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Abstract: In recent years, Roe-type schemes based on different ideas have been developed for 

all-speed flows, such as the preconditioned Roe, the All-Speed Roe, Thornber’s modified Roe and 

the LM-Roe schemes. This work explores why these schemes succeed or fail with the accuracy and 

checkerboard problems. Comparison and analysis show that the accuracy and checkerboard 

problems are caused by the order of the sound speed being too large and too small in the coefficients 

of the velocity-derivative and pressure-derivative dissipation terms, respectively. These problems 

can be resolved by choosing coefficients with zero-order sound speed. In addition, to avoid the 

negative effects of the global cut-off strategy on accuracy while maintaining computational stability, 

the sound speed terms in the numerator of the coefficients can be determined by local variables, 

while those in the denominator remain the global cut-off. Two novel schemes are proposed as 

examples to demonstrate how these ideas can be applied to construct more satisfactory schemes for 

all-speed flows. Asymptotic analysis and numerical experiments support the theoretical analysis and 

the rules obtained in the work. 
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1. Introduction 



The Roe scheme is a classical and popular shock-capturing scheme that is widely 

used in the computation of compressible flows. For nearly-incompressible flows, 

however, it produces unphysical discrete results because of the incorrect scaling of 

pressure fluctuations, as shown by asymptotic analysis [1]. To overcome this limitation, 

preconditioning methods have been developed and applied to the Roe scheme in recent 

decades, resulting in a new scheme named the preconditioned Roe scheme [2,3], which 

shows the correct asymptotic behavior at the low Mach number limit [1]. 

Like other preconditioned schemes, however, the preconditioned Roe scheme 

suffers from the global cut-off problem [3]. Without adopting the global cut-off strategy, 

preconditioned schemes are unstable unless the time step is extremely small, especially 

for viscous flows. Adopting it, however, limits the ability to accurately simulate low- 

and high-Mach number mixed flows. For example, under extreme conditions, in which 

shock waves and incompressible flows coexist in the same flow region, the global 

cut-off will reduce the preconditioned Roe scheme to the Roe scheme in the whole flow 

region; calculation of the incompressible region cannot then benefit from the 

preconditioning and will suffer from the accuracy problem. From this point of view, the 

preconditioned Roe scheme cannot be regarded as a universal scheme for all-speed 

flows. 

In recent years, improved Roe-type schemes have been developed that only need 

local parameters, without the global cut-off strategy for all-speed flows. For example, 

the All-Speed Roe scheme [4-7] proposes only modifying the non-linear eigenvalues; 

Thornber [8] finds the modification of the right eigenvector matrix; and the fix 
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recommended in [9-11] is based on the idea [12] that the accuracy problem is attributed 

to the velocity jump normal to the cell interface. Although based on different ideas, all 

these methods achieve the same purpose. This fact motivates us to understand the 

common underlying mechanism of these schemes and then find the general rules needed 

to construct satisfactory schemes. 

The outline of this paper is as follows. Section 2 presents the governing equations, 

the general form of the schemes and a discussion of the central terms. Section 3 briefly 

reviews the Roe, the preconditioned Roe, the All-Speed Roe, Thornber’s modified Roe 

(T-Roe), and the low-Mach number fix for Roe (LM-Roe) schemes. Section 4 discusses 

the mechanism underlying these schemes and conducts an asymptotic analysis to 

demonstrate it. Section 5 proposes two novel Roe-type schemes that show how the 

mechanism can be used to construct more satisfactory schemes. Section 6 presents the 

numerical experiments to support the theoretical analysis and prediction. Finally, section 

7 closes the paper with some concluding remarks and a summary of the general rules for 

improving schemes. 

 

2. Governing Equations and the Central Term of Schemes 

2.1 Governing Equations 

For simplicity, the two-dimensional Euler compressible equations are written as 

0
t x y

  
  

  
Q F G

,                                                (1) 
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To avoid the checkerboard pressure-velocity decoupling problem in the 

computation of incompressible flows, the concept of interface velocity, i.e. the velocity 

on the interface between the adjacent control volumes, can be introduced using the 

time-marching momentum interpolation method (MIM) [7], and then the governing 

equations of Eq. (1) become:  

MIM MIM

0
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  , and fu  and fv  

are the components of the interface velocity. 

