Alternative construction of the closed form of the Green's function for the wavized Maxwell fish-eye problem

Atomic Physics Division, Department of Atomic Physics and Luminescence, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland email: radek@mif.pg.gda.pl

July 12, 2011

Abstract

In the recent paper [J. Phys. A 44 (2011) 065203], we have arrived at the closed-form expression for the Green's function for the partial differential operator describing propagation of a scalar wave in an N-dimensional $(N \geqslant 2)$ Maxwell fish-eye medium. The derivation has been based on unique transformation properties of the fish-eye wave equation under the hyperspherical inversion. In this communication, we arrive at the same expression for the fisheye Green's function following a different route. The alternative derivation we present here exploits the fact that there is a close mathematical relationship, through the stereographic projection, between the wavized fish-eye problem in \mathbb{R}^{N} and the problem of propagation of scalar waves over the surface of the N-dimensional hypersphere.

Key words: Maxwell's fish-eye problem; Green's function; scalar wave optics; gradient-index (GRIN) optics
PACS: 02.30.Jr, 02.30.Gp, 42.25.Bs, 42.79.Ry
MSC: 35J08, 78A10
In the recent paper [1], we have constructed the closed-form expression for the Green's function for the partial differential operator describing propagation of a scalar wave in an N-dimensional $(N \geqslant 2)$ Maxwell fish-eye medium. Our considerations, inspired by an earlier work of Demkov and Ostrovsky [2], have been based on the use of unique transformation properties of the scalar fish-eye wave equation under the hyperspherical inversion. In this communication, we show it is possible to arrive at the same representation of the fish-eye Green's function proceeding along a different but, we believe, equally elegant route. The reasoning we present below is conceptually rooted in the brilliant observation made several decades ago by Carathéodory [3], who pointed out, in the context of geometrical optics, that the remarkable properties of the Maxwell fish-eye are related to the one-to-one stereographic-projection correspondence between propagation in that medium and the free motion on the sphere (cf also Refs. [4, [5]).

To begin, we observe that the fish-eye Green's function in $\mathbb{R}^{N}, N \geqslant 2$, solves the inhomogeneous partial differential equation

$$
\begin{equation*}
\left[\boldsymbol{\nabla}_{\mathbb{R}^{N}}^{2}+\frac{4 \nu(\nu+1) \rho^{2}}{\left(r^{2}+\rho^{2}\right)^{2}}\right] G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\delta^{(N)}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \tag{1}
\end{equation*}
$$

where $\boldsymbol{\nabla}_{\mathbb{R}^{N}}^{2}$ is the Laplace operator in \mathbb{R}^{N} with respect to coordinates of the observation point \boldsymbol{r}, \boldsymbol{r}^{\prime} is the point where the unit delta source is located, $\rho>0$ and $\nu \in \mathbb{C}$. After introducing the hyperspherical coordinates $\left\{r, \Omega_{N-1}\right\}$, with $r=|\boldsymbol{r}|$ and with Ω_{N-1} standing collectively for $N-1$

Figure 1: The transformation (3) is the inverse stereographic projection of the space \mathbb{R}^{N} onto the hypersphere \mathbb{S}_{ρ}^{N} of radius ρ.
angles characterizing the orientation of the radius vector \boldsymbol{r} (and similarly for \boldsymbol{r}^{\prime}), Eq. (1) casts into the form

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{N-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \nabla_{\mathbb{S}^{N-1}}^{2}+\frac{4 \nu(\nu+1) \rho^{2}}{\left(r^{2}+\rho^{2}\right)^{2}}\right] G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{\delta\left(r-r^{\prime}\right) \delta^{(N-1)}\left(\Omega_{N-1}-\Omega_{N-1}^{\prime}\right)}{r^{(N-1) / 2} r^{\prime(N-1) / 2}} \tag{2}
\end{equation*}
$$

where $\boldsymbol{\nabla}_{\mathbb{S}^{N-1}}^{2}$ is the Laplace-Beltrami operator on the unit hypersphere \mathbb{S}^{N-1}. Now we make the most crucial step in our reasoning and switch from the radial variables r and r^{\prime} to the angular variables θ_{N} and θ_{N}^{\prime}, according to

