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The readout of a classical memory can be modelled as a prafflguantum channel discrimination, where
a decoder retrieves information by distinguishing theedéht quantum channels encoded in each cell of the
memory [S. Pirandola, Phys. Rev. Letl06 090504 (2011)]. In the case of optical memories, such as
CDs and DVDs, this discrimination involves lossy bosoniamfels and can be remarkably boosted by the
use of nonclassical light (quantum reading). Here we gdimerthese concepts by extending the model of
memory from single-cell to multi-cell encoding. In geneiiaformation is stored in a block of cells by using
a channel-codeword, i.e., a sequence of channels choserdancgto a classical code. Correspondingly, the
readout of data is realized by a process of “parallel” chhdiserimination, where the entire block of cells is
probed simultaneously and decoded via an optimal colleatieasurement. In the limit of an infinite block
we define the quantum reading capacity of the memory, qyamgithe maximum number of readable bits per
cell. This notion of capacity is nontrivial when we suitaldgnstrain the physical resources of the decoder.
For optical memories (encoding bosonic channels), sucsti@nt is energetic and corresponds to fixing the
mean total number of photons per cell. In this case, we ame tabbrove a separation between the quantum
reading capacity and the maximum information rate achieviay classical transmitters, i.e., arbitrary classical
mixtures of coherent states. In fact, we can easily conistraraclassical transmitters that are able to outperform
any classical transmitter, thus showing that the advastafjiguantum reading persist in the optimal multi-cell
scenario.

PACS numbers: 03.67.—a, 03.65.Ud, 42.50.—p, 89.20.F7080f

I. INTRODUCTION optimization problem whose optimal choices are unknown,
a feature which makes its exploration non-trivial. Moreove
QCD may also involve continuous ensembles. A special case
One of the central problems in the field of quantum infor-is the “quantum channel estimation” where the ensemble is in
mation is the statistical discrimination of quantum stdfiés dexed by a continuous parameter with flat distribution. Here
[4]. This is a fundamental issue in many protocols, includingthe goal is to estimate the unknown parameter with minimal
those of quantum communication [5-8] and quantum crypLlincertainty/[15, 16].
tography[9=13]. A similar problem is the statistical diser Besides its difficult theoretical resolution, QCD is alse in
ination of quantum channels, also called “quantum channeeresting for its potential practical implementations.r o
discrimination” (QCD) [14]. In its basic formulation, QCD stance, it is at the basis of the decoding procedure of the two
involves a discrete ensemble of quantum channels which aay quantum cryptographly [17] where the secret information
associated with some a priori probabilities. A channelis ra is encoded in a Gaussian ensemble of phase-space displace-
domly extracted from the ensemble and given to a party whénents. Furthermore QCD appears also in the quantum illumi-
tries to identify it by using input states and output measurenation of targets [18, 19], where the sensing of a remote low-
ments. The optimal performance is quantified by a mini-reflectivity objectin a bright thermal environment corresgs
mum error probability which is generally non-zeroin thegpre  to the binary discrimination between a very noisy/lossyneha
ence of constraints (e.g., for fixed number of queries or renel (presence of target) and a completely depolarizingmélan
stricted space of the input states). In general, this is dlgéeu (absence of target).
More recently, QCD has been connected with another fun-
damental task: the readout of classical digital memoti€ [2
Thanks to this connection, Ref. [20] has laid the basic ideas
*These authors are equal first authors. of treating digital memories, such as optical disks, in tb&lfi
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of quantum information theory (see also the following stud-information. This enables us to define the quantum reading
ies of Refs.[[21=23]). The storage of data, i.e., the writingcapacity of the classical memory, which corresponds to the
of the memory, corresponds to a process of channel encodraximumreadableinformation per cell. If we do not impose
ing, where information is recorded into a cell by storing aconstraints, this capacity equals exactly the amount afrinf
guantum channel picked from some pre-established ensemation stored in each cell of the memory. However, this is no
ble. Then the process of readout corresponds to the procekmger the case when we introduce physical constraintsen th
of channel decoding, which is equivalent to discriminate be resources accessible to the reading device. In the case of op
tween the various channels of the ensemble. This is done kycal memories, which involve the discrimination of bosoni
probing the cell using an input state, also called “trant@riit ~ channels, the energy constraint is the most fundamental [5]
and measuring the output by a suitable detector or “receiver Thus the quantum reading capacity is properly formulated fo
Ref. [20] developed this model directly in the bosonic sefti  fixed input energy. This means that we fix the mean total num-
in order to apply the results to optical memories, such as CDber of photons irradiated over each cell of the memory. The
and DVDs. The central investigation regarded the comparisocomputation of this capacity would be very important at the
between classical and nonclassical transmitters, whédas-“c low energy regime, which is the most interesting for its pete
sical transmitters” correspond to probabilistic mixtuoéso-  tial implications. Despite its calculation is extremel§fidult,
herent states and encompass all the sources of light whiéch awe are able to provide lower bounds for the most basic op-
used in today’s data storage technology. By contrast, “nontical memories, i.e., the ones based on the binary encoding
classical transmitters” are only produced in quantum gptic of lossy channels. For these memories we are able to derive
labs and they are typically based on entangled, squeezed arsimple lower bound which quantifies the maximum infor-
Fock states[éﬂS]. As shown by Ref.[20], we can con-mation readable by classical transmitters. We call thisnbou
truct nonclassical transmitters that are able to outperfmny  the “classical reading capacity” of the memory and repressen
classical transmitter. In particular, this happens in #ggme  an extension to the multi-cell scenario of the “classicat di