 

2.2 General Form of Schemes and Discussion of the Central Term 

Many schemes that include the Roe scheme can be generalized as the sum of a 

central term cF  and a numerical dissipation term dF : 

   
c dF F F .                                                    (3) 
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For simplicity, the equations of the schemes are given only for the i-direction with 

the index j omitted. 

In general, the central term cF  is obtained by averaging the fluxes as: 
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,              (4) 

where x yU n u n v   is the velocity normal to the cell interface, and xn  and  are 

the components of the face-normal vector, respectively. 

yn

As discussed in Ref. [5-7], some preconditioned schemes with Eq. (4) suffer from 

the checkerboard problem. To avoid this problem, the governing equations of Eq. (2) 

can be applied to the central term as: 
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F ,                (5) 

where f x f y fU n u n v   is the normal interface velocity, which can be obtained as 

follows:  

   1 1
2

0.5
n n n

f i ii
U U U fU

   ,                                    (6) 

where fU  is the modification of fU . When 

0fU  ,                                                     (7) 

Eq. (6) becomes the second-order central interpolation and the corresponding fluxes 

defined in Eq. (5) will be very close to those in Eq. (4) at the low Mach number limit. 

To ensure the velocity-pressure coupling, Ref. [13, 14] propose adding a first 
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pressure-derivative smoothing term to the interface velocity, and this idea is adopted by 

the All-Speed Roe scheme as [4-6]: 

2 n n
f i+1 i

c
U p

u


    p ,                                         (8) 

where   and  are the reference density and velocity respectively, and  is a 

constant.  should be as small as possible for accuracy only if the checkerboard 

decoupling is suppressed, and too large a value of  can lead to computational 

divergence, as analyzed in section 4.4. Although the optimum value of  depends on 

specific problems, a value of 0.04 is recommended; this shows good applicability, as 

demonstrated in Chapter 6. 
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Ref. [7] proposes a time-marching momentum interpolation method (MIM) for 

steady and unsteady flows. The following is the equation for the method adapted for 

steady simulations with a large time-step: 
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(9) 

which introduces a third pressure-derivative smoothing term into the interface velocity, 

leading to higher accuracy than Eq. (8) [7]. To calculate 
1 2i

p

x 

 
  

, the algorithm of the 

Gauss integral needs information on all neighbour nodes but does not make codes more 

difficult, especially for viscous calculation, because the same algorithm is needed to 

calculate the velocity gradient at 1 2ix  . 
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Although the above equations are regarded as the central term, in fact Eqs. (8) and 

(9) introduce the pressure-difference type numerical dissipation and are similar to U  

in Eq. (30), the dissipation term discussed in Chapter 4. Therefore, fU  is actually 

part of U . 

 

3. The Numerical Dissipation Term of the Schemes 

3.1 The Roe Scheme 

For the “classical” Roe scheme, the first-order numerical dissipation term can be 

expressed as: 
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where x yU n u n v   is the velocity normal to the cell interface,  is the sound speed, 

and 

c

xn  and  are the components of the face normal vector. yn

In addition,  is the diagonal matrix consisting of the relevant eigenvalues: Roe
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3.2 The Preconditioned Roe Scheme 
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The preconditioned Roe scheme (P-Roe) is expressed as: 


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where  is the preconditioner based on the conservative variables, as proposed in Ref. 

[1-3]: 
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where  is a vector of the primitive variables W  Tp u v S . When 1  , P-Roe 

becomes the “classical” Roe scheme. 

In addition, P RoeR  is the right eigenvector matrix of 
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1

2
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2

c c     2U , and   is the key factor for the 

preconditioning technique. In theory, the value of the key factor   should be related to 

the local Mach number. In practice, however,   is cut off by the global Mach number 
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to avoid computational instability: 

 2 2min max ,1refKM ,M    ,                                   (17) 

where the constant  typically equals 1, and the reference Mach number K refM  is a 

global parameter, which may be the inlet Mach number, or the average or maximum 

Mach number over the flow. This means that the accuracy will be high enough in 

high-speed flow regions, such as the main flows, but deteriorates in low-speed flow 

regions, such as the boundary layers. 

