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email: radek@mif.pg.gda.pl

Published as: J. Phys. A 44 (2011) 065203

doi: 10.1088/1751-8113/44/6/065203

Abstract

Unique transformation properties under the hyperspherical inversion of a partial differential
equation describing a stationary scalar wave in an N-dimensional (N > 2) Maxwell fish-eye
medium are exploited to construct a closed form of the Green’s function for that equation.
For those wave numbers for which the Green’s function fails to exist, the generalized Green’s
function is derived. Prospective physical applications are mentioned.
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1 Introduction

In 1854, Maxwell [1] pointed at a remarkable property of an infinite optical medium with the
refraction index

nfe(r) =
2n0ρ

2

r2 + ρ2
(ρ > 0). (1.1)

Within the framework of the geometrical optics, he proved that paths of all rays emitted from
an arbitrarily located point r

′ are circles having two points in common: the source point r
′ and

the image point −ρ2r′/r′ 2. For this medium Maxwell coined the name ‘the fish-eye’. In 1926,
Carathéodory [2] observed that there is a geometrical correspondence between the circular rays in
the fish-eye medium and the geodesics on a sphere. This geometric thread was pursued further by
other researchers within the group-theoretical framework (cf, e.g., Ref. [3]).

It seems that Demkov and Ostrovsky [4] were the first to discuss the wavized scalar fish-eye
problem. Specifically, they considered the equation

[

∇
2 +

4ν(ν + 1)ρ2

(r2 + ρ2)2

]

Ψ(r) = 0 (ρ > 0) (1.2)

in R3, subject to the boundary condition that Ψ(r) vanishes at infinity. They proceeded in two
directions. First, they solved analytically a spectral problem with ν being an eigenparameter
and showed that the resulting spectrum is purely discrete and eigenfunctions may be expressed
in terms of the Gegenbauer polynomials. Second, they proved that Eq. (1.2) possesses a certain
remarkable transformation property under the geometrical inversion in a certain class of spheres,
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and ingeniously exploited this fact to construct a closed form of the relevant Green’s function in R3.
Group-theoretical properties of the scalar fish-eye wave equation (1.2) were then investigated in R2

by Frank et al. [5, 6]. Lately, the two-dimensional fish-eye medium has been studied by Makowski
and Górska [7] in the context of the construction of pertinent coherent states. Finally, in two very
recent papers, Leonhardt [8] and Leonhardt and Philbin [9] have argued that the geometric-optical
perfect focusing property of the fish-eye medium, discovered by Maxwell, holds as well within the
wave-optics framework; that issue will be critically reexamined in our upcoming work, with the
aid of the results presented below.

The present paper is the first out of a series of several reports in which we shall expose results
of our research on the wave properties of the Maxwell fish-eye and related media. Here, we derive
a closed form of the Green’s function for the scalar fish-eye wave equation in RN , N > 2. The
particular method we employ generalizes the aforementioned one used by Demkov and Ostrovsky
in the case of N = 3 and exploits a peculiar transformation property of the N -dimensional fish-eye
equation under the hyperspherical inversion.

The structure of the paper is as follows. In Section 2, we investigate transformation properties
of a class of partial differential equations under the hyperspherical inversion, with a special focus
on the N -dimensional fish-eye equation. The results of that investigation are used in Section 3
to construct the Green’s function for the fish-eye problem. The case when the Green’s function
fails to exist and is to be replaced by the generalized Green’s function is considered in Section
4. Prospective physical applications of the results are briefly discussed in Section 5. The pa-
per ends with an appendix, in which a number of closed-form representations of the derivative

[∂P
−N/2+1
ν (x)/∂ν]ν=n+N/2−1, with x ∈ (−1, 1), N ∈ N \ {0, 1} and n ∈ N, required in Section 4,

are displayed. The list of references attached has been intended to contain representative items
rather than to be a comprehensive one. An exhaustive listing of works relevant to the Maxwell
fish-eye problem will be included in one of our forthcoming papers.

2 Transformation properties of a class of partial differential

equations under the hyperspherical inversion

At first, we establish the following

Lemma 1. If Ψ(r) (with r ∈ RN , N > 2) satisfies the equation
[

∇
2 + k2n2(r)

]

Ψ(r) = 0, (2.1)

then for arbitrary R ∈ R and a, b ∈ RN it holds that
[

∇
2 +

k2R4

|r − a|4n
2

(

R2

|r − a|2 (r − a) + b

)]

1

|r − a|N−2
Ψ

(

R2

|r − a|2 (r − a) + b

)

= 0. (2.2)

Proof. The transformation

r 7→ R2

|r − a|2 (r − a) + b (2.3)

results in the following alteration of the infinitesimal line element:

