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Abstract

In the recent paper [J. Phys. A 44 (2011) 065203], we have arrived at the closed-form
expression for the Green’s function for the partial differential operator describing propagation
of a scalar wave in an N-dimensional (N > 2) Maxwell fish-eye medium. The derivation
has been based on unique transformation properties of the fish-eye wave equation under the
hyperspherical inversion. In this communication, we arrive at the same expression for the fish-
eye Green’s function following a different route. The alternative derivation we present here
exploits the fact that there is a close mathematical relationship, through the stereographic
projection, between the wavized fish-eye problem in RY and the problem of propagation of
scalar waves over the surface of the N-dimensional hypersphere.
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In the recent paper [I], we have constructed the closed-form expression for the Green’s function
for the partial differential operator describing propagation of a scalar wave in an N-dimensional
(N > 2) Maxwell fish-eye medium. Our considerations, inspired by an earlier work of Demkov and
Ostrovsky [2], have been based on the use of unique transformation properties of the scalar fish-eye
wave equation under the hyperspherical inversion. In this communication, we show it is possible
to arrive at the same representation of the fish-eye Green’s function proceeding along a different
but, we believe, equally elegant route. The reasoning we present below is conceptually rooted in
the brilliant observation made several decades ago by Carathéodory [3], who pointed out, in the
context of geometrical optics, that the remarkable properties of the Maxwell fish-eye are related to
the one-to-one stereographic-projection correspondence between propagation in that medium and
the free motion on the sphere (cf also Refs. [4], [5]).

To begin, we observe that the fish-eye Green’s function in RY, N > 2, solves the inhomogeneous
partial differential equation
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where VD%N is the Laplace operator in RY with respect to coordinates of the observation point 7,
r’ is the point where the unit delta source is located, p > 0 and v € C. After introducing the
hyperspherical coordinates {r, Qy_1}, with r = |r| and with Qy_; standing collectively for N — 1
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Figure 1: The transformation (3] is the inverse stereographic projection of the space RY onto the
hypersphere Sf)V of radius p.

angles characterizing the orientation of the radius vector = (and similarly for '), Eq. (1)) casts into
the form
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where ngfl is the Laplace-Beltrami operator on the unit hypersphere S¥~!. Now we make the
most crucial step in our reasoning and switch from the radial variables r and ' to the angular
variables 6 and 6, according to
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the angular coordinate ensembles Q1 and Qf,_; remaining unchanged. The geometrical meaning
of the transformation (3)) becomes obvious after a glance at Fig. [T} this is the inverse stereographic
projection of the space R™ onto the hypersphere Sf)V of radius p, the space to be projected being the
equatorial hyperplane of the hypersphere. Since, in view of Eq. [3)) and of the well-know properties
of the Dirac delta, it holds that
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the transformation in question changes Eq. () into
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Both the differential operator on the left-hand side and the multiplier of the deltas on the right-
hand side of Eq. (@) look complicated. However, a remarkable simplification is achieved after one
replaces the Green’s function G, (r, ') by the function G, _ /241 (x5, QY ), the two being related
by
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Here, Qy stands for the set {0n,Qn_1} (and similarly for Q;); the reason for attaching the
particular subscript to G will become clear shortly. Insertion of Eq. () into Eq. (), followed by
some obvious rearrangements, results in
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The first three terms in the square bracket on the left-hand side of Eq. ([{l) are immediately recog-
nized to form the Laplace-Beltrami operator on the unit hypersphere S™V:

02 ) Vin_s
W—I—(N—l)cot@]v—-l- s
N

—5 = 2 N >2), 8
(96‘]\7 Sin2 6‘]\] s ( ) ( )

while the expression on the right-hand side of Eq. () is simply the Dirac delta on SV:
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Hence, with the definition
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Eq. [@) may be rewritten compactly as
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This is the equation defining the Green’s function for the Helmholtz operator on the hypersphere
S¥; it has been studied by us in Ref. [6]. There, it has been shown that the solution to Eq. () is
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where C¢(§) is the Gegenbauer function, Z(Q2y, Q') is the angle between the directions Qy and
'y, while
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is the area of SV. Hence, on invoking Eq. (@), we see that the closed-form representation of the
fish-eye Green’s function in RY is
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To accomplish the task fully, we have to express the right-hand side of Eq. (I4)) in terms of the
radius vectors 7 and =’ instead of the hyperangles Qx and /. To this end, at first we observe
that the cosine of the angle Z(Qx, Q%) may be written as
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However, from Eq. ([3]) it follows that
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(and similarly for cos 6y and sin ), so that
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Furthermore, invoking Eq. [B) again, we see that
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(and similarly for sin O 20). Plugging Egs. (I8) and (I9) into Eq. (I4), we eventually arrive at

2p°(r —1')? )

N 2

! 1+

o) = — 2 T () v N/?H( (4 M) £ p7) (20)
v\T, r(N=1)/2gip [7r (% _ )} (r2+p )N/271(T/2+p2)N/271

This representation of the fish-eye Green’s function in R is identical with the one found by us in
Ref. [1, Eq. (3.42)] using the hyperspherical inversion technique.
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