For nearly-incompressible flows, the pseudo-acoustic speed with the global cut-off 

is 
5
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. For clear comparison and unified expression, it can be 

redefined as: 

 , refc f M M c  ,                                              (18) 

where 

   , min max ,ref reff M M M M 
 .                             (19) 

The pseudo-acoustic speed without the cut-off c  can be defined according to the local 

Mach number as: 

 c f M  c



,                                                  (20) 

where 

  min ,1f M M .                                            (21) 

 

3.3 The All-Speed Roe Scheme 

In preconditioning techniques, a global cut-off strategy is adopted to avoid 
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computational instability, which is attributed in Ref. [4] to the structure of 
1


 or 

1
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, 

because it produces the term 
1

U
, which can greatly magnify the velocity fluctuation 

when the velocity is small but with a steep gradient. To avoid the global cut-off, 

therefore, Ref. [4] proposes two procedures: (a) the governing equations are regarded as 

the aggregated scalar equations, although they are usually treated as a coupling system 

under the compressible condition; and (b) the discretization of the pressure-derivative 

term is no longer consistent with that of the convective terms and independently adopts 

a centred scheme. Then, extending the Roe scheme to the governing system defined by 

these procedures leads to the Low-Speed Roe scheme that is only applicable to 

low-Mach-number flows: 
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An idea [5, 6] is further proposed to unify the Low-Speed Roe scheme and 

shock-capturing scheme with a function of the local Mach number. Based on this idea, 

the All-Speed Roe scheme is derived as: 
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where .  c f M  c

It can be seen that the All-Speed Roe scheme simply multiplies the acoustic term c 

in the eigenvalues of the Roe scheme by the factor  f M  to remedy the accuracy 

problem. The rationality for this procedure has been verified theoretically with an 

asymptotic analysis [6] and Hodge decomposition [15]. 

 The function  f M  is only related to the local Mach number and its choice is 

not unique [5, 6]. In the present work, Eq. (21) can be adopted for comparison. 

 

3.4 The T-Roe Scheme 

Thornber et al. [8] find that the following modification of the right eigenvector 

matrix can also lead to an All-Speed Roe-type scheme without the limitation of the 

global cut-off: 
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where T RoeR  is the modified RoeR , in which the acoustic speed terms have been 

multiplied by the function  f M : 
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where  can adopt the form defined in Eqs. (20) and (21). c

It can be seen that in the original version [8], the components  and  

 are equal to those in 

4,3T RoeR 

4, 4T RoeR RoeR  without the modification, indicating that the 

energy equation is not necessarily modified. This is not surprising because the term  cU
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can be disregarded in comparison to the term  of the order H  2O c  for the low Mach 

number limit, which makes the effort of decreasing this term trivial. The aim of 

modifying the energy equation in Eq. (26) is only for the convenience of uniformity of 

expression and comparison. 

 

3.5 The LM-Roe Scheme 
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As mentioned above, the accuracy problem of the Roe scheme is attributed to  

[12], the velocity jump normal to the cell interface. Based on this idea, an improved 

reconstruction method is proposed [11]. Fillion [9] and Rieper [10] also propose a low 
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 ,                                    (28) 
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where  f M  can also adopt the form of Eq. (21). 

Therefore, the LM-Roe scheme can be expressed as: 

1 1 1
,

2 2 2

1

2 1

2

LM Roe Roe Roe LM Roe

i i i i



  
 

d
F R   


                                     (29) 

 

4. Analysis of the Mechanism of the Roe-type Schemes for All-Speed Flows 

4.1 A General Form for the Mechanism Analysis 

All of these Roe-type schemes are successful for all-speed flows regardless of 

which ideas they are based on, with or without the global cut-off. To understand the 

underlying common mechanism, the numerical dissipation terms in Chapter 3 are 

expanded and rewritten as a unified form. Inspired by Ref. [2], a form that is valid for 

all these schemes with the low Mach number limit is proposed as: 

 
 
 

0

1

2
x

y

u nu
= U U p

nv v

H UE

 
 

 
 



                                     


dF ,                         (30) 

which includes three terms on the right side. The first term is the basic upwind 

dissipation, which is consistent with Eq. (22), the numerical dissipation term of the 

Low-Speed Roe scheme. The second term has a role similar to the MIM fluxes defined 

in Eqs. (8) and (9). The third term is a modification to the interface pressure, which will 

decide the accuracy, as described in detail in section 4.3. 

