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Immunity of information encoded in decoherence-free subspaces to particle loss
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We demonstrate that for an ensemble of qudits, subjected to collective decoherence in the form of
perfectly correlated random SU(d) unitaries, quantum superpositions stored in the decoherence free
subspace are fully immune against the removal of one particle. This provides a feasible scheme to
protect quantum information encoded in the polarization state of a sequence of photons against both
collective depolarization and one photon loss, and can be demonstrated with photon quadruplets
using currently available technology.

PACS numbers: 03.67.Hk, 03.67.Pp, 42.50.Ex, 42.50.Dv

Quantum systems are powerful yet fragile carriers of in-
formation. The ability to create and manipulate superpo-
sition states offers verifiably secure cryptography [1], re-
duces the complexity of certain computational problems
[2], and enables novel communication protocols [3]. How-
ever, in practical settings one needs to protect the quan-
tum states carrying information against decoherence, i.e.
uncontrolled interactions with the environment. This is
accomplished by building redundancy into the physical
implementation. Compared to the classical case, this
task is much more challenging [4] due to limitations in
handling quantum information, exemplified strikingly by
the no-cloning theorem [5].

When an ensemble of elementary quantum systems de-
coheres through symmetric coupling with the environ-
ment, one can identify collective states that remain in-
variant in the course of evolution. These states span a so-
called decoherence-free subspace (DFS) that is effectively
decoupled from the interaction with the environment [6].
More generally, it is possible to identify subspaces that
can be formally decomposed into a tensor product of two
subsystems, one of which “absorbs” decoherence, while
the second one, named a noiseless or decoherence-free

subsystem, remains intact [7].
In this communication we consider the DFS for an en-

semble of n qudits, i.e. elementary d-level systems, com-
posed of states |Ψ〉 that are invariant with respect to an
arbitrary perfectly correlated SU(d) transformation:

Û⊗n|Ψ〉 = |Ψ〉, Û ∈ SU(d). (1)

We show that this DFS features an additional degree
of robustness, namely that the stored quantum informa-
tion is immune to the loss of one of the qudits. This
result, applied to the polarization state of single pho-
tons with d = 2, offers combined protection against two
common optical decoherence mechanisms: photon loss [8]
due to spurious reflections, residual absorption, scatter-
ing, etc. as well as the collective rotation of the polar-
ization that occurs inevitably in optical fibers used for
long-haul transmission [9, 10]. Consequently, we provide

here rigorous foundations to a speculation presented in
Ref. [11] that DFS-based quantum cryptography can be
made tolerant also to photon loss. We describe here a
proposal for a proof-of-principle experiment based on cur-
rently available photonic technologies that demonstrates
the robustness of DFS encoding. It is worth noting that
another physical realization of the qubit case can be also
an ensemble of spin- 12 particles [12] coupled identically
to a varying magnetic field.

Because of two relevant physical realizations, we will
first discuss in more detail the qubit case, i.e. when d = 2.
The complete Hilbert space of an ensemble of n qubits,
each described by a space H1/2, can be subjected to
Clebsch-Gordan decomposition which yields [13]

(H1/2)⊗n =

n/2
⊕

j=(n mod 2)/2

CKj
n ⊗Hj , (2)

where the direct sum is taken with the step of one and
Kj

n are multiplicities of spin-j Hilbert spaces Hj , given
explicitly by

Kj
n =

2j + 1

n/2 + j + 1

(

n

n/2 + j

)

. (3)

The action of Û⊗n affects only Hj in Eq. (2), leavingCKj
n

unchanged. In particular, for an even number of n qubits
in the ensemble, the singlet subspace corresponding to
j = 0 is free from decoherence. Furthermore, removing
one particle from that ensemble maps any initial state
from the singlet subspace onto a certain state from the

doublet subspace CK
1/2
n−1 ⊗H1/2. Because K

1/2
n−1 = K0

n, it
is plausible that the quantum superposition will end up

entirely in the decoherence-free subsystem CK
1/2
n−1 where

it will remain protected from collective depolarization.
We will now demonstrate that this is indeed the case.