$$
\begin{equation*}
\cot \frac{\theta_{N}}{2}=\frac{r}{\rho}, \quad \cot \frac{\theta_{N}^{\prime}}{2}=\frac{r^{\prime}}{\rho} \quad\left(0 \leqslant \theta_{N}, \theta_{N}^{\prime} \leqslant \pi\right) \tag{3}
\end{equation*}
$$

the angular coordinate ensembles Ω_{N-1} and Ω_{N-1}^{\prime} remaining unchanged. The geometrical meaning of the transformation (3) becomes obvious after a glance at Fig. [1] this is the inverse stereographic projection of the space \mathbb{R}^{N} onto the hypersphere \mathbb{S}_{ρ}^{N} of radius ρ, the space to be projected being the equatorial hyperplane of the hypersphere. Since, in view of Eq. (3) and of the well-know properties of the Dirac delta, it holds that

$$
\begin{equation*}
\delta\left(r-r^{\prime}\right)=\frac{2}{\rho} \sin \frac{\theta_{N}}{2} \sin \frac{\theta_{N}^{\prime}}{2} \delta\left(\theta_{N}-\theta_{N}^{\prime}\right) \tag{4}
\end{equation*}
$$

the transformation in question changes Eq. (2) into

$$
\begin{array}{r}
{\left[\frac{\partial^{2}}{\partial \theta_{N}^{2}}+\left(\cot \frac{\theta_{N}}{2}-\frac{N-1}{\sin \theta_{N}}\right) \frac{\partial}{\partial \theta_{N}}+\frac{\boldsymbol{\nabla}_{\mathbb{S}^{N-1}}^{2}}{\sin ^{2} \theta_{N}}+\nu(\nu+1)\right] G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)} \\
=\frac{1}{2 \rho^{N-2}} \frac{\delta\left(\theta_{N}-\theta_{N}^{\prime}\right) \delta^{(N-1)}\left(\Omega_{N-1}-\Omega_{N-1}^{\prime}\right)}{\sin \frac{\theta_{N}}{2} \cot ^{(N-1) / 2} \frac{\theta_{N}}{2} \sin \frac{\theta_{N}^{\prime}}{2} \cot ^{(N-1) / 2} \frac{\theta_{N}^{\prime}}{2}} \tag{5}
\end{array}
$$

Both the differential operator on the left-hand side and the multiplier of the deltas on the righthand side of Eq. (5) look complicated. However, a remarkable simplification is achieved after one replaces the Green's function $G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ by the function $\mathcal{G}_{\nu-N / 2+1}\left(\Omega_{N}, \Omega_{N}^{\prime}\right)$, the two being related by

$$
\begin{equation*}
G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\left(\frac{2}{\rho}\right)^{N-2} \sin ^{N-2} \frac{\theta_{N}}{2} \sin ^{N-2} \frac{\theta_{N}^{\prime}}{2} \mathcal{G}_{\nu-N / 2+1}\left(\Omega_{N}, \Omega_{N}^{\prime}\right) \tag{6}
\end{equation*}
$$

Here, Ω_{N} stands for the set $\left\{\theta_{N}, \Omega_{N-1}\right\}$ (and similarly for Ω_{N}^{\prime}); the reason for attaching the particular subscript to \mathcal{G} will become clear shortly. Insertion of Eq. (6) into Eq. (5), followed by some obvious rearrangements, results in

$$
\begin{align*}
{\left[\frac{\partial^{2}}{\partial \theta_{N}^{2}}+(N-1) \cot \theta_{N} \frac{\partial}{\partial \theta_{N}}+\frac{\nabla_{\mathbb{S}^{N-1}}^{2}}{\sin ^{2} \theta_{N}}+(\nu\right.} & \left.\left.-\frac{N}{2}+1\right)\left(\nu+\frac{N}{2}\right)\right] \mathcal{G}_{\nu-N / 2+1}\left(\Omega_{N}, \Omega_{N}^{\prime}\right) \\
& =\frac{\delta\left(\theta_{N}-\theta_{N}^{\prime}\right) \delta^{(N-1)}\left(\Omega_{N-1}-\Omega_{N-1}^{\prime}\right)}{\sin ^{(N-1) / 2} \theta_{N} \sin ^{(N-1) / 2} \theta_{N}^{\prime}} \tag{7}
\end{align*}
$$