 

4.2 The Mechanism Analysis of the Modification to the Normal Interface Velocity 

Specific expressions of U  for the various schemes are given as follows. 
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For the Roe scheme, 

  2

p U
U c U U

c c





    .                                    (31) 

For the preconditioned Roe scheme, 

2

1

2

U p U
U c U U U

c c c

 


  
     
 

 


 
.                        (32) 

For the All-Speed Roe scheme, 

  2

p U
U c U U

c c



    .                                     (33) 

For the T-Roe scheme, 

  2

p U
U c U U

c c





    .                                     (34) 

For the LM-Roe scheme 

   2

p U
U c U f M U

c c





    .                               (35) 

In all these equations,  , refc f M M c  , and  c f M  c , as defined in Eq. (18) 

and Eq. (20), which ensures c U   and c U  . 

As discussed in section 4.1, the pressure-derivative term in U  is important in 

suppressing the checkerboard problem because it has a similar effect to the 

time-marching MIM, and the velocity-derivative term 
U

U
c
  can be disregarded both 

from the point of view of the mechanism and the amount of dissipation. 

By comparing Eqs. (31) – (35), it can be seen that the equations for the Roe 

scheme (31), the T-Roe scheme (34), and the LM-Roe scheme (35) are equivalent if the 

velocity-derivative term is not taken into account. This suggests that U  in the Roe 

scheme does not need modification, at least from the viewpoint of accuracy. 
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Although U  has little effect on the accuracy of each scheme, the 

pressure-derivative term has different effects on the checkerboard problem for different 

schemes. The coefficient of the pressure-derivative term reflects the ability to suppress 

the checkerboard problem. The orders of this coefficient are  1O c for the T-Roe and 

LM-Roe schemes Eqs. (34) and (35),  0O c  for the preconditioned Roe scheme Eq. 

(32), and  2O c for the All-Speed Roe scheme Eq. (33). Thus, the preconditioned Roe 

scheme is the best for avoiding checkerboard, the All-Speed Roe scheme is the worst, 

and the T-Roe and the LM-Roe schemes are in-between. This estimation accords with 

the analyses given in Refs. [1,6,7,10] and will be discussed further in section 4.4 with 

an asymptotic analysis. In summary, a pressure-derivative term of the order  0O c  in 

U  is required and can be provided by Eq. (8) or Eq. (9). 

 

4.3 Mechanism Analysis of the Modification to the Interface Pressure 

Specific expressions of p  for the various schemes are given as follows. 

For the Roe scheme, 

 U
p p c U U

c
      .                                  (36) 

For the preconditioned Roe scheme, 

1

2

U U
p p c U U U

c c


 

     
 

 


 
 .                         (37) 

For the All-Speed Roe scheme, 

 U
p p c U U

c
      .                                  (38) 

For the T-Roe scheme, 
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   U
p f M p c U U

c
      .                             (39) 

For the LM-Roe scheme, 

 U
p p c U U

c
      .                                   (40) 

A common feature of Eqs. (37)-(40) is that the coefficient  of the term c c U  

in Eq. (36) is replaced by another coefficient of the order  0O c , such as  or .  c c

The effect of p  on the accuracy is limited to the term c U

H

 in the 

momentum equation for the Roe scheme, because it disappears in the continuity 

equation and can be disregarded in the energy equation in comparison to  of the 

order  2O c , as discussed in section 3.4. The problem, therefore, can be solved by 

modifying only this term. 

It should also be noted that Eqs. (38)-(40) all adopt c , decided by the local 

variables, to modify the term c U , whereas Eq. (37) adopts c  with the global 

cut-off. This further validates the analysis given in section 3.3, which attributes the 

global cut-off to the term 



1

c
 or 

1

U
. 

 

4.4 Asymptotic Analysis 

As discussed above, the accuracy problem in the Roe scheme is caused by the 

coefficient of the term  in U p  for the momentum equation, and the checkerboard 

problem is caused by the coefficient of the term p  in U . To further verify these 

conclusions, an asymptotic analysis, which is widely utilized in [1, 6, 7, 10] to 

investigate the behavior of continuous or discrete flows with a low Mach number, is 

performed as follows. 
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Eq. (30) can be recognized as the first basic upwind dissipation term plus a 

velocity-derivative term and a pressure-derivative term. Thus, the continuity equation 

becomes 

1

2d,F = U g U h p      


  ,                                (41) 

and the momentum equation 

 1

2d,F = U g h p      


u uu u  u ,                            (42) 

where the coefficients g , h , and hu  are of the order  1O c  and gu  is of the 

order  1O c  for the Roe scheme. 