Let us first inspect in more detail the structure of the
singlet space. Useful insights are provided by the con-
struction of a complete set of states in this subspace in
the form of products of two-qubit singlet states. For a
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FIG. 1: Diagrams depicting singlet pair product states for 4
qubits. The qubits are represented as dots with connections
identifying pairs that form singlet states. States belonging to
the Dyck basis are labelled with corresponding Dyck words,
i.e. closed and correctly nested strings of ‘(’ and ‘)’ paren-
theses. Generally, Dyck basis states are those and only those
which can be represented by diagrams with no crossing con-
nections.

permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} we define a
singlet pair product state (SPPS) |sσ〉 according to

|sσ〉 =

n/2
⊗

k=1

|ψ−〉σ2k−1σ2k
, (4)

where |ψ−〉ij = (|01〉ij −|10〉ij)/
√

2 is the singlet state of
qubits i and j. In the simplest non-trivial case of n = 4
qubits we have three SPPSs that are not equivalent by a
sign change, shown schematically in Fig. 1:

|Ξ1〉 = |ψ−〉12|ψ−〉34,
|Ξ2〉 = |ψ−〉13|ψ−〉42, (5)

|Ξ3〉 = |ψ−〉14|ψ−〉23.

As the the singlet space in this case is two-dimensional,
these SPPSs are linearly dependent. This occurs also
for more qubits: the number of non-equivalent SPPSs is
n!/(2n/2(n/2)!) which exceeds the dimension of the sin-
glet subspace K0

n given in Eq. (3). It can be shown [14]
that a complete set of linearly independent vectors can
be obtained by selecting such SPPSs that for each two
factors |ψ−〉i1j1 and |ψ−〉i2j2 with i1 < i2 we have either
i1 < j1 < i2 < j2 or i1 < i2 < j2 < j1. States sat-
isfying this condition can be identified one-to-one with
strings composed of left and right parentheses that form
correctly nested closed expressions, known in the theory
of formal languages as Dyck words [15]. This correspon-
dence is depicted schematically for n = 4 qubits in Fig. 1.
We will therefore refer to the basis selected from SPPSs
using the condition specified above as the Dyck basis.

Let us now consider the removal of one of the particles,
which can be assumed without loss of generality to be
the first one. Any vector |sµ〉 from the Dyck basis can
be written as

|sµ〉 =
1√
2

(

|0〉1|d(0)µ 〉1̄ + |1〉1|d(1)µ 〉1̄
)

, (6)

where |·〉1 and |·〉1̄ denote respectively the states of the
first qubit and the remaining qubits 2, . . . , n. The states

|d(i)µ 〉1̄ =
√

2 1〈i|sµ〉, i = 0, 1, appearing in the above de-
composition have several properties. First, any two states

|d(0)µ 〉1̄ and |d(1)ν 〉1̄ have different numbers of 0s and 1s and
therefore satisfy the orthogonality condition

1̄〈d(0)µ |d(1)ν 〉1̄ = 0. (7)

Second, we have 1̄〈d(0)µ |d(0)ν 〉1̄ = 1̄〈d(1)µ |d(1)ν 〉1̄, which fol-
lows from the fact that interchanging all 0s with 1s trans-

forms |d(0)µ 〉1̄ into (−1)n/2|d(1)µ 〉1̄ and vice versa. Further-
more, calculating 〈sµ|sν〉 from Eq. (6) using the preced-
ing observations leads to

1̄〈d(0)µ |d(0)ν 〉1̄ = 1̄〈d(1)µ |d(1)ν 〉1̄ = 〈sµ|sν〉. (8)

Suppose now that we have prepared an even number
of n qubits in an arbitrary state from the singlet sub-
space, which can be written in the Dyck basis as |ψ〉 =
∑

µ αµ|sµ〉. After removal of the first qubit the state of
the remaining qubits is described by a density matrix

ˆ̺1̄ =
1

2

∑

µν

αµα
∗
ν |d(0)µ 〉1̄〈d(0)ν | +

1

2

∑

µν

αµα
∗
ν |d(1)µ 〉1̄〈d(1)ν |.

