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Thermodynamics of strongly correlating liquids
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We show that for any strongly correlating liquid, i.e., a liquid with strong correlation between virial
and potential energy equilibrium fluctuations in the NV T ensemble, the temperature is product of
a function of the excess entropy per particle and a function of density, T = f(s)g(ρ). It follows that
the liquid’s isomorphs are curves of constant g(ρ)/T and that a Grüneisen type equation of state
applies for the configurational degrees of freedom. Some other simple thermodynamic relations valid
for strongly correlating liquids are also derived. All relations given are approximate.

I. INTRODUCTION

A series of recent papers by the Glass and Time group
introduced and discussed the class of strongly correlating
liquids and its properties [1, 2]. These liquids are defined
by having strong correlations between constant-volume
equilibrium fluctuations of virial W ≡ pV −NkBT (N is
the number of particles) and potential energy U , with a
correlation coefficient above 0.9. TheWU correlation co-
efficient varies with state point, but we found from com-
puter simulations that a system has either poor virial
potential energy correlations in all of its phase diagram
or is strongly correlating at most condensed-phase state
points. Most or all van der Waals liquids and metals are
strongly correlating. In contrast, hydrogen-bonded liq-
uids, strongly ionic liquids, and covalently bonded liquids
are generally not strongly correlating because competing
interactions spoil the WU correlation (except presum-
ably at very high pressure [3]). Theoretical arguments
and numerical evidence show that strongly correlating
liquids are simpler than liquids in general [1]. A re-
cent paper summarizes the most important properties of
strongly correlating liquids [4].
The relative simplicity of strongly correlating liquids

derive from the fact that these liquids are character-
ized by having “isomorphs” in their phase diagram [1, 2],
which are the equivalence classes of the following equiv-
alence relation. Two state points with density and tem-
perature (ρ1, T1) and (ρ2, T2) are isomorphic if all pairs
of “physically relevant” microconfigurations [2] with one
from each state point, which trivially scale into one an-

other [ρ
1/3
1 r

(1)
i = ρ

1/3
2 r

(2)
i ], have proportional configura-

tional Boltzmann factors:

e−U(r
(1)
1 ,...,r

(1)
N

)/kBT1 = C12 e
−U(r

(2)
1 ,...,r

(2)
N

)/kBT2 . (1)

It is understood that the proportionality constant C12

is independent of the microconfigurations. Only inverse-
power law (IPL) liquids have exact isomorphs, but it has
been shown that a liquid is strongly correlating if and
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only if it to a good approximation has isomorphs (Ap-
pendix A of Ref. 2). In Ref. 2 it was further shown that
this happens if and only if the constant potential energy
surface in R3N is invariant along isomorphs; this geomet-
ric characterization, which recently led us to introduce
“NV U dynamics” [5], plays no role below, however.
The invariance along an isomorph of the canonical

probabilities of scaled configurations has several impli-
cations [1, 2]: The excess entropy is isomorph invariant
and so is the isochoric specific heat; the reduced-unit dy-
namics is invariant for both Newtonian and stochastic
dynamics; all reduced-unit static correlation functions,
e.g., the pair correlation function g(r), are isomorph in-
variant. It is important to emphasize that, since the
isomorph concept is approximate (except for IPL sys-
tems), isomorph invariants are also approximate. Like-
wise, the thermodynamic relations derived below are also
generally approximate. All isomorph invariants are ex-
act invariants for IPL systems, but not all IPL isomorph
invariants give rise to general (approximate) isomorph
invariants: Only IPL isomorph invariants like entropy,
dynamics, etc, which are independent of the value of the
constant C12 (which is unity in IPL systems) give rise to
general isomorph invariants [1, 2, 4].
This note focuses on the thermodynamics of strongly

correlating liquids, starting from the isomorph invariance
of excess entropy and isochoric specific heat. Below, all
thermodynamic quantities are excess quantities, i.e., in
excess of those of an ideal gas at the same density and
temperature. Thus S is the excess entropy (a quantity
that is negative because the liquid has more order than
an ideal gas at same density and temperature), CV is the
excess isochoric specific heat, U is the potential energy,
i.e., the excess energy, p is henceforth the excess pressure,
i.e., p =W/V , βV ≡ (∂p/∂T )V is the pressure coefficient
of the excess pressure, etc. Small letters denote intensive
quantities, for instance s ≡ S/N and cV ≡ CV /N .