The first three terms in the square bracket on the left-hand side of Eq. (7) are immediately recognized to form the Laplace-Beltrami operator on the unit hypersphere \mathbb{S}^{N} :

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \theta_{N}^{2}}+(N-1) \cot \theta_{N} \frac{\partial}{\partial \theta_{N}}+\frac{\boldsymbol{\nabla}_{\mathbb{S}^{N-1}}^{2}}{\sin ^{2} \theta_{N}} \equiv \nabla_{\mathbb{S}^{N}}^{2} \quad(N \geqslant 2) \tag{8}
\end{equation*}
$$

while the expression on the right-hand side of Eq. (7) is simply the Dirac delta on \mathbb{S}^{N} :

$$
\begin{equation*}
\frac{\delta\left(\theta_{N}-\theta_{N}^{\prime}\right) \delta^{(N-1)}\left(\Omega_{N-1}-\Omega_{N-1}^{\prime}\right)}{\sin ^{(N-1) / 2} \theta_{N} \sin ^{(N-1) / 2} \theta_{N}^{\prime}}=\delta^{(N)}\left(\Omega_{N}-\Omega_{N}^{\prime}\right) \tag{9}
\end{equation*}
$$

Hence, with the definition

$$
\begin{equation*}
\lambda=\nu-\frac{N}{2}+1 \tag{10}
\end{equation*}
$$

Eq. (7) may be rewritten compactly as

$$
\begin{equation*}
\left[\nabla_{\mathbb{S}^{N}}^{2}+\lambda(\lambda+N-1)\right] \mathcal{G}_{\lambda}\left(\Omega_{N}, \Omega_{N}^{\prime}\right)=\delta^{(N)}\left(\Omega_{N}-\Omega_{N}^{\prime}\right) \tag{11}
\end{equation*}
$$

This is the equation defining the Green's function for the Helmholtz operator on the hypersphere \mathbb{S}^{N}; it has been studied by us in Ref. [6]. There, it has been shown that the solution to Eq. (11) is

$$
\begin{equation*}
\mathcal{G}_{\lambda}\left(\Omega_{N}, \Omega_{N}^{\prime}\right)=\frac{\pi C_{\lambda}^{(N-1) / 2}\left(-\cos \angle\left(\Omega_{N}, \Omega_{N}^{\prime}\right)\right)}{(N-1) S_{N} \sin (\pi \lambda)} \tag{12}
\end{equation*}
$$

where $C_{\lambda}^{\alpha}(\xi)$ is the Gegenbauer function, $\angle\left(\Omega_{N}, \Omega_{N}^{\prime}\right)$ is the angle between the directions Ω_{N} and Ω_{N}^{\prime}, while

$$
\begin{equation*}
S_{N}=\frac{2 \pi^{(N+1) / 2}}{\Gamma\left(\frac{N+1}{2}\right)} \tag{13}
\end{equation*}
$$

is the area of \mathbb{S}^{N}. Hence, on invoking Eq. (6), we see that the closed-form representation of the fish-eye Green's function in \mathbb{R}^{N} is

$$
\begin{equation*}
G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{2^{N-4} \Gamma\left(\frac{N-1}{2}\right)}{\rho^{N-2} \pi^{(N-1) / 2} \sin \left[\pi\left(\frac{N}{2}-\nu\right)\right]} \sin ^{N-2} \frac{\theta_{N}}{2} \sin ^{N-2} \frac{\theta_{N}^{\prime}}{2} C_{\nu-N / 2+1}^{(N-1) / 2}\left(-\cos \angle\left(\Omega_{N}, \Omega_{N}^{\prime}\right)\right) \tag{14}
\end{equation*}
$$

To accomplish the task fully, we have to express the right-hand side of Eq. (14) in terms of the radius vectors \boldsymbol{r} and \boldsymbol{r}^{\prime} instead of the hyperangles Ω_{N} and Ω_{N}^{\prime}. To this end, at first we observe that the cosine of the angle $\angle\left(\Omega_{N}, \Omega_{N}^{\prime}\right)$ may be written as

$$
\begin{equation*}
\cos \angle\left(\Omega_{N}, \Omega_{N}^{\prime}\right)=\cos \theta_{N} \cos \theta_{N}^{\prime}+\sin \theta_{N} \sin \theta_{N}^{\prime} \cos \angle\left(\Omega_{N-1}, \Omega_{N-1}^{\prime}\right) \tag{15}
\end{equation*}
$$