(9)
Owing to Eq. (7) the two components of the sum oc-
cupy orthogonal subspaces. In each of the subspaces the
superposition is fully preserved, as the scalar products

between any |d(i)µ 〉1̄ and |d(i)ν 〉1̄ with the same i are equal
to that between |sµ〉 and |sν〉 according to Eq. (8). Fur-

thermore, pairs of states |d(0)µ 〉1̄ and |d(1)µ 〉1̄ transform as
doublet states, since they are tensor products of an SPPS
of n − 2 qubits and either |1〉 or −|0〉 for the qubit that
was initially paired with the removed particle. Thus uni-

tary transformations Û⊗n do not mix states |d(i)µ 〉1̄ with
different indices µ. Consequently, ˆ̺1̄ given in Eq. (9) can
be represented as a tensor product of the original logical
qubit with a fully mixed state of a two-level subsystem,

corresponding respectively to CK1/2
n and H1/2 in Eq. (2).

The above result can be generalized to an ensemble of
n qudits, i.e. d-dimensional systems, subjected to collec-
tive decoherence of the form Û⊗n, where Û is an arbi-
trary SU(d) transformation. In this case, a DFS satisfy-
ing Eq. (1) exists only when n is a multiple of d, which
follows from the structure of the Young tableux for irre-
ducible representations of tensor products of the SU(d)
group [16].

As before, for concreteness we will consider removal
of the first qudit. Let us consider arbitrary two states
|Ψ〉 and |Φ〉 from the DFS and expand them in the form
analogous to Eq. (6):

|Ψ〉 =
1√
d

d−1
∑

i=0

|i〉1|Ψ(i)〉1̄, |Φ〉 =
1√
d

d−1
∑

i=0

|i〉1|Φ(i)〉1̄

(10)
where |i〉1, i = 0, . . . , d − 1 is an orthonormal basis in
the space of the first qudit, and |Ψ(i)〉1̄ =

√
d 1〈i|Ψ〉 and

|Φ(i)〉1̄ =
√
d 1〈i|Φ〉 are states of the remaining n− 1 qu-
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dits. We will first show that the following general prop-
erty holds:

1̄〈Φ(i)|Ψ(j)〉1̄ = δij〈Φ|Ψ〉. (11)

Let us note that Eqs. (7) and (8) are its particular cases.
As we will see, this property guarantees that the loss of
one particle does not destroy the quantum information
encoded in the DFS.

In order to show that for i 6= j the states |Φ(i)〉 and
|Ψ(j)〉 are orthogonal as implied by Eq. (11), let us con-
sider the action of a diagonal unitary operator V̂ ⊗n,
where V̂ = diag(eiφ0 , . . . , eiφd−1) with arbitrary phases
φ0, . . . , φd−1 that sum up to zero. Invariance of |Φ(i)〉1̄
and |Ψ(j)〉1̄ under V̂ ⊗n implies that in the basis formed
by tensor products of states |0〉, · · · , |d−1〉 they are com-
posed only from terms that have exactly n/d particles
in each of these d states. Consequently, projecting the
first qudit on orthogonal states |i〉1 and |j〉1 leaves the
remaining qudits in distinguishable states.