II. A THERMODYNAMIC SEPARATION

RELATION CHARACTERIZING STRONGLY

CORRELATING LIQUIDS

As mentioned, both the isochoric specific heat CV and
the entropy S are invariant along an isomorph. The proof
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of this is staightforward [2]: The entropy is determined by
the canonical probabilities, and since these are identical
for scaled microconfigurations of two isomorphic state
points, entropy is an isomorph invariant. According to
Einstein’s formula one has CV = 〈(∆U)2〉/kBT

2, from
which CV is easily proved to be an isomorph invariant
by utilizing the logarithm of Eq. (1).
That S and CV are invariant along the same curves in

the phase diagram implies that CV is a function of S:

CV = φ(S) . (2)

Thus one has T (∂S/∂T )V = φ(S), or at constant volume:

dS

φ(S)
=

dT

T
. (3)

Integrating this leads to an expression of the form F (S) =
ln(T ) + k(V ), which implies T = exp[F (S)] exp[−k(V )]
or

T = f(S)h(V ) = f(S)g(ρ) . (4)

The generic version of this involves only intensive quan-
tities s = S/N :

T = f(s)g(ρ) . (5)

This is the fundamental separation identity valid for all
systems with good isomorphs. For more convenient refer-
ence to standard thermodynamics we use below, however,
the version Eq. (4). We have not been able to prove that
Eq. (4) implies a given system is strongly correlating,
but find it likely that this is the case.

III. CONSEQUENCES OF THE

THERMODYNAMIC SEPARATION RELATION

Equation (4) has several consequences:

1. Equation (4) implies Eq. (2).

2. The variable characterizing an isomorph, Γ, may
be chosen as

Γ =
g(ρ)

T
. (6)

3. The (reduced) relaxation time τ may be written
τ = G[g(ρ)/T ] [6].

4. The density-scaling exponent γ is given by

γ =
d ln g

d ln ρ
. (7)

In particular, γ is a function of density only: γ =
γ(ρ).

5. The density-scaling exponent is given by γ =
βV /cV where βV ≡ (∂p/∂T )V [2].

6. U has the form

U = g(ρ)H(S) +A(ρ) (8)

= Tφ(S) + A(ρ) . (9)

7. A Grüneisen-type equation of state applies,

W = γ(ρ)U +Φ(ρ) . (10)

To prove point 1 we differentiate Eq. (4) with re-
spect to temperature at constant volume and use g(ρ) =
T/f(S)

1 = f ′(S)

(

∂S

∂T

)

V

g(ρ) = f ′(S)CV /f(S) . (11)

It follows that CV = f(S)/f ′(S) is a function of the en-
tropy. Point 2 follows from Eq. (4) written as 1/f(S) =
g(ρ)/T combined with the isomorph invariance of en-
tropy. Point 3 follows from the isomorph invariance of
τ . To derive points 4 and 5, recall the definition of the
density-scaling exponent [1, 2]

γ =

(

∂ lnT

∂ ln ρ

)

τ

=

(

∂ lnT

∂ ln ρ

)

S

. (12)

Equation (4) implies d lnT = d ln f(S) + d ln g(ρ). Thus
along an isomorph one has d lnT = d ln g, which via Eq.
(12) implies Eq. (7). In particular, γ is a function of
density only: γ = γ(ρ). In order to derive the thermo-
dynamic expression for γ of point 5 we differentiate Eq.
(4) with respect to volume at constant temperature:

0 = f ′(S)

(

∂S

∂V

)

T

h(V ) + f(S)h′(V ) . (13)

A Maxwell relation implies (∂S/∂V )T = (∂p/∂T )V ≡
βV . Thus, since the isochoric specific heat per unit
volume is given by cV = f(S)/[f ′(S)V ], i.e., f ′(S) =
f(S)/(V cV ), we get

0 =
f(S)

V cV
βV h(V ) + f(S)h′(V ) , (14)

or

βV
cV

= −V
h′(V )

h(V )
= −

d lnh

d lnV
=

d ln g

d ln ρ
= γ . (15)

To prove point 6 we note that (∂U/∂T )V = CV =
ψ(T/g(ρ)), which by integration leads to Eq. (8). Fi-
nally, to derive the Grüneisen equation of state in its
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configuration space version we first note that TdS =
dU + pdV = dU −Wd ln ρ, i.e.,

W =

(

∂U

∂ ln ρ

)

S

. (16)

Combining this with Eq. (8) leads to

W =
dg

d ln ρ
H(S) + ρA′(ρ) (17)

=
dg

d ln ρ

U −A(ρ)

g(ρ)
+ ρA′(ρ) (18)

=
d ln g

d ln ρ
[U −A(ρ)] + ρA′(ρ) (19)

= γ(ρ)U +Φ(ρ) . (20)

IV. TWO FURTHER THERMODYNAMIC

RELATIONS FOR STRONGLY CORRELATING

LIQUIDS

The Helmholtz free energy F has the following form

F = Ta(S) + b(V ) (21)

where a and b are some functions. This result follows
from Eq. (8): F = U − TS = Tφ(S) + A(ρ) − TS =
T (φ(S)− S) +A(ρ) = Ta(S) + b(V ).

The final relation we derive is

U = pa(V ) + b(V ) (22)

where again a and b are generic functions (not the same
as above). The relation follows directly from the config-
urational Grüneisen relation Eq. (10) via the definition
of the virial.
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