung for discussions. This work

was supported by the UK Engineering and Physical Sci-
ences Research Council. Support from the European Sci-
ence Foundation (ESF) within the activity ‘New Trends
and Applications of the Casimir Effect’ is gratefully ac-
knowledged.

Appendix A: Limits and their leading corrections

To calculate the CP potential in the perfect-conductor
and non-retarded limits, we need to approximate the
spherical Bessel functions for small and large arguments.
Using the asymptotes from §10 of Ref. [34]

jl(x) ≈
sin(x− lπ/2)

x
for x ≫ 1; (A1)

h
(1)
l (x) ≈ (−i)l+1ei(x−nπ/2)

x
for x ≫ 1, (A2)

we easily find the perfect-conductor limits (3.4) and (3.5).
The non-retarded limits (3.6), (3.7), (3.8) and (3.9)

can be found by using the expansions [34]

jl(x) =
xl

(2l + 1)!!
− xl+2

2(2l+ 3)!!
+ ... for x ≪ 1; (A3)

h
(1)
l (x) = − i(2l− 1)!!

xl+1
− i(2l − 3)!!

2xl−1
+ ... for x ≪ 1

(A4)

with (2l+1)!! = 1 ·3 ·5 · · · (2l+1). Note that the next-to-
leading order expansion is only needed for (3.8), where
the leading-order term vanishes.

1. Retardation corrections

To calculate the retardation correction to the perfect-
conductor TM -mode reflection coefficients (3.5), we use
the expansions (A3) and (A4), which together with the
definitions (3.2) lead to

̃′l(x) =
(l + 1)xl

(2l+ 1)!!

[

1− x2

2

l + 3

(2l + 3)(l + 1)
+ ...

]

(A5a)

h̃
(1)′
l (x) =

il(2l− 1)!!

xl+1

[

1 +
x2

2

l− 2

l(2l− 1)
+ ...

]

(A5b)

for x ≪ 1. This immediately yields Eq. (3.15).
The retardation correction from the propagator factors

are found from expansions

h
(1)
l (x)2 =− [(2l − 1)!!]2

x2l+2

[

1 +
x2

2l − 1
+ ...

]

; (A6a)

h̃
(1)′
l (x)2 =− l2[(2l − 1)!!]2

x2l+2

[

1 +
x2(l − 2)

l(2l− 1)
+ ...

]

(A6b)

which follow from Eqs. (A4) and (A5b). Combining these

results with rTM,PC
l,0 as given by Eq. (3.7), we arrive at

Eq. (3.16).

Expansion (A6a) moreover combines with rTE,PC
l,0 as

given by Eq. (3.6) to result in Eq. (3.17).

2. Finite reflectivity correction

In order to expand the reflection coefficients (3.3) in
powers of ε−1, we rewrite them as

rTM
l (φx) =rTM,PC

l (φx)
1−AJ/ε

1 −AH/ε
;

rTE
l (φx) =rTE,PC

l (φx)
1− 1/(AJ)

1 − 1/(AH)

where

A =
̃′l(

√
εφx)

jl(
√
εφx)

; J =
jl(φx)

̃′l(φx)
; H =

h
(1)
l (φx)

h̃
(1)′
l (φx)

.
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With the assumption Im{√ε}φx ≫ 1, the asymp-
tote (A1) leads to

̃′l(
√
εφx)

jl(
√
εφx)

≈
√
εφx cot(

√
εφx− lπ

2 ) ≈ −i
√
εφx.

Using the asymptotes (A3) and (A4), we further have

jl(φx)

̃′l(φx)
≈ 1

l + 1
;

h
(1)
l (φx)

h̃
(1)′
l (φx)

≈ −1

l

for x ≪ 1. Combining these results and retaining
only the next-to-leading order in x, one easily obtains
Eqs. (3.23).
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[17] S. Å. Ellingsen, Y. Sherkunov, S.Y. Buhmann, and

S. Scheel, in Proceedings of the Ninth Conference on
Quantum Field Theory Under the Influence of Exter-
nal Conditions (QFEXT09) edited by M. Bordag and
K. A. Milton (World Scientific, 2010), p. 168, Preprint:
quant-ph/0910.5608.
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[19] J. A. Crosse, S. Å. Ellingsen, K. Clements, S. Y. Buh-

mann, and S. Scheel, Phys. Rev. A 82, 010901(R) (2010);
Erratum ibid. 82, 029902(E) (2010).

[20] S. Å. Ellingsen, S. Y. Buhmann, and S. Scheel, Phys.
Rev. Lett. 104, 223003 (2010).
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