In order to verify the case when i = j in Eq. (11) it is
convenient to use the transformation of states |Ψ(i)〉1̄ un-
der the action of Û⊗(n−1). In order to derive this trans-
formation, let us rewrite the invariance condition from
Eq. (1) to the form Û † ⊗ 11⊗(n−1)|Ψ〉 = 11 ⊗ Û⊗(n−1)|Ψ〉
and project the first qudit onto

√
d 1〈i|. This yields the

identity:

Û⊗(n−1)|Ψ(i)〉1̄ =
√
d
(

1〈i|Û †
)

|Ψ〉 =
d−1
∑

j=0

(

〈j|Û |i〉
)∗|Ψ(j)〉1̄

(12)
Let us now specialize this result to a special unitary
transformation that cyclically shifts the labelling of the
basis states:

Ŵ = (−1)d−1
d−1
∑

i=0

|i + 1〉〈i|, (13)

where the addition i + 1 is understood to be modulo
d. Using this Ŵ in Eq. (12) implies that |Ψ(i+1)〉 =
(−1)d−1Ŵ⊗(n−1)|Ψ(i)〉, i.e. |Ψ(i)〉 and |Ψ(i+1)〉 are related
by a unitary that is independent of |Ψ〉. This means that
〈Φ(i+1)|Ψ(i+1)〉 = 〈Φ(i)|Ψ(i)〉. This fact combined with
expanding the scalar product 〈Φ|Ψ〉 using Eq. (10) com-
pletes the proof of Eq. (11).

With Eq. (11) in hand, further steps are straightfor-
ward. A removal of the first qudit maps a state |Ψ〉 onto
a statistical mixture

ˆ̺̄1 = Tr1
(

|Ψ〉〈Ψ|
)

=
1

d

d−1
∑

i=0

|Ψ(i)〉1̄〈Ψ(i)|. (14)

Eq. (11) implies that analogously to the SU(2) case
the components with different i occupy orthogonal sub-
spaces. Within each subspace the state is fully preserved,
which follows from applying Eq. (11) to pairs of states

from an arbitrary basis in the DFS. The final step is
to show that the state ˆ̺̄1 is invariant with respect to
Û⊗(n−1). This follows from the fact that both the initial
state |Ψ〉 and the procedure of tracing out a particle are
invariant with respect to SU(d) transformations. Explic-
itly, the invariance of ˆ̺̄1 can be verified with a calculation
based on Eq. (12):

Û⊗(n−1) ˆ̺̄1(Û †)⊗(n−1) =

d−1
∑

i=0

(

1〈i|Û †
)

|Ψ〉〈Ψ|
(

Û |i〉1
)

= Tr1
(

|Ψ〉〈Ψ|
)

= ˆ̺̄1. (15)

Thus the encoded state is fully preserved.

As DFS states of photon quadruplets can be gener-
ated using parametric down-conversion [10, 17], we will
close the paper with a proposal for an feasible experiment
that demonstrates the robustness of DFS encoding. Let
us consider four-photon states |Ξk〉, k = 1, 2, 3, defined
in Eq. (5) as well as their orthogonal complements in the
two-dimensional DFS, which we will denote as |Ξ⊥

k 〉. The
index k corresponds to three non-equivalent orderings of
the photons and it can be changed by suitable rerouting
of the photons. As demonstrated in [10], the states |Ξ1〉
and |Ξ⊥

1 〉 can be discriminated unambiguously by detect-
ing polarizations in the horizontal-vertical basis |0〉, |1〉
for photons 12 and in the diagonal basis (|0〉 ± |1〉)/

√
2

for photons 34. Restricted to the DFS subspace, this
strategy yields the standard projective measurement.

It is easy to check that the above individual measure-
ment no longer works if one of the photons is missing. It
turns out that this problem can be solved by resorting
to collective measurements. Suppose that we interfere
photon pairs 12 and 34 on two separate balanced beam
splitters, playing the role linear-optics Bell state analyz-
ers [18]. The state |Ξ1〉 will yield exactly one photon
in each output port of each beam splitter. In contrast,
because the orthogonal state |Ξ⊥

1 〉 can be written as [7]:

|Ξ⊥
1 〉 =

1√
3

(

|00〉12|11〉34 + |11〉12|00〉34 − |ψ+〉12|ψ+〉34
)

,

(16)
where |ψ+〉ij = (|01〉ij + |10〉ij)/

√
2, it will always pro-

duce two photons at the same output port for each of the
two beam splitters. If one photon is lost, the states |Ξ1〉
and |Ξ⊥

1 〉 will still give distinguishable outcomes: reg-
istering two photons at a single output unambiguously
heralds |Ξ⊥

1 〉, while registering a photon pair at two dif-
ferent outputs of the same beam splitters detects |Ξ1〉.
The third photon will emerge separately from the second
beam splitter. This detection scheme is summarized in
Fig. 2.