(dr)2 7→ R4

|r − a|4 (dr)
2. (2.4)

Hence, substitution (2.3) implies the following transformation of the N -dimensional Laplace oper-
ator:

∇
2 7→ |r − a|2N

R2N
∇ ·

(

R2(N−2)

|r − a|2(N−2)
∇

)

. (2.5)

Using the easily provable differential identity

∇ ·
(

R2(N−2)

|r − a|2(N−2)
∇

)

=
R2(N−2)

|r − a|N−2
∇

2 1

|r − a|N−2
− R2(N−2)

|r − a|N−2

(

∇
2 1

|r − a|N−2

)

, (2.6)
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and exploiting the fact that the function 1/|r−a|N−2 is harmonic in RN , we see that transformation
(2.3) changes Eq. (2.1) into

[ |r − a|N+2

R4
∇

2 1

|r − a|N−2
+ k2n2

(

R2

|r − a|2 (r − a) + b

)]

Ψ

(

R2

|r − a|2 (r − a) + b

)

= 0, (2.7)

which immediately leads to Eq. (2.2). �

Actually, the above lemma offers a bit more than necessary for the purposes of this paper. In
view of our needs, in what follows we shall restrict ourselves to the special case when the vectors
a and b are equal. It is then evident that the resulting transformation

r 7→ R2

|r − a|2 (r − a) + a (2.8)

is the geometric inversion in the hypersphere of radius R centered at the point with the radius
vector r = a. (In fact, if b = a and k = 0, the lemma is simply an N -dimensional extension of the
well-known Kelvin inversion theorem for harmonic functions [10].)

Now we turn to the fish-eye problem. Application of the following special case of inversion
(2.8):

r 7→ ρ2 + a2

|r − a|2 (r − a) + a ⇒ r 7→ a

|r − a|

∣

∣

∣

∣

r + a
ρ2

a2

∣

∣

∣

∣

(2.9)

to the fish-eye refraction index (1.1) gives

nfe

(

ρ2 + a2

|r − a|2 (r − a) + a

)

=
|r − a|2
ρ2 + a2

2n0ρ
2

r2 + ρ2
=

|r − a|2
ρ2 + a2

nfe(r). (2.10)

Combining this property of the index nfe(r) with the result stated in the lemma, we arrive at

Corollary. If the function Ψ(r) (with r ∈ RN , N > 2) solves the fish-eye equation

[

∇
2 +

4n2
0k

2ρ4

(r2 + ρ2)2

]

Ψ(r) = 0 (ρ > 0), (2.11)

then for arbitrary a ∈ RN the function

Î(a,
√

ρ2 + a2)Ψ(r) ≡ 1

|r − a|N−2
Ψ

(

ρ2 + a2

|r − a|2 (r − a) + a

)

(2.12)

also solves this equation, i.e., it holds that

[

∇
2 +

4n2
0k

2ρ4

(r2 + ρ2)2

]

1

|r − a|N−2
Ψ

(

ρ2 + a2

|r − a|2 (r − a) + a

)

= 0 (ρ > 0). (2.13)

In the particular case of N = 3, the above result was established by Demkov and Ostrovsky [4]
(see also [11]).

3 The Green’s function for the fish-eye problem

We are now ready to construct the N -dimensional fish-eye Green’s function Gν(r, r
′). According

to the general theory of Green’s functions for elliptic partial differential operators, Gν(r, r
′) is a

single-valued solution to the fish-eye equation

[

∇
2 +

4n2
0k

2ρ4

(r2 + ρ2)2

]

Gν(r, r
′) = 0 (ρ > 0) (3.1)
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everywhere in RN except for the source point r = r
′, where it diverges according to

Gν(r, r
′)

r→r
′

−→ 1

2π
ln |r − r

′| (N = 2) (3.2)

or

Gν(r, r
′)

r→r
′

−→ − 1

(N − 2)SN−1|r − r′|N−2
(N > 3). (3.3)

In the last equation

SN−1 =
2πN/2

Γ
(

N
2

) (3.4)

is a surface area of a unit (N − 1)-dimensional sphere SN−1 embedded in RN . At infinity, we
require

Gν(r, r
′)

r→∞−→ Cν(r
′)

rN−2
(3.5)

(the non-zero constant Cν(r
′) appearing in condition (3.5) will be determined later). The parameter

ν is defined as

ν =
−1 +

√

1 + 4n2
0k

2ρ2

2
(ν → 0 for n0 → 0) (3.6)

and reasons for its introduction will become clear shortly. In what follows, we admit that the
product n2

0k
2, hence also ν, may be complex.