of low energy, where a few photons are irradiated over eackrimination bound” introduced in Ref, [20]. Remarkablyeth
cell of the memory. This regime is particularly important fo optimal classical transmitter which irradiatesnean photons

the non trivial implications it can have in terms of increas-per cell can be realized by using a single coherent state with
ing data-transfer rates and storage capacities. Follottiag the same mean number of photons. Thanks to this result, we
terminology of Ref.[[20], we call “quantum reading” the use can easily investigate if a particular nonclassical trattem

of nonclassical transmitters to read data from classicatali  is able to outperform any classical transmitter. This isiu
memories. what we find in the regime of few photons. Thus, in the low

. . . energy regime, we can prove the separation between the quan-
The main results on the quantum reading of memories Cum reading capacity and the classical reading capacitghwh

ga.rt(t:ied thz sm%lg—i:jell sczna;:o,fwhe{ﬁ eat%h mer;:ory cell B equivalent to state that the advantages of quantum rgadin
written and read independently from the Others. HOWEVET, ayq st i the optimal multicell scenario.

supplementary analysis of Ref. [20] also showed that the ad-
vantages of quantum reading persist when we extend the en-

coding of information from a single- to a multi-cell model.

Assuming a block-encoding of data, one can use error cor-

recting codes which make the readout flawless. In this sce-

nario it is possible to show that the error correction ovathe

can be made negligible at low energies only when we adopt

nonclassical transmitters [26]. Motivated by this analytie The paper is organized as follows. In Sdck. Il [ we
present work provides a full general treatment of the quantu review some of the key-points of Ref. [20] and its supplemen-
reading of memories in the multi-cell scenario. This is donetary materials, which are preliminary for the new results of
by formalizing the most general kind of classical digitalme  Secs[TVEVII. In particular, in Sed]ll, we review the basic
ory. In this model, information is stored in a block of celis b notions regarding the memory model with single-cell encod-
using a channel-codeword, i.e., a sequence of channels chinig. Then, in the following Se€_lIl, we discuss the simplest
sen according to some classical code. Then, the readout ekample of optical memory and its quantum reading. Once
data is realized by a process of parallel channel discriminawe have reviewed these notions, we introduce the model with
tion. This means that the entire block of cells is probed inmulti-cell encoding in Sed_IV. In SeE]V we take the limit
parallel and then decoded by an optimal collective measurder infinite block size and we define the quantum reading ca-
ment. Such a description encompasses all the possible epacity of the memory, both unconstrained and constrained. |
coding and decoding strategies. Since the storage capcity particular, we specialize the constrained capacity to #sec
classical memories is usually very large, an average memomyf optical memories (bosonic channels). In $ed. VI we com-
is made by a large number of these encoding blocks. The optpute the lower bound relative to classical transmittees, ihe

mal scenario correspondsto the case where the whole memociassical reading capacity. In the following Sec.]VII we &o

is represented by a single, very large, encoding block whichhat this bound is separated, by showing simple examples of
is read in a parallel fashion. In this limit (infinite block)ew nonclassical transmitters which outperform classicalsane
can provide a simple characterization of the memory and rethe regime of few photons. Finally, Séc. VIl is for conclu-
sort to the Holevo bound to quantify the amount of readablesions.



Il. BASIC MODEL OF MEMORY: SINGLE-CELL

ENCODING
Channel Ensemble
In the more abstract sense, a classical digital memory can ) ={ &, px}
be modelled as a one-dimensional array of cells (the general ‘ ‘ .
ization to two or more dimensions is just a matter of technica (Transmitter) (Receiver)

ities). The writing of information by some device or encqder Yo Joi
that we just call “Alice” for simplicity, can be modelled as Input Out);ut X

a process of channel encoding![20]. This means that Alice State Cell State  Outcome
has a classical random variable = {x,p,} with k values

x =0,---,k — 1 distributed according to a probability dis-

tribution p,.. Each valuer is then associated with a quantum FIG. 1: Basic process of storage and readoutA memory cell

channelp,, via one-to-one correspondence can be characterized by an ensemble of quantum chadnels
{¢=,pz}. Alice picks a quantum channel. (with probability p.,)
T oy, (1) and stores it in a target cell. In order to read the infornmgtidob
exploits a transmitter and a receiver. In the simplest stgnthis
thus defining an ensemble of quantum channels corresponds to inputting a suitable quantum statsd measuring
the outputp, = ¢x(p) by a suitable detector. The detector gives
S ) the correct answer up to some error probability..... Multi-copy

probing. Since the cell encodes the quantum channel in a stable way,
\qe can probe the cell many times. This means that, more gener-
ally, Bob can input a multipartite stajgs) € D(H®*) which de-
scribess quantum systems. As a consequence, the output will be
«(s) = ¢%%[p(s)], whose global detection givesup to an error
robability (which is non-increasing i). Optical memory. The en-

