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Abstract 
We evaluate the distributed cavity phase and microwave lensing frequency shifts, which were the two largest 
sources of uncertainty for the NPL-CsF2 cesium fountain clock. We report measurements that confirm a 
detailed theoretical model of the microwave cavity fields and the frequency shifts of the clock that they produce. 
The model and measurements significantly reduce the distributed cavity phase uncertainty to 1.1 × 10−16. We 
derive the microwave lensing frequency shift for a cylindrical cavity with circular apertures. An analytic result 
with reasonable approximations is given, in addition to a full calculation that indicates a shift of 6.2 × 10−17. The 
measurements and theoretical models we report, along with improved evaluations of collisional and microwave 
leakage induced frequency shifts, reduce the frequency uncertainty of the NPL-CsF2 standard to 2.3 × 10−16, 
nearly a factor of two lower than its most recent complete evaluation. 

1.Introduction 
The second, the unit of time in the 

International System of units SI, is defined in 
terms of a transition frequency between two 
ground state sublevels of an unperturbed atom of 
caesium 133. A precise determination of this 
frequency is, therefore, of fundamental 
importance in metrology and in timekeeping 
activities. National timescales, as well as the 
timescale disseminated by global navigation 
satellite systems, are normally steered in 
frequency to remain synchronized with the 
International Atomic Time (TAI) and with its 
derivative, the Coordinated Universal Time 
(UTC). The accuracy of TAI/UTC is assured by 
its step interval calibrations performed by 
primary frequency standards (PFS), which 
directly realize the SI second. Currently, the most 
accurate PFS are caesium fountains in which 
laser-cooled atoms are interrogated on their 
ascending and descending passages through a 
microwave cavity. The cavities have a high-Q 
resonance near the 133Cs ground-state hyperfine 
frequency. To date, several Cs fountain PFS have 
been constructed at a number of national timing 
laboratories and contribute to the steering of the 
TAI and UTC [1].  

The accuracy of a particular PFS is estimated 
by evaluating uncertainties of all known 
systematic effects causing frequency shifts of the 
standard. Such effects are related to atomic 
interactions with external fields, collisions 
between atoms, and technical details of the 
construction of the standard’s subsystems, such 
as the microwave cavity [2]. Over recent years, 
there has been a steady improvement in 
performance of the fountain PFS as more subtle 
systematic effects were minimized or evaluated 
with lower uncertainties. This has been possible 
thanks to simultaneous improvements in the 
reliability of operation, stability, and the 
development of an understanding of several 
physical effects. 

At the National Physical Laboratory, atomic 
fountain PFS have been under development for 
several years [3],[4], with a first fountain 

standard contribution to TAI by NPL-CsF1 in 
2005. A second caesium fountain, NPL-CsF2, 
became operational in 2006, and was upgraded 
and rebuilt in 2008 to exploit the cancellation of 
the collisional shift [5]. Compared with its 
predecessor, the environmental parameters of 
NPL-CsF2 are better controlled and its operation 
is more robust. Its first complete accuracy 
evaluation as a PFS gave a total type B 
uncertainty of 4.1 × 10-16 [6]. The largest 
uncertainties were the frequency shifts from 
distributed cavity phase (DCP) and the 
mechanical forces that the microwave standing 
wave exerts on the atomic wavefunctions. This 
paper presents a quantitative evaluation of these 
previously leading uncertainties, and includes 
other recent improvements since [6]. 
2. Distributed cavity phase frequency shift 