At first, consider the case when the source is located at the center of symmetry of the medium.
Evidently, the corresponding Green’s function Gν(r,0) must be spherically symmetric, being a
function of r = |r| only. Hence, it follows that Gν(r,0) obeys

[

∂2

∂r2
+
N − 1

r

∂

∂r
+

4ν(ν + 1)ρ2

(r2 + ρ2)2

]

Gν(r,0) = 0 (3.7)

except for the point r = 0, where it behaves according to Eqs. (3.2) or (3.3) with r
′ = 0. The

substitution

Gν(r,0) =
(ρ

r

)N/2−1

F

(

r2 − ρ2

r2 + ρ2

)

(3.8)

leads to the following differential equation for the function F :

[

(1− x2)
d2

dx2
− 2x

d

dx
+ ν(ν + 1)− µ2

1− x2

]

F (x) = 0, (3.9)

where

x =
r2 − ρ2

r2 + ρ2
(−1 6 x 6 1) (3.10)

and

µ =
N − 2

2
. (3.11)

Equation (3.9) is the associated Legendre equation. Its general solution, written in the form
most suitable for the present purposes, is

F (x) = AP−µ
ν (x) +BRµ

ν (x), (3.12)

with A, B being arbitrary constants and with

Rµ
ν (x) = Qµ

ν (x) +
iπ

2
Pµ
ν (x) =

π

2 sin(πµ)

[

eiπµPµ
ν (x)−

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µ
ν (x)

]

. (3.13)

Here, Pµ
ν (x) and Q

µ
ν (x) are the associated Legendre functions (on the cut −1 6 x 6 1) of the first

and second kinds, respectively (occasionally, Rµ
ν (x) is called the associated Legendre function of
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the third kind). The general character of solution (3.12) follows from the fact that the Wronskian
of P−µ

ν (x) and Rµ
ν (x) is

W [P−µ
ν (x), Rµ

ν (x)] =
exp(iπµ)

1− x2
, (3.14)

i.e., it vanishes nowhere. Henceforth, we shall adopt the standard convention and shall write Pν(x)
and Rν(x) in place of P 0

ν (x) and R
0
ν(x).

With the general solution to Eq. (3.9) in hand, we see that the Green’s function Gν(r,0) is of
the form

Gν(r,0) = A
(ρ

r

)N/2−1

P−N/2+1
ν

(

r2 − ρ2

r2 + ρ2

)

+B
(ρ

r

)N/2−1

RN/2−1
ν

(

r2 − ρ2

r2 + ρ2

)

, (3.15)

ν being defined in Eq. (3.6). We shall fix values of the constants A and B in two steps. At first, we
investigate the asymptotics of the expression in Eq. (3.15) as r → ∞. Using the known formulas
[12, p. 196]

P−µ
ν (x)

x→1−0−→ 1

Γ(µ+ 1)

(

1− x

2

)µ/2

(µ 6= −1,−2, . . .), (3.16)

Rν(x)
x→1−0−→ −1

2
ln(1− x), (3.17)

Rµ
ν (x)

x→1−0−→ 1

2
eiπµΓ(µ)

(

1− x

2

)−µ/2

(Re µ > 0), (3.18)

we see that the constraint (3.5) is fulfilled iff B = 0, and consequently

Gν(r,0) = A
(ρ

r

)N/2−1

P−N/2+1
ν

(

r2 − ρ2

r2 + ρ2

)

. (3.19)

In the second step, we investigate the asymptotics of the right-hand side of Eq. (3.19) as r → 0.
Exploiting the formulas [12, p. 197]

Pν(x)
x→−1+0−→ sin(πν)

π
ln(1 + x) (3.20)

and

P−µ
ν (x)

x→−1+0−→ Γ(µ)

Γ(ν + µ+ 1)Γ(−ν + µ)

(

1 + x

2

)−µ/2

(Re µ > 0), (3.21)

we find that the constraints (3.2) and (3.3) will be satisfied iff

Gν(r,0) =
1

4 sin(πν)
Pν

(

r2 − ρ2

r2 + ρ2

)

(N = 2) (3.22)

and

Gν(r,0) = −Γ
(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

P−N/2+1
ν

(

r2 − ρ2

r2 + ρ2

)

(rρ)N/2−1
(N > 3), (3.23)

respectively. Since it holds that

sin(πν) = − π

Γ(ν + 1)Γ(−ν) , (3.24)

Eqs. (3.22) and (3.23) may be collected into a single formula

Gν(r,0) = −Γ
(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

P−N/2+1
ν

(

r2 − ρ2

r2 + ρ2

)