Mathematically speaking, each channel of the ensemble is
completely positive trace-preserving (CPT) map actinghen t

state spacé®(H) of some chosen quantum system (Hilbert
space?). Furthermore, the various channels are differenlg

from each other. This means that, for any pairand¢.,  coded channeb. is a bosonic channel (in particular, single-mode).
there is at least one state= D(#) such that In this case, Bob uses an input staies, n) describings bosonic
modes and irradiating mean photons over the cell.
_ 1/212 - . .
where F(p,0) = [Tt(,/po/p)'/?* is the quantum fi- a single cell and the channel-encodibgnust be stable. As

delity [27]. Thus, in order to write information, Alice ran- 5 tesult. Bob can probe the cell many times by using an in-

domly picks a quantum channel. from the ensemble and |, ; state living in a bigger state space. Given some quantum
stores it in a target cell. This operation is repeated idaflyi  -annel

and independently for all the cells of the memory, so that we
can characterize both the cell and the memory by specifying ¢n: D(H) = D(H), (4)
o (see FigllL).

The readout of information corresponds to the inverse progop can input a multipartite statés) € D(H®*) with integer
cess, which is channel decoding or discrimination. The-writ ¢ > 1 j.e., describings quantum systems. As a result, the
ten memory is passed to a decoder, that we call “Bob”, wheyytput state will be
queries the cells of the memory one by one. To retrieve in-
formation from a target cell, Bob exploits a transmitter and pz(s) = 625 [p(s)] . (5)

a receiver. In the simplest case this means that Bob inputs a
suitable quantum stajeand measures the corresponding out-This state is detected by a quantum measurement applied to
put statep, = ¢.(p) recording the specific quantum channel the whole set of quantum systems (see Fig. 1). Physically,
stored in that cell (see Figl 1). Note that, given some inpuif we consider the process in the time domaifs) describes
statep, the ensemble of the possible output stdigs(p),p.}  the global state of systems which arsequentially transmit-
is generally made by non-orthogonal states which, thegefor ted through the cell. In other words, the numberan also
cannot be perfectly distinguished by a quantum measuremerfie regarded as a dimensionless readout time [20]. Intlyifive
In other words, the discrimination cannot be perfect and theéx is expected that the optima?. .., is a decaying function of
quantum detection will output the correct valuep to an er- s, so that it is always possible to retrieve all the informatio
ror probability P.,.,. It is clear that the main goal for Bob in the limit for s — oo. This suggests that the readout prob-
is to optimize input state and output measurement in order t@em is nontrivial only if we impose constraints on the phgsic
retrieve the maximal information from the cell. resources that are used to probe the memory. In the case of
discrete variables (i.e., finite-dimensional Hilbert spathe
constraint can be stated in terms of fixed or maximum readout
A. Multi-copy probing and optical memories times.
More fundamental constraints come into play when we

In a classical digital memory information is stored consider an optical memory, which can be defined as clas-

(quasi)permanently. This means that the association legtwe sical memory encoding an ensemidieof bosonic channels.



In particular, these channels can be assumed to be singlenergy per cell, i.e.,

mode. Since the underlying Hilbert space is infinite in the

bosonic setting, one has unbounded operators such as the en- P(®[n) = inf P(®[s,n) . 9)

ergy. Clearly, if we allow the energy to go to infinite, the

discrimination of (different) bosonic channels is always-p Thus, given a memory with celp, the determination of

fect. As a result, the readout of optical memories has to bé(®|n) provides the “optimal” readout of the cell at fixed en-

modelled as a channel discrimination problem where we fixergy n. It is worth stressing that the minimization over the

the input energy. The minimal energy constraint correspondnumber of signals; is not trivial due to the constraint that

to fixing the mean total number of photondrradiatedover ~ we impose on the mean total energy (if instead of such re-

each memory cell [20]. Thus, for fixed, the aim of Bob is  striction one imposes a bound on the mean enpegyignal,

to optimize input (i.e., number of bosonic systesrend their ~ then the infimum is always achieved in the asymptotic limit

statep) and the output measurement. In the following we ex-of s — o0). Also notice that we have put the word “opti-

plicitly formalize this constrained problem. mal” between apostrophes, since the optimality of Eb. (9) is
Let us consider an optical memory with céll= {¢,,p,}  still partial, i.e., not including all the possible readsttate-

where each element, is a single-mode bosonic channel. gies. In fact, as we discuss in the following subsection, Bob

Then, we denote by(s,n) a multimode bosonic state € can also consider the help of ancillary systems while kegpin

D(H®*) with mean total energy Tpn) = n, wheren is the  equal ton the mean total number of photons irradiated over

total number operator ovét®*. In other words, this state de- the cell.