The DCP frequency shift is fundamentally a 
Doppler shift. The microwave field in the cavity 
is not a pure standing wave and, because the 
atoms move, both vertically and transversely, 
they see different phases of the microwave field 
during their upward and downward fountain 
traversals through the Ramsey cavity. A 
combination of analytic and finite-element 
models [7][8] has provided an apparently 
complete description of the cavity fields and the 
resulting DCP frequency shifts of the cylindrical 
TE011 cavities that are used in nearly all primary 
fountain clocks [2]. A central feature of the 
model, for both calculating the fields and for 
evaluating the DCP uncertainties, is expanding 
the fields in a Fourier series in the azimuthal 
angle coordinate φ. Each Fourier field 
component contributes to the spatial phase 
variation, produces a DCP frequency shift, and 
its symmetry dictates which physical effects 
contribute. Since the atoms are always near the 
cavity axis (r→0), the fields and phase are 
proportional to rmcos(mφ) to lowest order, and 
therefore only a few terms, m≤2, contribute 
significantly [8]. Measurements at SYRTE have 
stringently confirmed the calculated fields and 
DCP shifts for their fountain [9]. Here we apply 
these models to the NPL-CsF2 fountain and 
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present our measurements that further confirm 
the model and its description of the NPL-CsF2 
DCP shifts. 

The DCP frequency shift of any given PFS 
depends quite specifically on the cavity geometry 
and Q-factor, sizes and positions of the atomic 
cloud (e.g. MOT/molasses), and the particular 
apertures in the fountain. The Ramsey cavity in 
NPL-CsF2 is a cylindrical cavity with a nominal 
diameter and height of 43.0 mm, and a Q of 
19,000. The endcaps have 10 mm diameter bores 
along the vertical axis. To precisely determine 
the cavity geometry, we measured a number of 
cavity resonances. For normal operation, the 
cavity’s TE011 resonance is tuned to the atomic 
clock’s frequency within 30 kHz by controlling 
the temperature of the surrounding flight tube. 
The microwave power is supplied to the cavity 
through two rectangular waveguide transformers 
and coupled to the cavity by opposing 3 mm 
diameter holes in the cavity sidewalls at the 
midplane (φ = 0 and π). Other inputs for the 
model of the fountain, for example, the cavity 
and aperture positions, were directly measured or 
calculated from the fountain geometry. We next 
describe the contributions from the three lowest 
Fourier terms. 

The NPL-CsF2 Ramsey cavity is fed 
symmetrically for normal clock operation. This 
excites the Fourier field components with even 
m. The m = 0 component represents an 
azimuthally symmetric phase variation due to 
power flowing radially inward from the cavity 
midplane and being absorbed on the endcaps . 
This power flow implies very small transverse 
phase variations and large longitudinal phase 
deviations [7]. As a result, the DCP shift at low 
microwave amplitude b is negligible (fig. 1a 
inset, solid curve) but the shifts are generally 
large at elevated amplitudes (fig. 1a, solid curve) 
[8]. Here δP is the change in transition 
probability, δP = −δν dP/dν, where δν is the 
frequency shift and dP/dν is the Ramsey fringe 
slope, approximately −π/2ΔνFWHM at optimal 
amplitude and a detuning of ΔνFWHM/2, where 
ΔνFWHM is a full linewidth of the fringe. The 
microwave amplitude at b=1 corresponds to a π/2 
pulse on average for atoms uniformly 
illuminating the cavity aperture. Because the 
atomic cloud is small and centred on the upward 
passage, the atoms on average experience more 
than a π/2 pulse at b=1, and thus (n=1,3,5…)×π/2 
pulses (black dots), where the Ramsey fringe 
contrast is largest, occur at b’s somewhat less 
than 1,3,5… We use these points and the 
measured Ramsey fringe contrast to determine 
the microwave amplitude b. In the inset in fig. 
1a, the calculated m=0 DCP frequency shift is 
1.6 × 10-17 at n=1 and we correct the clock for 
this bias. The measurements in fig. 1c do not 
exclude that the endcaps could have different 
surface conductivities, at the level of 20% [9]. 
Such a difference would produce an m=0 DCP 

shift of 1.6 × 10-17 at n=1, which we take as the 
m=0 DCP uncertainty. 