(rρ)N/2−1
. (3.25)
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From this, using relation (3.16), we deduce that for r
′ = 0 the constant Cν in the asymptotic

relation (3.5) is

Cν(0) = −Γ
(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2Γ
(

N
2

) . (3.26)

To find the Green’s function for an arbitrary location of the source point r
′, we consider the

transformed function

Î(a,
√

ρ2 + a2)Gν(r,0) =
1

|r − a|N−2
Gν

(

ρ2 + a2

|r − a|2 (r − a) + a,0

)

, (3.27)

with the center of the inversion sphere (of radius
√

ρ2 + a2) located at the point

a = −r
′
ρ2

r′ 2
. (3.28)

Using Eq. (3.25), the explicit form of this transformed function, denoted hereafter as gν(r, r
′), is

seen to be

gν(r, r
′) = − Γ

(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

(

r′

ρ3

)N/2−1 P
−N/2+1
ν

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

|r − r
′|N/2−1

∣

∣

∣

∣

r + r
′
ρ2

r′ 2

∣

∣

∣

∣

N/2−1
.

(3.29)
In view of the results of Section 2, we know for sure that the function in Eq. (3.29) solves the
fish-eye equation, except, possibly, for some isolated points. It is evident that the points at which
the behavior of gν(r, r

′) should be investigated are the two finite points r = r
′ and r = −r

′ρ2/r′ 2,
and also the point at infinity. Using the asymptotic relations (3.20) and (3.21), we derive

gν(r, r
′)

r→r
′

−→ 1

2π
ln |r − r

′| (N = 2) (3.30)

and

gν(r, r
′)

r→r
′

−→ − 1

(N − 2)SN−1|r − r′|N−2

(

r′

ρ2

)N−2

(N > 3), (3.31)

i.e., the ‘inverted’ function diverges for r → r
′ in the same manner (save for the factor (r′/ρ2)N−2

when N > 3) as the Green’s function Gν(r, r
′) (cf. Eqs. (3.2) and (3.3)). Furthermore, it is seen

that for r → ∞ the function (3.29) decays asymptotically as

gν(r, r
′)

r→∞−→ −Γ
(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

(

r′

ρ3

)N/2−1 P
−N/2+1
ν

(

ρ2 − r′ 2

ρ2 + r′ 2

)

rN−2
, (3.32)

i.e., in the same functional manner with r as prescribed for Gν(r, r
′) in Eq. (3.5). Finally, with

the help of the identity

− 1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)
= 1−

2r′ 2
(

r + r
′
ρ2

r′ 2

)2

(r2 + ρ2)(r′ 2 + ρ2)
(3.33)

and the asymptotic relation (3.16), we find that for r → −r
′ρ2/r′ 2 the function (3.29) remains

finite:

gν(r, r
′)

r→−r
′ρ2/r′ 2−→ −Γ

(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2Γ
(

N
2

)

(

r′

ρ

)2(N−2)
1

(r′ 2 + ρ2)N−2
. (3.34)
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Thus, we see that the function (ρ2/r′)N−2gν(r, r
′) satisfies all conditions imposed on Gν(r, r

′) in
Eqs. (3.1)–(3.5). Hence, we conclude that the closed form of the N -dimensional fish-eye Green’s
function for an arbitrary location of the source point r′ is

Gν(r, r
′) = −Γ

(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

( ρ

r′

)N/2−1
P−N/2+1
ν

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

|r − r
′|N/2−1

∣

∣

∣

∣

r + r
′
ρ2

r′ 2

∣

∣

∣

∣

N/2−1
(3.35)

and that the constant Cν(r
′) in the asymptotic constraint (3.5) is

Cν(r
′) = −Γ

(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

( ρ

r′

)N/2−1

P−N/2+1
ν

(

ρ2 − r′ 2

ρ2 + r′ 2

)

. (3.36)

Since the differential operator in Eq. (3.1) is symmetric with respect to the scalar product
〈

χ
∣

∣φ
〉

N
≡

∫

RN dNr χ(r)φ(r), the fish-eye Green’s function should be symmetric with respect to
the interchange of the source and observation points:

Gν(r, r
′) = Gν(r

′, r). (3.37)

However, the representation ofGν(r, r
′) given in Eq. (3.35) does not exhibit this property explicitly.