scribess bosonic systems which irradiate a totalroimean

photons over the target cell (see also Eiy. 1). We refer to

the pair(s,n) as to the signal profile. In the bosonic setting B. Assisted readout of optical memories

the parametes can be interpreted not only as the number of

temporal modes (therefore, readout time) but equivalently as The optimality of Eq.[(B) is true only in the “unassisted

the number ofrequency modes, thus quantifying the “band- case” where all the input modes are sent through the target

width” of the signal[[20]. Now, for a given input = p(s, n) cell. More generally, Bob can exploit an interferometile|

to the cell®, we have the output state setup by introducing an ancillary “reference” system which
bypasses the cell and assists the output measurement as de-
pa(s,n) = ¢5°[p(s,n)] . (6)  picted in Fig[2. In the “assisted case” we consider an input

statep € D(HE® ® HE") which describes signal modes
(Hilbert spaceHgs) plus a reference bosonic system with
modes (Hilbert spac&/%") [30]. As before, the minimal en-
ergy constraint corresponds to fixing the mean total number o
photons irradiated over the target cell, ire =Tr(pn ) where
ng is the total number operator acting oVeE*ES ]. We de-
note byp = p(s,r,n) such a state, where we make explicit
k1 the number of signal modesthe number of reference modes
1 .: r, and the mean total number of photonsradiated over the
=1 IZ:OpITr[Hmpm(S,n)] = Pl®lp(s,n). M]. (@) cell. Following the language of Ref. [20], we also refer to
p(s,r,n) as to a transmitter witk signals, references, and
Here we denote by?[®|p(s,n), M] the error probability in  signallingn photons([32].
the readout of the celb given an input statg(s,n) and an Now, given a transmittep(s, r,n) at the input of a target
output measuremen!. Now we are interested in minimizing cell® = {¢., p.. }, we have the output state
this quantity over input and output.
As a first step we fix the signal profile, n) and consider pa(s,mm) = (¢5° @ I¥)p(s,7,n) , (10)

the minimization over input states and output measurements . .
This leads to the quantity where the channeb, acts on each signal mode, while the

identity /7 acts on each reference mode. This state is then

measured by a POVMM = {II,} whereIl, acts on the

P(®|s,n) = min P[®|p(s,n), M], 8 Whole state spac®(Hg® @ HE"). The error probability
p(s,n),M P[®|p(s,r,n), M] has the form of Eq[{7) where now both

L . . ) _state and measurement are dilated to the reference system.
which is the minimum error probability achievable for a fixed 115 given a memory with celb, the minimum error proba-
signal profile(s,n). Note that there are some cases Whereoility at fixed signal energy: is given by

the optimal output POVM is known. For instance if the out-
put states.. (s, n) are pure and form a geometrically uniform . .
set@  then the optimal detection is the square roatme ~ £(®11) = {Sf {p(sfililr)l_M P[®lo(s,r,n), M]} A
surement [1]. T

As a final step, we keep the enerngfixed and we minimize  where the minimization includes the reference system too. |
over s, thus defining the minimum error probability at fixed general, we always consider the assisted scheme and the cor-

This output is subject to a quantum measurement oves the
modes which is generally described by a positive operater va
ued measure (POVMM = {II,} havingk detection oper-
atorsII, > 0 which sums up to the identity_ II, = I.
This measurement gives the correct answeip to an error
probability
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responding error probability of Ed._(L11). This clearly repr Given a transmittep(s,r,n) at the input of the binary
sents a superior strategy for the possibility of using entancell ®, we have two equiprobable outputs(s,,n) and
glement between signal and reference systems. Clearly, tha (s, r, n). In this case the optimal measurement corresponds
unassisted strategy is achieved back by setting 0 and to the projection onto the positive part of the Helstrom imatr

p(s,0,n) = p(s,n). po(s,r,m) — p1(s,m,n) [El]; As a result, the error probability
for reading the binary cefb using the transmittes(s, r, n) is
given by

Pldlp(s,r,n)] = & {1 L le(s, ) pr(sr, n)]} ,

2 2
(15)
whereD is the trace distancel[1]. This expression has to be
optimized on the input only, so that we can write

References P(®|n) = inf{ min P[®|p(s, T, n)]} , (16)
(@r) s,r | p(s,ryn)

FIG. 2: Assisted readout of an optical memory.Alice stores data  Which is the minimum error probability at fixed signal energy
in the cell by encoding a single-mode bosonic chanfielicked ~ This quantity clearly provides the maximum information per
from the ensemble. In general, Bob queries the cell by using a Cell at fixed signal energy, which is given by
transmitterp(s, r,n) which describes signal modes, irradiating B B
mean photons over the cell, pluseference modes (bypassing the I(®n) =1— H[P(®|n)], (17)
cell). The global output state.(s,r,n) is detected by a quantum
measuremeni, which provides the correct answeup to an error  where
probability P[®|p(s,r,n), M].