To analyze a steady low-Mach-number flow, all non-dimensional variables are 

asymptotically expanded into powers of the reference Mach number *M : 

0 1 2 2 3 3
* * *M M M               , 

where   represents one of the fluid variables,  , , , , or u v E p . 

If gu  is modified, from the order of  1O c  in the Roe scheme to the order of 

 0O c , then from the asymptotically expanded momentum equation (42) the following 

terms with an equal power of *M  can be collected: 

0 0
1, 1, 0i j i jp p   ,                                           (43) 

0 0
, 1 , 1 0i j i jp p   ,                                           (44) 

1 1
1, 1, 0i j i jp p   ,                                           (45) 

1 1
, 1 , 1 0i j i jp p   .                                           (46) 

Leaving aside the possibility of the checkerboard problem, Eqs. (43) – (46) result 

in 0p cte i i  and 1p cte i i , which satisfies the physical behavior of 

low-Mach-number flows. Whereas, if gu   retains the order of  1O c , Eqs. (45) and 
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(46) no longer hold, leading to the accuracy problem of the Roe scheme. 

When h  is of the order  0O c , the following terms with an equal power of *M  

can be collected from the asymptotically expanded continuity equation (41): 

 

0 0 0il
l v i

h p


  ,                                           (47) 

 

0 1 0il
l v i

h p


  ,                                           (48) 

which can suppress the possible checkerboard of 0p  and 1p , respectively. The 

numerical experiments in Chapter 6 show that the checkerboard of 2p  can also be 

avoided. 

If h  is of the order , Eq. (48) no longer holds, and may lead to the 

checkerboard of 

 1O c

1p . As shown in Ref. [10], however, this checkerboard mode can be 

damped away by the numerical viscosity due to the maintained upwinding in the 

momentum equations. Unfortunately, the checkerboard of 2p  can also occur, as shown 

in Chapter 6. Furthermore, it is not difficult to deduce that 0p  suffers from a severe 

checkerboard problem if h  is of the order  2O c , as in the All-Speed Roe scheme 

with the central term Eq. (4). It is clear that h  with a higher order of  can provide a 

stronger restriction on the checkerboard. 

c

In addition, it should be noticed that although h  of the order  is necessary 

for suppressing the checkerboard problem, it will result in the following physical feature 

[6] being unsatisfied: 

 0O c

0 0 0 0
1, 1, , 1 , 1 0i j i j i j i ju u v v       .                                    (49) 

For example, in the preconditioned Roe scheme [6]: 
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 

0 0
0 0 0 0 0 0 0

1, 1, , 1 , 1 0 0 0 0 0

1

2
il il

i j i j i j i j il il il il
l v il l l il il

h h
u u v v U U

E p Y Y


   


       +
2p

2p

, 

and in the All-Speed Roe scheme with Eq. (8) [7]: 

 0 0 0 0 2
1, 1, , 1 , 1 2i j i j i j i ju u v v c x


        . 

The latter also explains why attempting to increase the order of h  to  will 

fail and why too large a value of  in Eq. (8) will lead to divergence of computation, 

because there is too much deviation from the condition in Eq. (49). 

 1O c

2c

A possible way of avoiding this difficulty is the time-marching MIM Eq. (9) 

described in section 2.2, which produces a spatially third-order error, and the zero 

velocity divergence condition (49) is satisfied from the numerical viewpoint if popular 

second-order schemes are used [7]: 

 0 0 0 0 4
1, 1, , 1 , 1 0 0

CFL
i j i j i j i ju u v v x p

u


        2 . 

 

5. Two Novel Roe-type Schemes Based on the Mechanisms of All-Speed Flows 

According to the analysis in Chapter 4, two rules can be summarized as follows. 

1. The accuracy problem is controlled by the coefficients of the  term, and the 

checkerboard problem by the coefficients of the 

U

p  term. Both are determined by the 

order of c in the respective coefficients. 