To show that nevertheless relation (3.37) is satisfied, we observe that it holds that

r′
∣

∣

∣

∣

r + r
′
ρ2

r′ 2

∣

∣

∣

∣

= r

∣

∣

∣

∣

r
′ + r

ρ2

r2

∣

∣

∣

∣

=
√

r2r′ 2 + 2ρ2r · r′ + ρ4. (3.38)

Consequently, the Green’s function (3.35) may be alternatively rewritten in either of the following
two manifestly symmetric forms:

Gν(r, r
′) = −Γ

(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

ρN/2−1P−N/2+1
ν

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

|r − r
′|N/2−1

(

r2r′ 2 + 2ρ2r · r′ + ρ4
)N/4−1/2

(3.39)

or

Gν(r, r
′) = − Γ

(

N
2 + ν

)

Γ
(

N
2 − ν − 1

)

4πN/2

×
ρN/2−1P−N/2+1

ν

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

(rr′)N/4−1/2|r − r
′|N/2−1

∣

∣

∣

∣

r + r
′
ρ2

r′ 2

∣

∣

∣

∣

N/4−1/2 ∣
∣

∣

∣

r
′ + r

ρ2

r2

∣

∣

∣

∣

N/4−1/2
. (3.40)

Still another representation of Gν(r, r
′) displaying its symmetry is the one in terms of the Gegen-

bauer function of the first kind. Using the known relationship

Cλ
α(x) =

√
π

2λ−1/2

Γ(α+ 2λ)

Γ(λ)Γ(α + 1)
(1 − x2)−λ/2+1/4P

−λ+1/2
α+λ−1/2(x) (−1 6 x 6 1), (3.41)

Eq. (3.35) is transformed into

Gν(r, r
′) =

2N−4Γ
(

N−1
2

)

π(N−1)/2 sin
[

π
(

N
2 − ν

)]

ρN−2C
(N−1)/2
ν−N/2+1

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

(r2 + ρ2)N/2−1(r′ 2 + ρ2)N/2−1
. (3.42)

Let us consider some particular cases. For N = 2, from either of Eqs. (3.35), (3.39) or (3.40),
with the aid of Eq. (3.24), we find

Gν(r, r
′) =

1

4 sin(πν)
Pν

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

(N = 2). (3.43)
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Next, it appears that the representations of Gν(r, r
′) found above simplify greatly when N is odd,

as then the Legendre function appearing in Eqs. (3.35), (3.39) and (3.40) may be expressed in
terms of trigonometric and inverse trigonometric functions either as [12, p. 168]

P−N/2+1
ν (x) =

(

N−3
2

)

!

2N/2−2
√
π

(

1− x2
)−N/4+1/2

(N−3)/2
∑

k=0

(−)k
Γ
(

k + ν − N
2 + 2

)

k!Γ
(

k + ν + 3
2

) (

N−3
2 − k

)

!

× sin
[(

2k + ν − N
2 + 2

)

arccosx
]

(N odd, N > 3) (3.44)

or as [12, p. 169]

P−N/2+1
ν (x) =

√

2

π
Γ
(

ν − N
2 + 2

)

(N−3)/2
∑

k=0

(

k + N−3
2

)

!

2kk!Γ
(

k + ν + 3
2

) (

N−3
2 − k

)

!

× sin
[(

k + ν + 1
2

)

arccosx+
(

k − N−3
2

)

π
2

]

(1− x2)k/2+1/4
(N odd, N > 3).

(3.45)

In the simplest case of N = 3, we have

P−1/2
ν (x) =

√

2

π

(

1− x2
)−1/4 sin

[(

ν + 1
2

)

arccosx
]

ν + 1
2

. (3.46)

Using this representation of P
−1/2
ν (x) in Eq. (3.39), the latter being specialized to the case N = 3,

after some straightforward movements and with the help of the identity

Γ
(

1
2 + ν

)

Γ
(

1
2 − ν

)

=
π

cos(πν)
, (3.47)

we arrive at

Gν(r, r
′) = − 1

4π cos(πν)

√

(r2 + ρ2)(r′ 2 + ρ2)

|r − r′|
√

r2r′ 2 + 2ρ2r · r′ + ρ4

× sin

[(

ν +
1

2

)

arccos

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)]

(N = 3). (3.48)

Equivalence between the result in Eq. (3.48) and the following expression (modified to conform
with the present notation and corrected for a sign error):

Gν(r, r
′) = − 1

4π cos(πν)

√

(r2 + ρ2)(r′ 2 + ρ2)

|r − r′|
√

r2r′ 2 + 2ρ2r · r′ + ρ4

× sin

[

(2ν + 1) arctan

√

r2r′ 2 + 2ρ2r · r′ + ρ4

ρ|r − r′|

]

(N = 3), (3.49)

given by Demkov and Ostrovsky in Ref. [4], may be easily established with the aid of the well-known
inverse trigonometric identity

arctan ξ =
1

2
arccos

1− ξ2

1 + ξ2
(ξ > 0). (3.50)

4 The generalized Green’s function for the fish-eye problem

A glance at either of Eqs. (3.35), (3.39) or (3.40) reveals that the fish-eye Green’s function Gν(r, r
′)

fails to exist for the following values of ν:

ν = n+N/2− 1 or ν = −n−N/2 (n ∈ N), (4.1)
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which, by the way, are solutions of the quadratic equation

ν(ν + 1) =

(

n+
N

2

)(

n+
N

2
− 1

)

. (4.2)

If either of the conditions set in Eq. (4.1) holds, one seeks the generalized Green’s function
Ḡn+N/2−1(r, r

′) ≡ Ḡ−n−N/2(r, r
′), defined through the limiting relation

Ḡn+N/2−1(r, r
′) = limν(ν+1)→(n+N/2)(n+N/2−1)

∂

∂[ν(ν + 1)]

{[

ν(ν + 1)−
(

n+
N

2

)(

n+
N

2
− 1

)]

Gν(r, r
′)

}

=
1

2n+N − 1
lim

ν→n+N/2−1

∂

∂ν

[(

ν − n− N

2
+ 1

)(

ν + n+
N

2

)

Gν(r, r
′)

]

.

(4.3)

If, for instance, representation (3.39) of Gν(r, r
′) is used in Eq. (4.3), this results in

Ḡn+N/2−1(r, r
′) = (−)n

(n+N − 2)!

4πN/2n!

ρN/2−1

|r − r
′|N/2−1

(

r2r′ 2 + 2ρ2r · r′ + ρ4
)N/4−1/2

×
{

[

ψ(n+N − 1)− ψ(n+ 1) +
1

2n+N − 1

]

P
−N/2+1
n+N/2−1

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

+

∂P−N/2+1
ν

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

}

, (4.4)

where

ψ(ζ) =
1

Γ(ζ)

dΓ(ζ)

dζ
(4.5)

is the digamma function. A number of closed-form representations of the derivative

[∂P
−N/2+1
ν (x)/∂ν]ν=n+N/2−1 required in Eq. (4.4) may be derived from the author’s findings for

[∂P±m
ν (z)/∂ν]ν=n, z ∈ C \ (−1, 1), presented in Refs. [13, 14]; the simplest, and thus potentially

most useful, of these expressions are listed in Appendix A.
In the particular case of N = 3, Eq. (4.4) yields simply

Ḡn+1/2(r, r
′) =

(−)n

4π2

√

(r2 + ρ2)(r′ 2 + ρ2)

|r − r′|
√

r2r′ 2 + 2ρ2r · r′ + ρ4

×
{

cos

[

(n+ 1) arccos

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)]

arccos

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)

+

sin

[

(n+ 1) arccos

(

−1 +
2ρ2(r − r

′)2

(r2 + ρ2)(r′ 2 + ρ2)

)]

2(n+ 1)

}

(N = 3). (4.6)

5 Prospective applications

The closed-form representations of the fish-eye Green’s function Gν(r, r
′) and of its generalized

counterpart Ḡn+N/2−1(r, r
′), found in this work, are certainly interesting for their own mathe-

matical sake. They appear, however, to be also useful in the physical context. In a forthcoming
report, we shall use them to show that, despite of claims to the contrary [4, 8, 9], in wave optics
the infinite Maxwell fish-eye medium does not possess the same perfect focusing properties as it
has in geometrical optics. Next, it has been confirmed [15] that the use of either of the closed-form
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expressions for Gν(r, r
′) listed in Section 3 simplifies greatly the mathematical analysis of wave-

optical properties of cylindrical (N = 2) and spherical (N = 3) gradient-index lenses with the
fish-eye refraction index (1.1) and of finite radii rlens 6 ρ

√
2n0 − 1. Finally, in yet another forth-

coming paper, we shall show that there is a close mathematical relationship between the wavized
Maxwell fish-eye problem in RN and the N -dimensional Schrödinger–Coulomb problem in momen-
tum space; in particular, we shall provide there an integral expression for the momentum-space
Schrödinger–Coulomb Green’s function in terms of the fish-eye Green’s function discussed above.

A Appendix: The derivatives [∂P
−N/2+1
ν (x)/∂ν]ν=n+N/2−1 for

N ∈ N \ {0, 1}
From the relations

P−m
n (x) = e−iπm/2 (n−m)!

(n+m)!
Pm
n (x+ i0) (0 6 m 6 n) (A.1)

and

∂P−m
ν (x)

∂ν

∣

∣

∣

∣

ν=n

= e−iπm/2 (n−m)!

(n+m)!