H(z) = —zlogyz — (1 — z)log, (1 — ) (18)

is the binary formula of the Shannon entropy.
lll. THE SIMPLEST CASE: OPTICAL MEMORY WITH Even in this simple binary case the solution of Hq.l(16)
BINARY CELLS is very difficult. However we can provide remarkable lower
bounds if we restrict the minimization to some suitable €las

In general the solution of EqC{L1) is extremely difficult. of transmitters. An important class is the one of the cladsic
In order to investigate the problem, the simplest possitée s transmitters, since they encompass all the optical ressurc
nario corresponds to an optical memory whose cell encodédsed for the readout of optical memories in today’s storage
two bosonic channels (binary cell) [20]. The situation is-pa technology. Furthermore, this class can be easily characte
ticularly advantageous when the channels are pure-loss arged- Given a transmittei(s, , n), we can write its Glauber-
they are chosen with the same probability. This means to consUdarshan representation|[33]
sider the binary channel ensemble

(i) - {¢uapu}u:0,1 = {¢07p07¢1ap1} 5 (12)

wherepy = p; = 1/2, and¢,, represents a pure-loss channelwherea = (aq, - - ,Ofs)T andj = (By,---,B,)" are vec-
with transmissior) < x,, < 1. In the Heisenberg picture, the tors of complex amplitudes,
action of¢,, on each signal mode is given by the map

p(s,r,n) = / 0 d¥ 3 P(a, B) o(0) ©(8),  (19)

s — \/Ruls — /T— kyar , (13) o(a) :®|ai>s<ai| ) ’7(5):®|5i>R<ﬁi| ) (20)

i=1 i=1
whereag is the annihilation operator of the signal mode and . he . .
ag is the one of an environmental mode which is prepared’;lre multimode coherent states, and netion P(a, ) is

in the vacuum state. For simplicity we can also denote thé& q9§5|-d|str|but|on, €., normahzed_to one bu.t gengnafin
ensemble by using the short notation positive [33]. In terms of theP-function, the signal energy
constraint reads

(i) = {IQQ, Iil} . (14) s
/d%ad%ﬁ P(e, )Y |ouf* =m. (21)
When the optical memory is read in reflection (which is usu- =1
ally the case), then the two parametegsand «; represent
the two possible reflectivities of the cell (so that unit refle Now we say thap(s, r, n) is classical (nonclassical) if the-
tivity corresponds to perfect transmission of the signafrfr ~ function is positive (non positive). Thus if the transmitie
transmitter to receiver). classical, denoted by.(s,r,n), then it can be represented as
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a probabilistic mixture of coherent states. The simplest exP[®|pe,(s, s,n)]. By optimizing over the number of copies
amples of classical transmitters are the coherent stats-tra s, we define the upper bound

mitters, that we denote by, (s, 7, n). These are defined by - - -

singularP-functions P(®|n) < Pepr(®|n) == irslfP[<1>|pepT(s, s,m)] . (29)

P(a, ) = 0% (a — )6 (8 - B) , (22)  This bound represents the maximum information which can
be read from the binary cefb by using an EPR transmitter
which signaln mean photons. This quantity can be estimated

~ using the quantum Battacharyya bound and its Gaussian for-

so that they have the simple form

Peon(s,m;n) = o(@) @ y(B) . mula Q]. After some algebra, we gE[@ 26]
Examples of nonclassical transmitters are constructatusi - exp(—wn)
squeezed states, entangled states and number 5tates][24, 25 Pepr(®|n) < B := —5 (30)

As shown in Ref.[[20], by restricting the optimization to
classical transmitters, we can compute the upper bound where

pe(s,r,n) 2
(23)

- . - 4R 42
P(®|n) < P.(®|n) := inf{ min  P[®|p.(s,r, n)]} , W= T 2/kok1 — /(1 — ko)(1 — k1) . (31)
which is given by

Pu(@n) = 2= V1o exp[_Q"(‘/“—O “VET

A. Quantum versus classical reading

Because of the potential implications in information tech-
. _ nology, it is important to compare the performances of clas-
This bound can be reached by a coherent state transmittgca| and nonclassical transmitters. The basic questiasho
peon(1,0,n) = [v/n)s(/nl, i.e., a single-mode coherent state i the following [20]: for fixed signal energy irradiated over
with mean number of photons equaktoThe error probabil- 5 pinary cell®, can we find some EPR transmitter able to
ity P.(®[n) of Eq. (23) or, equivalently, the mutual informa- oytperform any classical transmitter? In other words, ithis
tion equivalent to show thak.,,. (®|n) < P.(®|n) and a sufficient
_ _ condition corresponds to prove thBt< P.(®|n). Thus, by
1(®[n) =1 = H[P(®[n)] , (25) using Eqgs.[(24) and (B0), we find that for signal energies

is known as “classical discrimination bound”. 21n2
Alternative (and better) bounds can be derived by resorting 7 > nth 1= 2o —r1 — 2V =R =)

to nonclassical transmittefs [20]. As a prototype of nossita Fo =R o 1

cal transmitter we consider the EPR transmilte) [18], witsch it is always possible to beat classical transmitters bygiaim

composed by pai(s of signals and. references, entangled ViaEPR transmitter [20]. For high reflectivity, ~ 1 andro <
two-mode squeezing. This transmitter has the form %1 the threshold energy,, can be very low. In the case of
“ideal memories”, defined by, < k; = 1, the bound of

(32)