Quadrupolar phase variations (m=2) may also 
produce a significant DCP frequency bias for 
cavities with only two feeds [8][9]. Both cloud 
offsets and non-uniform state detection produce 
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Fig. 1. DCP frequency shifts of even azimuthal 
modes: (a) Predicted m=0 contribution to the 
change in transition probability δP as a function 
of the scaled microwave field amplitude b, 
described in the text. The solid (dashed) curve is 
for an atomic cloud launched on (1.1 mm off) axis 
with a 7 mm beam waist detection laser 
propagating perpendicular to the feeds. The black 
dots correspond to the locally maximum Ramsey 
fringe contrast for (1,3,5,…) × π/2 pulses. The 
inset shows δP near optimal field amplitude (b≈1); 
the two curves are indistinguishable. (b) Predicted 
m=2 DCP shifts. The curves and dots are as in (a), 
but with uniform state detection for the 1.1 mm 
offset cloud (dashed curve). (c) Measured (open 
diamonds) and predicted (solid curve) DCP shifts. 
The predicted curve is the sum of the m=0 and 
m=2 solid curves in (a) and (b). 
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m=2 DCP shifts. Our state detection laser beams 
propagate perpendicularly to the feeds and have a 
Gaussian transverse intensity profile with a 1/e2 
radius of 7 mm. Assuming a cloud launched on 
the cavity axis (fig. 1b, solid curve) and spatially 
uniform fluorescence collection, the model gives 
a frequency shift of 13.8 × 10-17. We correct the 
fountain frequency for this bias and take half of 
its value as the uncertainty. We estimate that the 
fluorescence collection has a Gaussian 1/e2 
radius of at least 2 cm, which would reduce the 
calculated shift by less than 10%. An additional 
and uncorrelated uncertainty of 3.6 × 10-17 (fig. 
1b, dashed curve) follows from a 1.1 mm cloud 
position uncertainty (see below). Combined, 
these give a total m=2 DCP uncertainty of 7.8 × 
10−17 (table 1).  

In fig. 1c the fountain’s frequency was 
measured with respect to optimal amplitude 
(n=1) for 3≤b≤9. The fountain was operated 
alternately at elevated and optimal amplitudes 
and the data are corrected for the small m=2 shift 
at optimal power (n=1). Significant changes in 
the fountain’s frequency at elevated amplitudes 
could result from other effects, including 
microwave leakage [10], spurious components in 
the microwave spectrum [11], and collisional 
shifts [12]. We have previously shown that 
neither the leakage nor the spurs produce 
measurable frequency shifts of NPL-CsF2 [6], 
but the collisional frequency shift does depend 
on b. We therefore measure and correct for the 
collisional shift at each b, additionally alternating 
between high and low atomic densities. This 
significantly increases the statistical error bars, 
making them comparable to the predicted shifts. 
The data and model agree, with some systematic 
deviation for b>8, where fast longitudinal spatial 
phase variations contribute. We cannot exclude 
that these could be caused by an inhomogeneous 
cavity wall resistance [9].  

The m=1 field component represents a phase 
gradient and power flow from one side of the 
cavity to the other, e.g. φ=0 to φ=π. Feed 
imbalances create an m=1 field component and it 
essentially only produces a DCP shift if the 
centres of mass for the ascending and descending 
atomic clouds are displaced. Tilting the fountain 
away from vertical, by several mrad, and feeding 
the cavity with only one feed, alternately φ=0 or 
π, gives measureable frequency differences in 
fig. 2 [9][13]. Again, the model predicts a 
significant dependence on microwave amplitude 
b, which we observe. At optimal amplitude the 
frequency shift is 1.25 × 10-15 (δP = 18 ppm) for 
a 100% imbalance in the feed amplitudes and a 
2.5 mrad tilt of the fountain. For normal clock 
operation, the m=1 DCP shift is minimized by 
balancing the feeds and minimizing the tilt. 