The scalar products between any two the states |Ξk〉
and |Ξl〉 with k 6= l are equal to 〈Ξk|Ξl〉 = − 1

2 . In the
Bloch representation of the two-dimensional DFS, they
form a regular triangle inscribed into a great circle on



4

|Ξk〉

{
{
1
,

1
}
,
{
1
,

1
}
}

{
{
1
,

1
}
,
{
1
,

0
}
}

|Ξ⊥

k 〉

{
{
2
,

0
}
,
{
2
,

0
}
}

{
{
2
,

0
}
,
{
1
,

0
}
}

FIG. 2: An experimental scheme for loss-tolerant detection
of a logical qubit encoded in four photons. The projection
basis |Ξk〉, |Ξ

⊥

k 〉, where k = 1, 2, 3, is selected by a suitable
rerouting of input photons. Pairs of photons are interfered on
two balanced beam splitters and photon numbers are counted
at their outputs. Combinations of outcomes for individual
detectors that correspond to unambiguous identification of
|Ξk〉 and |Ξ⊥

k 〉 are indicated with photon numbers in curly
brackets. The ordering within both inner and outer brackets
does not matter.

the Bloch sphere, constituting a so-called trine that war-
rants cryptographic security [11, 19]. To generate a key,
the sender Alice prepares photon quadruplets in one of
randomly selected states |Ξ1〉, |Ξ2〉, or |Ξ3〉. The ability
to perform a projection onto any pair of orthogonal states
|Ξk〉, |Ξ⊥

k 〉 enables the receiving party Bob to tell, in the
case when an outcome |Ξ⊥

k 〉 is obtained, which state has
definitely not been prepared by Alice. Such correlations
between Alice’s preparations and Bob’s outcomes can be
distilled into a secure key.

We have shown that the projective measurement onto
|Ξk〉, |Ξ⊥

k 〉 can be implemented in a way that tolerates
the loss of one photon. In a cryptographic setting, the
crucial issue is to ensure that an eavesdropper Eve does
does not map the state of intercepted photons outside the
DFS, which would enable eavesdropping attacks beyond
those already studied [11, 19]. To verify that this is not
the case, Bob could perform in principle a full quantum
state reconstruction on some of the transmissions, which
however would be resource consuming. We conjecture
that a sufficient strategy to detect such an attack would
be: (i) to detect polarizations of photons emerging after
the beam splitters; (ii) for a subset of transmissions to
count directly received photons to ensure that no multi-
photon states in individual time bins occur; (iii) for an-
other subset of transmissions to apply before the beam
splitters random and uncorrelated transformations Û⊗Û
and Û ′ ⊗ Û ′ and check that states |Ξk〉 always yield the
correct outcome when Bob used the matching basis for
his measurement.

Concluding, we have shown that DFS encoding is im-
mune to removing one particle. Unfortunately, this prop-
erty does not seem to generalize in a straightforward
manner to the loss of more particles. For example, when
two qubits are removed from a Dyck basis state, the re-
sult will either lie in the singlet subspace of n− 2 qubits,

or will be a mixture of singlet and j = 1 states. Nev-
ertheless, our result shows how to protect information
in the few-photon regime from both collective depolar-
ization and the first-order effects of linear attenuation.
We have proposed an experimental demonstration of this
combined protection which can provide a robust quantum
cryptography protocol.
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