— ®s
Pepr (s, 5,m) = [€) (€] (26) Eq. (30) can be improved. In fact, we can write
where|¢) (¢] is a two mode squeezed vacuum (TMSV) state, - —on(l —
entangling one signal modewith one reference modg. In P (®n) <0 := expl=2n(1 — ko)l (33)

the number-ket representation, we hdve [24] 2
- and the threshold energy becomeg = 1/2 [20]. Thus,

_ -1 m for optical memories with high reflectivities and signal ene
€)= (cosh&) Z (tanh &)™ [m)g [m) g 27) giesn > 1/2, there always exists a nonclassical transmit-
a ter able to beat any classical transmitter. In the few-photo
where the squeezing parametér quantifies the signal- regime, roughly given byt /2 < n < 10% the advantages
reference entanglement and gives the energy of the signal ®f quantum reading can be numerically remarkable, up to one
sinh? £. Since this transmitter involvescopies of this state, bit per cell. The implications have been thoroughly disedss
we have to impose in Refs. [20,[26]. It is important to say that these advan-

tages are also preserved if thermal noise is added to the ba-
) \/ﬁ sic model. This noise can describe the effect of stray prton
& =arcsinh [/ —

m=0

(28) hitting the memory from the background and other decoher-
ence processes occurring in the reading device. Formiaily, t
in order to have an average af total photons irradiated means to extend the problem from the discrimination of pure-
over the cell. Given an EPR transmitter,.(s, s,n) at the  loss channels to the discrimination of more general Ganssia
input of the binary cell®, we have an error probability channels[26].



A supplementary analysis of quantum reading has also
shown that its advantages persist if we consider more ad-
vanced designs of memories where information is written
on and read from block of cells (multi-cell/block encoding)
Block encoding allows Alice to introduce error correcting
codes which make Bob’s readout flawless up to some meta-
data overhead. By resorting to the Hamming bound and the
Gilbert-Varshamov bound, Ref. [26] showed that EPR trans-
mitters enable the low-energy flawless readout of classical
memories up to a negligible error correction overhead, con-
trarily to what happens by employing classical transmnstter
In the following section, we develop the idea of block encod-
ing in the most general scenario, i.e., for arbitrary cleasi
memories. Then, by sending the size of the block to infinite
(Sec[¥), we will be able to introduce the notion of quantum
reading capacity of a classical memory.

FIG. 3: Memory model with block encoding. In order to write
data, Alice encodes a channel-codewgtd in a block ofm cells.
IV. GENERAL MODEL OF MEMORY: MULTI-CELL To read the data, Bob uses a suitable transmitter and recile
ENCODING ing a problem of parallel channel discrimination. The traitter is
an arbitrary multipartite state which probes the entire block by in-

. . . putting s systems per cell plus sending additionalystems directly
The writing of a memory is based on channel encodingy, e receiver. The output state: is detected by an optimal collec-

which generally may involve a block of. cells. Afirsttriv-  tive measurement which provides the correct anssiesp to some
ial kind of block encoding is just based on independent anrror probability P..... In the uncostrained readouf.,.., goes to
identical extractions. As usual, Alice encodeg-ary vari-  zero and Bob retrieves all the informatidf,.. from the block. If
able X = {z,p,} into an ensemble of quantum channelsthe readout is constrained, as in the case of optical mematiiéxed
® = {¢.,p.}. Then, she performs: independent extrac- signal energyn, then P.,., is nonzero. In this case, Bob retrieves a

tions from.X, generating am:-letter sequence fraction of the information/ < Hp..x or, equivalently, he retrieves
all the information if Alice suitably increases the size bé thlock
X:=(T1, " ,Tm) , (34)  while keepingH max as constant.
with probability px = p., ---p,,. This classical sequence
identifies a corresponding “channel-sequence” where the identity acts on the reference systems, while
whichis stored in the block of. cells. acts on the signal systems. This state is detected by a €ollec

In a more general approach, Alice adopts a classical codgye quantum measurement, i.e., a general POVM witle-
This means that Alice disposes a setrofletter codewords  tection operators with outcomecorresponding to codeword

{x% - ,x', -, x!""}with I < k™. A given codeword x'. Clearly, the main goal for Bob is to optimize both input
i i state and output measurement in order to retrieve the méxima
x'=(z%,,2n,), (36) ;
information from the block.
is chosen with some probability,: and identifies a corre- Itis intuitive to understand that, without constraints j)Bs
sponding “channel-codeword” always able to retrieve all the information from the block, ,i
i = Ppi ® - @ i (37) -1

) _ o Hypox = — ) pxi log pyi (40)

Thus, in general, Alice encodes information in a blockrof - ; " "

cells by storing a channel-codeword, which is randomly cho-b_ ¢ inf . his | | h i
sen from the ensemblg),:, py: } wherei = 0,--- ;1 — 1. its of information. However this is no longer the case if we

The most general strategy of readout can be described érglpose constrgints on Bob’s phys_ical resources. AS we know,
a problem of “parallel discrimination of quantum channels” vyh_en we consider optical memories (bpsomc Sett'ng)' the op
where Bob probes the entire block in a parallel fashion ancﬁ'm'zat'o'.q '_TIUSt be constrained in the input energy, in part
detects the output via a collective quantum measurement. [/, by fixing the mean total number of photansradiated
order to query the block, Bob usessignal systems per cell ©Ver €ach cell. n this case, if we consider low values ahe
besides other supplementaieference systems for the benefit measurement will l?e affectgd by r!on-negl_|g|ble error proba
of the output measurement. The whole setof-+ r systems bility P.,, and the information retrieved will be some value