The measurements of m=1 DCP frequency 
shifts in fig. 2 are due to the feeds and do not 
include possible phase gradients from 
inhomogeneous wall losses or differences in the 
reflectivities of the feeds [9]. To account for 
these, we consider two cases for the m=1 phase 
gradients: parallel and perpendicular to the feed 
axis, and we measure the tilt sensitivity of the 
fountain frequency Δνtilt in these two orthogonal 
directions as in [9]. We initially balance the feeds 
by adjusting them to give the same pulse areas 
(π/4) on the upward passage. We then check the 
tilt sensitivity at optimal power using the NPL 
hydrogen maser HM2 as a frequency reference. 
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Fig. 3. The m=1 DCP shift measured by feeding 
alternately at φ=0 or π as in fig. 2, for several field 
amplitudes b, versus fountain tilt. The tilts were 
nominally ±2.5 mrad. Linear fits determine the 
actual vertical to be (–0.55 ± 0.33) mrad. 
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Fig. 2. Predicted and measured m=1 DCP shifts. 
We take half the frequency difference between 
feeding the cavity alternately at φ=0 or π with a 
2.5 mrad fountain tilt (solid curve and open 
squares). The dashed curve is for no tilt and a 1.1 
mm offset of the launched cloud from the fountain 
axis. Black dots are as in fig.1.  Table 1. DCP frequency shifts of azimuthal 

Fourier terms. 
 

 
azimuthal term          shift /10-16  uncertainty / 10-16 

m = 0  (calculated)    0.16   0.16 
m = 1  || (measured)     -   0.61 

 ⊥ (measured)     -     0.47 
m = 2  (calculated)     1.38   0.78 

total DCP frequency shift  1.54   1.11 
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Its instability remained below the CsF2 
uncertainty for averaging times of more than one 
day, and therefore, by alternating the tilt between 
two extreme values, ±3.0 mrad, for many days, 
the maser long-term drift is rejected. Within the 
statistical uncertainty, no significant tilt 
sensitivity was found in either tilt direction: Δνtilt

 
|| = (1.2 ± 1.4) × 10-16 mrad−1 and Δνtilt

⊥ = (1.1 ± 
1.1) × 10-16  mrad−1. If there was a significantly 
nonzero value of Δνtilt

 ||, it would be minimized 
by balancing the feed amplitudes [9]. 

We null the tilt of the fountain for phase 
gradients along the feeds using differential 
measurements as in fig. 2, for several field 
amplitudes at two large tilts (fig. 3) [9][13]. The 
zero-crossing in fig. 3 defines vertical for m=1 
DCP shifts with an uncertainty of ±0.33 mrad. 
We note that the tilt offset in fig. 3 is much larger 
than the 10 μrad resolution of our precision spirit 
levels. The tilt uncertainty, multiplied by the 
quadrature sum of Δνtilt

 || and its uncertainty, 
gives our m=1 DCP uncertainty for phase 
gradients along the feeds of ± 6.1×10-17. 

For tilts perpendicular to the feeds, we cannot 
null the tilt using measured m=1 DCP shifts as 
above with our current two-feed Ramsey cavity. 
Instead, we determine the initial position of the 
MOT by carefully aligning the vertical laser 
cooling beams using small diaphragms and the 
retroreflection from the surface of a liquid.  We 
find that the cloud is launched on the vertical 
axis of the fountain to within 1 mm. After 
subsequent realignment or rebalancing of the 
cooling beams, the atomic cloud’s position 
changed by less than 0.5 mm, as observed with a 
triggered camera [14]. Adding these two position 
uncertainties in quadrature gives an offset 
uncertainty of 1.1 mm. Since the descending 
atomic cloud is centred in the detection region 
because the number of detected atoms is 
maximized by adjusting the fountain’s tilt (fig. 

4), we obtain a perpendicular tilt uncertainty of 
±0.3 mrad. This value is coincidentally similar to 
the uncertainty of the parallel tilt obtained from 
the interpolations of the tilt sensitivity (fig. 3). 
Adding the parallel and perpendicular m=1 DCP 
uncertainties in quadrature gives our total m=1 
DCP uncertainty of ±7.7 × 10−17. Table 1 
summarizes the significant DCP error 
contributions for NPL-CsF2 that give an overall 
DCP frequency shift uncertainty of ±1.1 × 10-16. 