However, from Eq. (3) it follows that

$$
\begin{equation*}
\cos \theta_{N}=\frac{\cot ^{2} \frac{\theta_{N}}{2}-1}{\cot ^{2} \frac{\theta_{N}}{2}+1}=\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \theta_{N}=\frac{2 \cot \frac{\theta_{N}}{2}}{\cot ^{2} \frac{\theta_{N}}{2}+1}=\frac{2 \rho r}{r^{2}+\rho^{2}} \tag{17}
\end{equation*}
$$

(and similarly for $\cos \theta_{N}^{\prime}$ and $\sin \theta_{N}^{\prime}$), so that

$$
\begin{align*}
\cos \angle\left(\Omega_{N}, \Omega_{N}^{\prime}\right) & =1-\frac{2 \rho^{2}\left[r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \angle\left(\Omega_{N-1}, \Omega_{N-1}^{\prime}\right)\right]}{\left(r^{2}+\rho^{2}\right)\left(r^{\prime 2}+\rho^{2}\right)} \\
& =1-\frac{2 \rho^{2}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)^{2}}{\left(r^{2}+\rho^{2}\right)\left(r^{\prime 2}+\rho^{2}\right)} \tag{18}
\end{align*}
$$

Furthermore, invoking Eq. (3) again, we see that

$$
\begin{equation*}
\sin \frac{\theta_{N}}{2}=\frac{1}{\sqrt{\cot ^{2} \frac{\theta_{N}}{2}+1}}=\frac{\rho}{\sqrt{r^{2}+\rho^{2}}} \tag{19}
\end{equation*}
$$

(and similarly for $\sin \frac{\theta_{N}^{\prime}}{2}$). Plugging Eqs. (18) and (19) into Eq. (14), we eventually arrive at

$$
\begin{equation*}
G_{\nu}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{2^{N-4} \Gamma\left(\frac{N-1}{2}\right)}{\pi^{(N-1) / 2} \sin \left[\pi\left(\frac{N}{2}-\nu\right)\right]} \frac{\rho^{N-2} C_{\nu-N / 2+1}^{(N-1) / 2}\left(-1+\frac{2 \rho^{2}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)^{2}}{\left(r^{2}+\rho^{2}\right)\left(r^{\prime 2}+\rho^{2}\right)}\right)}{\left(r^{2}+\rho^{2}\right)^{N / 2-1}\left(r^{\prime 2}+\rho^{2}\right)^{N / 2-1}} \tag{20}
\end{equation*}
$$

This representation of the fish-eye Green's function in \mathbb{R}^{N} is identical with the one found by us in Ref. [1, Eq. (3.42)] using the hyperspherical inversion technique.

References

[1] R. Szmytkowski, Green's function for the wavized Maxwell fish-eye problem, J. Phys. A 44 (2011) 065203 [preprint arXiv:1107.1466
[2] Yu. N. Demkov, V. N. Ostrovsky, Intrinsic symmetry of the Maxwell 'fish-eye' problem and the Fock group for the hydrogen atom, Zh. Eksp. Teor. Fiz. 60 (1971) 2011 [Sov. Phys. JETP 33 (1971) 1083]
[3] C. Carathéodory, Über den Zusammenhang der Theorie der absoluten optischen Instrumente mit einem Satze der Variationsrechnung, Sitzungsberichte der Bayerischen Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Abteilung (1926) 1-18 [reprinted in: C. Carathéodory, Gesammelte mathematische Schriften, Band II (Beck, Munich, 1955), pp. 18197], sections 3 and 4
[4] A. Frank, F. Leyvraz, K. B. Wolf, Hidden symmetry and potential group of the Maxwell fish-eye, J. Math. Phys. 31 (1990) 2757
[5] A. Frank, F. Leyvraz, K. B. Wolf, Potential group in optics: the Maxwell fish-eye system, in: Group Theoretical Methods in Physics, V. V. Dodonov, V. I. Man'ko (eds.), Lecture Notes in Physics 382 (Springer, Berlin, 1991), p. 111
[6] R. Szmytkowski, Closed forms of the Green's function and the generalized Green's function for the Helmholtz operator on the N-dimensional unit sphere, J. Phys. A 40 (2007) 995