; ; i P ; I = I(n) betweer) and H,,,,x. In other words, data will be
s described by an arbitrary multipartite statésee F . max
jAt the OLIJtput o>flthe bI0<|:k Byob Ealsp I atd '9LE) read with an average rate &{n) = m~=11(n) bits per cell.
’ Itis important to note that, in the block-encoding model, an

Pxi = ( fff @ I®)(p) , (38) equivalent approach consists of making the readout flawless



by increasing the error correction overhead in the block. In
other words, for a given signal energywe can determine the
minimal sizem = m(n) of the block (and the corresponding
optimal classical code) which makes the error probahitity.
negligible (i.e., reasonably close to zerol[26]). In thisea
the readout is flawless and the block provides all thg.x
bits of information. As a result, the rate now takes the form
R(n) = [m(n)]~! Hiax-

Itis clear that, given an arbitrary block encodifil,: , py:
and an arbitrary multipartite transmitter which irradste
mean photon per cell (see Fig. 3), the computation of the rate
R(n) is extremely difficult. However we can face the problem
if we consider transmitters which are separable with respec J
the different cells (more exactly, in tensor product formjla
taking the limit for infinite block o — oc). This allows FIG. 4: Limit f_or infinit_e pk_)ck. A memory can be described as a
us to introduce a simple description of the memory (similar'@r9e (approximately infinite) encoding block, where eaefi en-
to the single-cell scenario) and, most importantly, o te t C04€S @ marginal ensembie = {¢.,p.}. In order to read the
Holevo bound as quantifier for the readable information, i.e memory, Bob uses an multi-copy transmitgs, r) ™ = p(s, r) @

. R . p(s,m) ® - - -, where each copy(s, r) probes a different cell using
as asymptotic raté(n). Then, the optimization of this rate s signals generally coupled with othereferences. All the outputs

over the transmitters enables us to define the quantum @adifom the block are collectively detected by an optimal quentmea-
capacity of the memory. surement which reconstructs the asymptotic channel cadewo

V. LIMIT FOR INFINITE BLOCK: QUANTUM READING where

CAPACITY pa(s,7) = (67 @ I°")[p(s,7)] (43)
By applying an optimal collective measurement on all the out

ts, the maximum information per cell that can be retrieved
S given by the Holevo bound

Digital memories typically store a great amount of data.
This means that an average memory is composed of a lar
number of encoding blocks. In principle, we can also describ
the memory as a single large block of cells where Alice stores
data by encoding a very long channel-codewogd chosen x(€) =5 lmepm(S, 7‘)] =Y paSlpals,r)] (44
with some probabilityp,:. Considering the whole memory x x
as a large encoding block allows us to re-introduce a singlegheres denotes the von Neumann entropy. The achievability
cell description. In fact, in the limit for — oo, each cell  of \(¢) is assured by the Holevo-Schumacher-Westmoreland
can be described (on overage) by a marginal ensemble @heorem [[5]. Here it is important to note that the asymp-
quantum channel® = {¢,,p.} encoding a corresponding totic readout can be flawless. In other words, for a given
marginal variableX' = {z,p, }. Thus, independently from marginald = {¢,,p,} there is always an asymptotic block
the actual classical code used to store information, the d%ode{¢xi,pxi}, giving that marginal, which allows the re-
scription of a large classical memory can always be reducegeiver to give the correct answet with asymptotically zero
to its marginal cell, corresponding to a marginal ensemble ogyqr.
channelsb = {¢., p.}. Given a memory with marginal cefb, the Holevo infor-

Despite this asymptotic simplification, the readout preces mation of Eq. [@%) depends on the input stafe, ) only.
is still too difficult to be treated if we consider arbitraryuth  This means that it can be represented esralitional Holevo
tipartite states, i.e., generally entangled among diffecells.  jnformation, that we denote by[®|p(s,)]. In other words
Thus we restrict the readout to input states which are tensof[d|p(s, )] represents the maximum information per cell

products. This means that Bob inputs&rcopy state which can be read from a memory with marginal céliif
o0 we use the transmittex(s, 7). The crucial task here is the op-
p(s,1)9% = p(s,r) @ p(s,r) @+, (41)  timization of x[®|p(s,)] over the transmitter. As a first step,

we can consider the readout capacity for fixed number of input
where the single-copy(s,r) € D(HE® ® H%") describes systemss andr, i.e.,
s signal systems sent through a target cell plus additional
reference systems (see Fig. 4). Given thecopy transmit- C(@|s,r) = H(laX)X[q)|P(S,7’)] : (45)
ter p(s,r)®> at the input of a memory with marginal cell rer
® = {¢.,p.}, the output is still in a tensor product form. Now, by optimizing Eq.[(45) over the number of input sys-
The average output of each cell is described by a margindems, we can define thanconstrained quantum reading ca-