The phases of the two cavity feeds are 
balanced to within 10 mrad using the atoms as a 
probe. When the cavity is tuned near resonance, 
the DCP frequency shift from phase imbalances 
is suppressed [8][9]. The NPL-CsF2 cavity 
tuning is maintained within Γ/15 of resonance, 
where Γ is the resonance full width. The 
suppression of the DCP shifts is 1/1500 of  that 
for a single feed, giving a negligible DCP shift of 
1 × 10−18. Note that this negligible shift is 
included in the measurement of  Δνtilt

 || above. 
A DCP shift could be produced by potential 

machining burrs in the cutoff waveguides that 
could produce locally large fields and modify the 
density distribution [8][9]. However, the small 
initial atomic cloud size in NPL-CsF2 and the 
lower cavity aperture limit atoms from travelling 
within 100 μm of the “corners” formed by the 
cutoff waveguides and the cavity endcaps. Here 
we consider atoms launched from the 1/e width 
of the cloud when the cloud is displaced from the 
cavity axis by 1.1mm, and a fountain tilt of 0.33 
mrad. Atoms that are closer than 100 μm to the 
corners do not pass through the lower selection 
cavity aperture [6]. Since no burrs are believed to 
extend 100 μm into the cutoff waveguides, 
potential burrs could not produce a DCP shift [8]. 
3. Microwave lensing frequency shift 

The microwave standing-wave in the Ramsey 
cavity exerts mechanical dipole-forces on the 
atomic wavefunctions as they pass through the 
cavity. The field acts as a weak positive 
(negative) lens on the wavefunctions of the 
atomic dressed states ( )2 1  during the first 
cavity traversal [15]. At the second Ramsey 
cavity passage, the field is phase shifted by 
−(+)π/2 and transfers dressed state ( )1 2  to the 
final state of the clock transition. Thus, for a 
positive detuning, more final-state atomic 
population passes through the cavity aperture 
than for a negative detuning, producing a 
positive frequency shift of the Ramsey fringe. 
Another treatment described this shift as the 
recoil shift from a microwave photon [16]. 
However, the atomic wavefunctions are 
restricted to much less than a microwave 
wavelength. Thus, there are not discreet recoils 
but instead a lensing of the wavefunctions, which 
in turn implies that apertures in the fountain are 
essential for a proper treatment of this frequency 
shift. Nonetheless, the size scale for this 
frequency shift is of order of the recoil shift for a 
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Fig. 4. Integrated detection time-of-flight signal 
(diamonds) as a function of the nominal tilt of the 
fountain, perpendicular to the microwave cavity 
feed axis. To precisely determine the tilt angle 
that maximizes the detection signal, a parabola 
was fit (solid curve).  
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microwave photon [15]. This simplistic, usually 
conservative, estimate was used for the first 
accuracy evaluation of the NPL-CsF2 and, with 
the improved DCP uncertainty above, it would 
be the largest contribution to its uncertainty. 
Here we explicitly extend the results of [15] to 
describe circular cavity apertures, and also 
include the higher order terms and detection non-
uniformities. 

It is helpful to first give an approximate 
analytic result, especially since it is often 
reasonably accurate. Ref [15] gives a simple 
analytic result for rectangular apertures and 
cylindrical or rectangular cavities, for dipole 
forces in just one or both transverse directions. 
The approximations for that analytic result were: 
terms only to second order in the microwave 
wave vector k, uniform detection, and neglecting 
the clipping by the cavity apertures on the 
upward passage and the decrease of the Ramsey 
fringe contrast at high amplitudes. The physical 
behaviours in [15] are unchanged for circular 
apertures and a cylindrical cavity, for which we 
get, with the same approximations: 

( ) ( )
( )2

2
2

22 2
0 1 2 2 11

2 141
2

2sin 12 L

L L

a
R

w
L

a w t t u t tb
t tb w e

δν ηπ
πν η

+ −
=

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟

⎝ ⎠

.       (1) 