2. The problem of the global cut-off is due to the pseudo-sound speed in the 

denominator of the coefficients. 

These two rules reveal the deeper mechanisms underlying the schemes for 

All-Speed flows, and suggest directions for constructing more satisfactory schemes. 
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Two novel Roe-type schemes are proposed here to validate the discoveries. 

The first version is based on the first rule, which involves the least modification to 

the Roe scheme by replacing  with cc   in the U  term of p : 

  2

p U
U c U U

c c





    ,                                   (50) 

 U
p p c U U

c
      .                                   (51) 

Compared with the LM Roe scheme, it merely replaces  U
f M U

c
  with 

U
U

c
  in U . From a numerical viewpoint, there is little difference between this new 

scheme and the LM Roe scheme, because the term 
U

U
c
  is trivial at the low Mach 

number limit. However, they reflect different perspectives on the mechanisms of 

All-Speed schemes, with the accuracy problem attributed to the coefficient of the  

term and the  term itself [9-12], respectively. 

U

U

In more detail, although the opinion on the accuracy problem in the first rule looks 

similar to the opinion in Ref. [9-12], they are quite different in nature. The opinion in 

Ref. [9-12] indicates that all  terms should be corrected byU  f M , because the 

accuracy problem is attributed to the jump in the normal velocity component. However, 

this opinion suffers from two problems. One is an inherent contradiction of the opinion 

that  does not need to be corrected in the U U U  term in p  of the LM-Roe 

scheme. The other is the fact that other schemes discussed in the paper are successful 

even though they do not correct all U  terms. Thus, although this opinion [9-12] can 

produce some successful schemes, it is not a general explanation for All-Speed 

schemes. 

Compared with the opinion in [9-12] above, the opinion reflected in Eqs. (50) – 
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(51) infers that  itself is reasonable but its coefficient may be incorrect. It then 

shows great advantages; it can explain all of the uncertainties above and the reason for 

the success or failing of each scheme in the paper. Therefore, the novelty of this new 

opinion is that it provides an essential and general understanding of the mechanism of 

the accuracy problem and then leads to more flexible methods for improving schemes. 

U

The second version is inspired by the second rule, with the pseudo-sound speed 

terms treated differently in the numerators and the denominators. By modifying the 

original preconditioned Roe scheme (32) and (37), the new version is obtained as: 

2

1

2

U p U
U c U U U

c c c

 


            
,                     (52) 

1

2

U U
p p c U U U

c c


       

  


 
 ,                        (53) 

where , 2min ,1M       1
1

2
U U    , and  22 21

4 1
2

c c       U , which are 

equal to the original in form but are decided by the local parameters instead. Although 

the global cut-off is still applied to the terms in the denominators for computational 

stability, it does not affect the accuracy because larger denominators lead to smaller 

numerical dissipation. Thus, this new preconditioned Roe scheme has better accuracy 

than the original and will be verified in the following chapter. 

 

6. Numerical Experiments 

To validate the analysis in Chapter 4 and the newly proposed schemes in Chapter 5, 

the four numerical cases – lid-driven cavity laminar flow, Euler flow past a cylinder, 

Euler flow past a turbine blade and a Sod shock tube – are tested in this chapter with the 
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nine schemes discussed above – the Roe, the preconditioned Roe with  in Eq. (17) 

(P-Roe), the low Mach number fix for the Roe (LM-Roe), the Thornber’s modified Roe 

(T-Roe), the All-Speed Roe with the central term (4) (A-Roe-c), the All-Speed Roe with 

the central term (8) and  (A-Roe-p), the All-Speed Roe with time-marching 

MIM (9) (A-Roe-m), the new All-Speed Roe (50) and (51) (A-Roe-new1), and the new 

All-Speed Roe (52) and (53) (A-Roe-new2). 

1K 

2 0.04c 

The first-order accuracy is adopted for discussion of the schemes themselves, with 

a second-order result for P-Roe with MUSCL reconstruction (P-Roe-MUSCL) for 

comparison. The explicit time-marching algorithm is used for computation and the CFL 

number is taken as 0.8 for the first-order accuracy. The pressure shown in the following 

figures is defined as an non-dimensional pressure min

max min

p p
p

p p





. 