∂Pm
n (x+ i0)

∂ν

∣

∣

∣

∣

ν=n

− [ψ(n+m+ 1)− ψ(n−m+ 1)]P−m
n (x)

(0 6 m 6 n), (A.2)

and from a number of closed-form expressions for the derivative [∂Pm
ν (z)/∂ν]ν=n, with z ∈ C \

(−1, 1) and 0 6 m 6 n, found by the present author in Refs. [13, 14], one may derive, among

others, the following representations of [∂P
−N/2+1
ν (x)/∂ν]ν=n+N/2−1, with x ∈ [−1, 1] and with N

being an even natural number greater than zero:1

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2
− 2ψ(n+N − 1)P

−N/2+1
n+N/2−1(x)

+
n!

(n+N − 2)!

(

1− x2

4

)N/4−1/2 n
∑

k=0

(−)k
(k + n+N − 2)!

k!(k +N/2− 1)!(n− k)!

×[2ψ(k + n+N − 1)− ψ(k +N/2)]

(

1− x

2

)k

+

(

1− x

1 + x

)N/4−1/2 n+N/2−1
∑

k=0

(−)k
(k + n+N/2− 1)!ψ(k +N/2)

k!(k +N/2− 1)!(n+N/2− k − 1)!

(

1− x

2

)k

,

(A.3)

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2
− 2ψ(n+N/2)P

−N/2+1
n+N/2−1(x)

+
n!

(n+N − 2)!

(

1− x2

4

)N/4−1/2 n
∑

k=0

(−)k
(k + n+N − 2)!ψ(k +N/2)

k!(k +N/2− 1)!(n− k)!

(

1− x

2

)k

+

(

1− x

1 + x

)N/4−1/2 n+N/2−1
∑

k=0

(−)k
(k + n+N/2− 1)!

k!(k +N/2− 1)!(n+N/2− k − 1)!

×[2ψ(k + n+N/2)− ψ(k +N/2)]

(

1− x

2

)k

, (A.4)

1Attention! The Mathematica 7.0.0 function LegendreP[nu,mu,2,x] evaluates incorrectly (the modulus is correct
but the sign is wrong) numerical values of the associated Legendre functions P

−2n−1

2n+1
(x) and P

−2n−1

2n+2
(x) for n ∈ N,

−1 6 x 6 1. An empirically discovered remedy is to subject the variable x to the action of the function SetPrecision

before it is used as an argument of LegendreP.
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∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2

− [ψ(n+N − 1) + ψ(n+N/2)]P
−N/2+1
n+N/2−1(x)

+
n!

(n+N − 2)!

(

1− x2

4

)N/4−1/2 n
∑

k=0

(−)k
(k + n+N − 2)!ψ(k + n+N − 1)

k!(k +N/2− 1)!(n− k)!

(

1− x

2

)k

+

(

1− x

1 + x

)N/4−1/2 n+N/2−1
∑

k=0

(−)k
(k + n+N/2− 1)!ψ(k + n+N/2)

k!(k +N/2− 1)!(n+N/2− k − 1)!

(

1− x

2

)k

, (A.5)

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2

− (−)n
(

1− x2

4

)−N/4+1/2 N/2−2
∑

k=0

(k + n)!(N/2− k − 2)!

k!(n+N − k − 2)!

(

1 + x

2

)k

+(−)n
(

1 + x

1− x

)N/4−1/2 n+N/2−1
∑

k=0

(−)k
(k + n+N/2− 1)!

k!(k +N/2− 1)!(n+N/2− k − 1)!

×[2ψ(k + n+N/2)− ψ(k +N/2)− ψ(k + 1)]

(

1 + x

2

)k

, (A.6)

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2

− [ψ(n+N − 1)− ψ(n+ 1)]P
−N/2+1
n+N/2−1(x)

− (−)n
n!

(n+N − 2)!

(

1− x

1 + x

)N/4−1/2 N/2−2
∑

k=0

(k + n+N/2− 1)!(N/2− k − 2)!

k!(n+N/2− k − 1)!

(

1 + x

2

)k

+(−)n
n!

(n+N − 2)!

(

1− x2

4

)N/4−1/2 n
∑

k=0

(−)k
(k + n+N − 2)!

k!(k +N/2− 1)!(n− k)!

×[2ψ(k + n+N − 1)− ψ(k +N/2)− ψ(k + 1)]

(

1 + x

2

)k

, (A.7)

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2

+ [ψ(n+ 1) + ψ(n+N/2)]P
−N/2+1
n+N/2−1(x)

− (−)nn!(n+N/2− 1)!

(

1 + x

1− x

)N/4−1/2 (
1− x

2

)n+N/2−1

×
N/2−1
∑

k=1

(k − 1)!

(k + n)!(k + n+N/2− 1)!(N/2− k − 1)!

(

1− x

1 + x

)k

−n!(n+N/2− 1)!