Here the usual recoil frequency shift 
is νR=hν2/2mCsc2, a is the radius of the cavity 
apertures, w0 is the 1/e cloud radius at launch, 
u=(2kBT/mCs)½ is the thermal velocity, t1,2,2L are 
the times at which the atoms pass through the 
Ramsey cavity and the lower cavity aperture on 
the downward passage, w2L

2=w0
2+u2t2L

2 gives the 
final cloud size at the lower cavity aperture, b1,2 
is the scaled microwave amplitude, and η=1.120 
for a=5mm [8]. Eq. (1) gives δν/ν=6.25×10-17 for 
NPL-CsF2, about 40% of the simplistic 
microwave recoil shift, with a=5mm, w0=1.1mm, 
u=15mm/s, t1=0.18s, t2=0.7s, t2L=0.837s, and b1 
= 0.9386. 

Our treatment begins with the change in 
transition probability [15][17],  
 ( ) ( )2 2

2 2 2
1 2 1 sin

2 d dP r W r dz dr
N

δ θ⎡ ⎤= Ψ − Ψ ⎡ ⎤⎣ ⎦⎣ ⎦∫   

including the detection probability Wd(rd). Here 
N is the number of detected atoms defined below, 
all vectors are transverse, θ(r2)= (π/2)b2ηJ0(k r2) 
is the position-dependent tipping angle of the 
downward Ramsey pulse at transverse position r2 
[8], and k=2πν/c. We can consider the 
wavefunction for each atom as being localized to 
within an optical wavelength when launched by 
the molasses cooling light [15]. Thus, the 
wavefunctions are from many uncorrelated, 
effectively point sources, each with a velocity 
spread, WT(v), given by the temperature. We can 
therefore use a semi-classical propagation of the 
wavefunctions that are straight-line trajectories, 
except for a deflection during the first Ramsey 

interaction. We integrate over the trivial z2 
dimension and the initial transverse source’s 
spatial distribution Wr0(r0). We then change 
variables so that the integrations are over the 
transverse velocity and the aperture at the first 
Ramsey interaction r1. 

( )

( ) ( ) ( ) ( )

( ) ( ) { }
( )

0

1 2 1

2
2 1

0 2 1
,

1 1 1

0 1 1 1 1 1 1

4
        sin ,

2,2 , ,

,

L L

L

T r d d
r a r r a

L L

t t
P

N
W v W r r W r dvdr

r r v v r t t L d

r r vt r r v t t
β β

δ

θ

δ β

± < <

−
= −

× ± ⎡ ⎤⎣ ⎦

= + ± − ∈⎡ ⎤⎣ ⎦
= − = − −

∑ ∫ ∫
 (2)  

Here +(−) corresponds to dressed states ( )1 2 , 
t1L is the time the atoms pass the lower cutoff 
waveguide aperture on the upward traversal, and 
δv(r1) is the position-dependent velocity change 
during the upward cavity traversal, which 
includes terms to all orders in k, 

( ) ( )2
1 1 0 12

Rv r b J kr
k
υδ ηπ= − ∇ .  (3) 

It is convenient to now change variables from 
velocity to the undeflected position of an atom at 
the lower aperture on the downward passage, 
r2L0=r1+ v (t2L−t1). 

We expand (2) and keep terms only to first 
order in νR. We get a line-integral around the 
aperture at t2L and a surface integral over that 
aperture, with both being integrated over the 
surface r1. 

 

( ) ( ) ( )

( )
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( ) ( )
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( )

1
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2

2 1 1 1 2 0
0

2 2 0 2 0 1
0

1 2 0 2
2 0 1

0

1 2 0 0 1

1 2 0

,
2

          sin cos

, sin
         

2

,

,

L

L

L L
r a

r a L L
v r

LR
L

Rr a r a v r

L T r d d L

L v

aP t t v r P r r
N

r d dr

P r r r
dr dr

N

P r r W v W r W r a r

N P r r

π

δ

δ

δ

δ δ

θ φ φ

θυ
υ

<

=
=

< < =

= −

× ⎡ ⎤⎣ ⎦

∂ ⎡ ⎤⎣ ⎦+
∂

= Θ −

=

∫ ∫

∫ ∫

( )1
1 2 0

2 0 10
L

Lr
r a r a

dr dr
=

< <
∫ ∫

 (4)  