 

6.1 Lid-Driven Cavity Flow 

The two-dimensional lid-driven cavity flow problem is a typical low-Mach number 

test case. The computation is performed with the 160*160 grid points at a Mach number 

of 0.005 and a Reynolds number of 400. 

Fig. 1(a) shows that if the numerical dissipation of the Roe scheme is too large, it 

prevents it from obtaining a reasonable result, as also shown in Fig. 2. The obvious 

checkerboard decoupling of A-Roe-c can be observed in Fig. 1(b), though it is much 

less severe than for the Euler flows in sections 6.2 and 6.3, and the computation remains 

stable because the physical dissipation damps away the checkerboard to a certain degree, 

even if does not avoid it fully. Results similar to those in Fig. 1(c) with very weak 
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decoupling can be obtained by the schemes that use the  1O c  order coefficient for the 

pressure-derivative term, such as LM-Roe, T-Roe, and A-Roe-new1. As shown in Fig. 

1(d), all checkerboard modes can be suppressed by the schemes that use the  

order coefficient for the pressure-derivative term, such as P-Roe, A-Roe-p, A-Roe-m, 

and A-Roe-new2. 

 0O c

Fig. 2 shows the accuracy of the schemes. The solution by Ghia et al. [16] is given 

as the benchmark, and the second-order solution agrees very well with it. A-Roe-m 

scheme has slightly better accuracy than A-Roe-p, because it introduces the higher-order 

pressure-derivative dissipation terms discussed in sections 2.2 and 4.4. The A-Roe-new2 

scheme has much better accuracy than P-Roe, because it adopts the local Mach number 

in the numerators of the coefficients. The result of A-Roe-new2 is very close to that of 

A-Roe-p. In fact, it is difficult to distinguish among the solutions of A-Roe-new2, 

A-Roe-p, LM-Roe, T-Roe, and A-Roe-new1,and the latter three are not presented in Fig. 

2 for simplicity. Similarly, it is difficult to distinguish between the solutions of A-Roe-m 

and A-Roe-c, and thus the latter is ignored. This fact also shows that the higher-order 

pressure-derivative dissipation terms in A-Roe-m produce negligible numerical 

dissipation from the viewpoint of accuracy, although it is important in terms of the 

checkerboard. 
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 (a) Non-physical solution           (b) Solution with obvious decoupling 

   

(c) Solution with very weak decoupling            (d) Physical solution 

Fig. 1 Pressure contours of lid-driven cavity flow at 0.005M   and Re  400
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Fig. 2 Computed X-direction velocity distribution along the Y-direction geometric 

centreline 

 

6.2 Inviscid Flow Around a Cylinder 

The two-dimensional Euler flow past a cylinder is another typical low-Mach 

number test case. The computation is performed with an inflow Mach number of 0.01 

and the 72*100 O-type grid points along the circumference and radius, respectively. 
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(a) Solution similar to the Stokes flow       (b) Solution with full decoupling 

  

(c) Solution with weak decoupling      (d) Solution without decoupling 

Fig. 3 Pressure contours of the inviscid flow around a cylinder at  0.01M 

The Roe scheme produces the result shown in Fig. 1(a), resembling the Stokes flow, 

which is explained in Ref. [10]. With A-Roe-c, a severe pressure checkerboard quickly 

appears, as shown in Fig. 3(b), even if the good solution in Fig. 3(d) is used as the initial 

field. The effect is much more severe than for the viscous simulation in Fig. 1(b) and 

increases over time, leading to instability. The schemes with the  order 

coefficient for the pressure-derivative term, such as LM-Roe, T-Roe and A-Roe-new1, 

produce weak checkerboard decoupling near the cylinder as shown in Fig. 3(c). 

However, the schemes with the 

 1O c

 0O c  order coefficient for the pressure-derivative 

term, such as A-Roe-p, A-Roe-m, A-Roe-new2, and P-Roe, can fully suppress the 

checkerboard as shown in Fig. 3(d). 