(

1− x

1 + x

)N/4−1/2 (
1 + x

2

)n+N/2−1

×
n
∑

k=0

(−)k
ψ(n+N/2− k) + ψ(n− k + 1)

k!(k +N/2− 1)!(n− k)!(n+N/2− k − 1)!

(

1− x

1 + x

)k

, (A.8)
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∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2

+ [ψ(n+ 1) + ψ(n+N/2)]P
−N/2+1
n+N/2−1(x)

− (−)nn!(n+N/2− 1)!

(

1− x

1 + x

)N/4−1/2 (
1− x

2

)n+N/2−1

×
N/2−2
∑

k=0

(N/2− k − 2)!

k!(n+N/2− k − 1)!(n+N − k − 2)!

(

1 + x

1− x

)k

− (−)nn!(n+N/2− 1)!

(

1 + x

1− x

)N/4−1/2 (
1− x

2

)n+N/2−1

×
n
∑

k=0

(−)k
ψ(k + 1) + ψ(k +N/2)

k!(k +N/2− 1)!(n− k)!(n+N/2− k − 1)!

(

1 + x

1− x

)k

, (A.9)

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

= P
−N/2+1
n+N/2−1(x) ln

1 + x

2

+ [2ψ(2n+N − 1)− ψ(n+N − 1)− ψ(n+N/2)]P
−N/2+1
n+N/2−1(x)

+

n−1
∑

k=0

(−)k+n 2k +N − 1

(n− k)(k + n+N − 1)

[

1 +
n!(k +N − 2)!

k!(n+N − 2)!

]

P
−N/2+1
k+N/2−1(x)

−
N/2−2
∑

k=0

(−)k+n+N/2 2k + 1

(n+N/2− k − 1)(k + n+N/2)
P

−N/2+1
k (x). (A.10)

If, in turn, N is an odd natural number greater than 1, then from Eqs. (3.44) and (3.45) one obtains

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

=
2

π
Q

−N/2+1
n+N/2−1(x) arccosx

−
(

N−3
2

)

!

2N/2−2
√
π

(

1− x2
)−N/4+1/2

(N−3)/2
∑

k=0

(−)k
(k + n)!

k!
(

k + n+ N−1
2

)

!
(

N−3
2 − k

)

!

×
[

ψ
(

k + n+ N+1
2

)

− ψ(k + n+ 1)
]

sin[(2k + n+ 1) arccosx] (A.11)

and

∂P
−N/2+1
ν (x)

∂ν

∣

∣

∣

∣

∣

ν=n+N/2−1

=
2

π
Q

−N/2+1
n+N/2−1(x) arccosx+ ψ(n+ 1)P

−N/2+1
n+N/2−1(x)

−
√

2

π
n!

(N−3)/2
∑

k=0

(

k + N−3
2

)

!ψ
(

k + n+ N+1
2

)

2kk!
(

k + n+ N−1
2

)

!
(

N−3
2 − k

)

!

× sin
[(

k + n+ N−1
2

)

arccosx+
(

k − N−3
2

)

π
2

]

(1− x2)k/2+1/4
, (A.12)

where

P
−N/2+1
n+N/2−1(x) =

(

N−3
2

)

!

2N/2−2
√
π

(

1− x2
)−N/4+1/2

(N−3)/2
∑

k=0

(−)k
(k + n)!

k!
(

k + n+ N−1
2

)

!
(

N−3
2 − k

)

!

× sin[(2k + n+ 1) arccosx] (A.13)
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or, equivalently,

P
−N/2+1
n+N/2−1(x) =

√

2

π
n!

(N−3)/2
∑

k=0

(

k + N−3
2

)

!

2kk!
(

k + n+ N−1
2

)

!
(

N−3
2 − k

)

!

× sin
[(

k + n+ N−1
2

)

arccosx+
(

k − N−3
2

)

π
2

]

(1− x2)k/2+1/4
(A.14)

and also

Q
−N/2+1
n+N/2−1(x) =

√
π
(

N−3
2

)

!

2N/2−1

(

1− x2
)−N/4+1/2

(N−3)/2
∑

k=0

(−)k
(k + n)!

k!
(

k + n+ N−1
2

)

!
(

N−3
2 − k

)

!

× cos[(2k + n+ 1) arccosx] (A.15)

or, equivalently,

Q
−N/2+1
n+N/2−1(x) =

√

π

2
n!

(N−3)/2
∑

k=0

(

k + N−3
2

)

!

2kk!
(

k + n+ N−1
2

)

!
(

N−3
2 − k

)

!

×cos
[(

k + n+ N−1
2

)

arccosx+
(

k − N−3
2

)

π
2

]

(1− x2)k/2+1/4
. (A.16)
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