Here cos(φ2L0)= 1 2 0ˆ ˆ Lr r⋅  , and Θ(x) is the 
Heaviside step function that describes the lowest 
aperture in the fountain, and any others before t1. 
When the fountain is tilted, apertures after t1 may 
clip the atomic cloud, modifying both terms in 
(4). We note that Wd(rd) and sin[θ(r2)] depend 
explicitly on νR via δv(r1). In this way, Eq. (4) 
gives the full microwave amplitude and tilt 
dependent microwave lensing. The Ramsey 
fringe amplitude ΔPR can be calculated from 
integrating P(r1,r2L0) sin[θ(r1)] sin[θ (r2)], as for 
N in (4), to give the microwave lensing 
frequency shift δν=δP/π(t2−t1)ΔPR. 

We now evaluate (4) and successively 
introduce corrections. First, we simply consider 
optimal amplitude, where sin[θ(r2)] is very flat. 
With Wd(rd)=1, the second term in (4) gives no 
contribution since the derivative is 0. We can 
take Gaussian velocity and initial position 
distributions, WT(v)=exp(−v2/u2) and Wr0(r0)= 
exp(−r0

2/w0
2), and consider w0áa so that the 
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integral over r1 is over all space. Taking only 
terms of order k2 in δv(r1) gives (1). Restricting 
the integral over r1 to r1<a increases the 
frequency shift only slightly, to 6.3×10-17 since 
w0 is much less than a. 

Terms higher order than k2 contribute to both 
the velocity change in (3) and to sin[θ (r2)] of δP 
in (4). The small cloud size w0 of NPL-CsF2 
means this correction is small for δv(r1) and it is 
always small for sin[θ(r2)] at optimal power. The 
first term of (4) gives 6.02×10-17, the total is 
6.14×10-17, and these are unchanged when the 
lower aperture r1L<a is included. At elevated 
microwave amplitude, the second term in (4) is 
important, especially near b2≈4.5 where 
sin[θ(r2≈a)] and the first term in (4) goes to zero 
(fig 5, dashed line). Including the detection 
variation from the Gaussian detection beam (7 
mm radius waist) gives a slightly smaller 
effective aperture. The total lensing frequency 
shift is nearly the same, 6.20×10-17, but now the 
second term in (4) has a larger contribution, 
1.59×10-17. In fig. 5, the detection non-uniformity 
has little effect on the overall shift, but it 
significantly changes the two contributions from 
(4). We correct the clock’s frequency for the 
microwave lensing frequency shift. Even though 
the various corrections are very small, we 
nonetheless take half of its value, 3.1×10-17 in 
table 2, as its uncertainty, in part, because it has 
not yet been experimentally observed. 
4. Other improvements 

The NPL-CsF2 fountain standard operates in 
the vicinity of zero-collisional shift [18]. To 
correct for a possible residual shift, the fountain 
is run alternately at high and low atom number 
and the measured frequency is extrapolated to 
that for zero atomic density. We distinguish 
between type A and type B errors of the 

collisional shift. The type A error is included in 
the total type A uncertainty of the standard and 
decreases as τ-1/2, whereτ is the averaging time. 
The type B error originates from a systematic 
uncertainty of the ratio κ of the high to low 
density, as only the detected atom number ratio is 
measured in the fountain, with κ known to 10%. 
The recent implementation of an optical pumping 
stage in NPL-CsF2, which accumulates 
population of one of the clock states, enabled the 
operation of the standard at higher κ. As a result, 
the collisional shift uncertainty is less sensitive to 
the uncertainty of κ [14]. For example, for κ ≈ 8 
and a measured frequency difference between 
high and low density of <2.5 × 10−15, the type B 
uncertainty of the collisional shift is less than 4 × 
10-17.  