The following figures provide a quantitative comparison to further verify the 

accuracy of the schemes. Besides using P-Roe and P-Roe-MUSCL as the benchmark, 

only A-Roe-new1 and A-Roe-new2 are compared, because the accuracy of other 
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schemes has been validated in the relevant papers. Fig. 4 gives the non-dimensional 

pressure distribution on the cylinder surface and shows that A-Roe-new1 and 

A-Roe-new2 have better accuracy than P-Roe. Following Ref. [1], Fig. 5 displays the 

pressure fluctuations Ind(p) = (Pmax-Pmin) / Pmax versus the inlet Mach number, which 

perfectly agrees with the theoretical asymptotic predictions: the pressure fluctuations 

scale exactly with 2
*M . 

 

Fig. 4 Pressure on the cylinder surface at 0.01M   
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Fig. 5 Pressure fluctuations vs inflow Mach number 

 

6.3 Inviscid Flow Around a Turbine Blade 

The Euler flow past a high-load turbine blade (T106) row is simulated with the 

inlet Mach number 0.001, with the 40*98 H-type grid points in the azimuthal and 

streamline directions. 

Similar to the inviscid flow around the cylinder, the Roe scheme obtains a 

nonphysical solution as shown in Fig. 6(a). A-Roe-c suffers from the severe 

checkerboard problem, as shown in Fig. 6(b), and is unstable. Schemes LM-Roe, T-Roe, 

and A-Roe-new1 suffer form the obvious checkerboard problem, as shown in Fig. 6(c), 

but remain stable, and schemes A-Roe-p, A-Roe-m, A-Roe-new2, and P-Roe can 

suppress the checkerboard fully as shown in Fig. 6(d). The quantitative comparisons in 

Fig. 7 and Fig. 8 also show that A-Roe-new1 and A-Roe-new2 work well. 
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(a) Non-physical solution             (b) Solution with full decoupling 

         

(c) Solution with weak decoupling       (d) Solution without decoupling 

Fig. 6 Pressure contours of inviscid flow around the turbine blade row at  in 0.001M 

 29



 

Fig. 7 Pressure on the blade surface at in 0.001M   

 

Fig. 8 Pressure fluctuations vs inflow Mach number 

 

6.4 Sod Shock Tube 

    To demonstrate that the proposed new Roe-type schemes can handle shocks, the 
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Sod shock tube test case is adopted with the 200 cells and the initial conditions as 

follows: 

       if  and , , 1,0,1
L

u p   0.5x     , , 0.125,0,0.1
R

u p   if . 0.5x 

    The results shown in Fig. 9 and Fig. 10 are taken at 0.2t  . Compared with the 

original Roe scheme, the new Roe-type schemes produce the slightly steeper gradients 

in the profiles, but A-Roe-new1 has a solution with little jump near . 0.5x 

 

Fig. 9 Density change of the Sod shock tube test 
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Fig. 10 Velocity change of the Sod shock tube test 

 

7. Conclusions 

The Roe scheme and its four modified schemes for all-speed flows are compared 

and analyzed. An explanation is provided for why these Roe-type schemes succeed or 

fail with the accuracy and checkerboard problems. It can be concluded that the accuracy 

of the schemes is controlled by the order of  in the coefficient of the term  in c U

p  in the momentum equation, and that the checkerboard is controlled by the order of 

 in the coefficient of the term c p  in U , especially in the continuity equation. 

Based on this understanding, the following rules are proposed for constructing more 

satisfactory schemes for all-speed flows. 

(1) The coefficient of the velocity-derivative dissipation term should be of the 

order  or lower for accuracy. The coefficient of the pressure-derivative 

dissipation term should also be of the order 

 0O c

 0O c  to suppress the checkerboard 

 32



completely with the divergence constraint of  unsatisfied, or of the order  

with a weak checkerboard, or of in-between. 

0u  1O c

(2) For accuracy, it is enough to multiply the sound speed term in the numerator 

with the function  f M , which only relates to the local variables. If the sound speed in 

the denominator changes, a global cut-off strategy is necessary, which does not really 

decrease accuracy because the numerical dissipation reduces as the value of the 

denominator increases. For example, the preconditioned Roe scheme suffers from the 

global cut-off because it treats the sound speed terms in both the numerator and the 

denominator equally. A more satisfactory All-Speed scheme should treat these terms 

differently. 

Two novel schemes are proposed as examples based on these two rules. Numerical 

experiments show that the behaviour of all the schemes discussed herein accord with the 

theoretical prediction. 
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