In an earlier evaluation, the uncertainty from 
microwave leakage was dominated by the 
potential leakage, through the switches that pulse 
the field for the upward passage, into the 
selection cavity, which could possibly perturb the 
atoms when they descend. A recently repeated 
evaluation of this effect gave a smaller statistical 
error. In addition, after implementing the optical 
pumping and optimising the fountain operation 
[14], the fountain runs most of the time at low 
atomic density, and hence at a low microwave 
amplitude in the selection cavity. As a 
consequence, our uncertainty is smaller, of 3 × 
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Fig. 5.  Microwave lensing frequency shift versus 
microwave amplitude b2 of the second Ramsey 
pulse. Curves are shown for uniform detection 
(blue) and a Gaussian laser beam with 7mm waist 
(red). The total shifts are the thick lines, and the 
first (second) terms in (4) are thin (dashed). The 
shift, δν ΔPR, or equivalently δP, increases 
linearly with the amplitude b1 of the first 
microwave Ramsey pulse. 

Table 2. Uncertainty budget for NPL-CsF2. The 
underlined systematic effects have reduced 
uncertainties as compared to [6].  
 

Type B  evalu ation     uncertainty  / 10-16 

Effect     

Secon d order Zeeman     0.8 

B lackbo dy radia tion     1.1 

A C Stark  (lase rs)     0.1 

M icrowave sp ec tru m     0.1 

G ravity       0.5 

C old collisio ns (Cs-C s)    0.4a 

C ollisions with backg ro und gas   1.0 

R ab i, R amsey pu lling     0.1 

C av ity phase (distributed)    1.1 

C av ity phase (dyn amic)    0.1 

C av ity pulling      0.2 

M icrowave leakag e     0.6 

M icrowave lensing      0.3 

Secon d-order Do ppler     0.1 

u B (1σ )       2.3 

Ty pe A ev alua tion  

u A (1σ, for 15-day averaging)    2.4 

Total uncertain ty      3.3 

 
a) An exemplary value of the type B contribution to the 
uncertainty for a measured residual collisional shift, the 
frequency difference between high and low density, below 2.5 
× 10-15 [14]. 
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10-17, for this frequency shift. Together with the 
unchanged uncertainty of a frequency shift due to 
the leakage of the interrogating field to the area 
outside the cavities (5 × 10-17), the total leakage 
frequency shift is now less than 6 × 10-17.  
5. Summary 

We have performed detailed evaluations of 
the distributed cavity phase and microwave 
lensing frequency shifts. These were the two 
largest systematic uncertainties in our most 
recent evaluation of the NPL-CsF2 primary 
frequency standard. Our measurements of DCP 
frequency shifts add further support to the 
validation in [9] of the recent theoretical model 
[8]. The model, with no free parameters, gives 
predicted m=0 and 2 DCP shifts, which we use to 
bound their uncertainties. Uncertainties for m=1 
DCP shifts are experimentally determined from 
measurements of the fountain’s frequency versus 
the tilt of the entire apparatus to probe phase 
gradients along and perpendicular to the cavity 
feed axis [9]. These shifts could arise from feed 
assymetries or a non-uniform surface resistance 
of the cavity’s copper walls. The residual tilt 
uncertainty and the non-uniformity of the 
detection beam provide the largest contributions 
to the total DCP uncertainty of 1.1 × 10-16. We 
calculate the frequency shift due to the 
mechanical action of the microwave standing 
wave on the atomic spatial wavefunctions by 
extending the theoretical model of [15]. The 
predicted microwave lensing frequency shift is 
6.2 × 10−17, 40% of a simplistic microwave recoil 
shift. The importance of this shift in the 
uncertainty budgets demonstrates that the best Cs 
fountain clocks are, in a clear physical 
interpretation, matter-wave interferometers. 
Finally an optical pumping stage increased our 
clock state populations and enabled a further 
reduction of the type B uncertainty of the 
residual collisional shift. This analysis and these 
improvements to the NPL-CsF2 clock lead to a 
nearly two-fold reduction of its type B 
uncertainty, to 2.3 ×10-16. 
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