ensemble of states pacity of the memory.[35]
€= {puls,7),p2} (42) C(®) = sup max x[®p(s,r)] . (46)
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Since it is unconstrained, this capacity can be greatly simstates). Then we can always construct the mixed-state-trans
plified and trivially computed. First of all the maximizatio mitter

can be reduced to pure transmittéxs, ) as a simple conse-

quence of the convexity of the Holevo informationl[34] (see p(s,m,n) = /dy Py Uy(s,7,m) (52)
AppendiXA1 for more details). Then, also the use of the ref-

erence systems can be avoided. In other words, it is suff|C|er\1Nhere p, >0, [dyp, =1, andyy(s,rn) € P. Clearly

to consider the unassisted capacity where WE MaxiMmIZ€ OVefo ot of mixed-state transmitters identifies a largersclas
¥(s,0) = ¢(s). Furthermore the supremum is achieved in the, nich includesP. Now, we can define a lower-bound to

limit for s — +oo, i.€., we can write C(®|n) by optimizing over the clasd, i.e.,

This quantity is the maximal possible since it equals theSimiIarIywe can consider the further lower-bound

amount of information stored in the marginal cell of the mem-

ory. This is given by the Shannon entropy of the marginal Ca(®n) > Cp(®|n) =sup max _x[®|Y(s,r,n)] .
2l

variable X = {z,p,} encoded by the marginal ensemble s,r Y(smn)€
® = {¢, p.}. In other words, we have _ _ (54)
Here we first ask: is there some cl@®ghat allows to put an
C(®) = H(X) = — me log py - (48) equality in Eq.[(BH4), i.e.Cp(®n) = C4(P|n)? Then,is it
- possible to extend this class to all the pure transmitterthat

Cp(®|n) = C(®|n)?

The proof s trivial (see Appendix A 2 for details). Unfortunately we are not able to answer the second ques-

The notion of quantum reading capacity is non-trivial only tion, so that the issue of the purity of the optimal transent
in the presence of physical constraints. This is what hagppenemains unsolved. However, we are able to find classes for
in the bosonic setting, where optical memories are read bwhich Cp(®|n) = C4(®|n). For this sake, a sufficient crite-
fixing the input signal energy. Thus, let us consider an aptic rion is the concavity o€» (®|n).
memory with marginal celib = {¢.,p.} where¢, repre-
sents a single-mode bosonic channel. As transmitter, now weemma 1 If C(®|n) is concave in n, then we have

consider amo-copy state
Cp(®[n) = Ca(®ln) . (55)

p(S’,r,’n)(@OO :p(saran)®p(s7ran)®'” ’ (49)

Proof. Let us consider the transmitter of EQ.{52), whose sig-
wherep(s, 7, n) € D(HE® ® HE") describes signal modes, nal energy (mean number of photons) can be written as
irradiatingn mean photons on a target cell, plus additional

reference modes bypassing the cell. At the output we have an n= /dy Dy Ny 5 Ty = (g |1]1)y) (56)
infinite tensor product of states of the form

Given this transmitter at the input of a marginal eellwe can

_ ®s T

pa(s,rm) = (677 ® I7)[p(s,mn)] (50) " phound the conditional Holevo information
which are detected by an optimal collective measurement. In
this way, Bob is able to retrieve an average®®|p(s, r,n)| X[®lp(s, 7,n)] < /dy py X[P¥y] (57)
bits per cell. Now, we must optimize this quantity over the
input transmitters by taking the signal enengyixed. This < /dy py Cp(®[ny) (58)
constrained optimization leads to the definition of the quan-
tum reading capacity of the optical memory <COp (q)| /dy Dy ny) (59)

C(®|n) = sup max x[®|p(s,r,n)]. (51) = Cp (Dn) | (60)

s,T p(s,r,n)

This capacity represents the maximum information per cel}"’here we have _us_(_ad the convexity;@ﬁn the first ir_1equa|-
which is readable from an optical memodyby irradiating ity ED. the_ def|n|t|on_ 0fC’7>(<I>|n) n the s_econd me_qual-
jty &8) and its concavity in the last inequalify (59). It iear

n mean photons per cell. The computation of Eq] (51) is no
easy at all. As a matter of fact we are only able to providenat Eds-[(B7)E80) hold for evepy(s, r,n) € A and everys

lower bounds by restricting the class of transmitters inedl  andr- As aresult, we can write

in the maximization. We do not even know if the optimal sup max  x[®|p(s,r,n)] = Ca(®|n) < Cp (®ln) |

transmitters are pure or mixed. sr p(s,rn)eA

Let us consider a set (or “class?) of pure transmitters (61)
(s, r,n) which are characterized by some general propertyhich, combined with Eq[{84), gives the result of Eql (38).
which does not depend onr andn (for instance, they could In the following section we show that an important cl@ss

be constructed using states of particular kind, such ageahe for which C»(®|n) is concave is the one of the coherent-state
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transmitters. This means th@p (®|n) = C4(®|n), whered  where H isthe binary Shannon entropy and
is the class of the classical transmitters (constructeddoy c
vex combination via thé&-function). Thanks to this resultwe ¢ — 1 + l\/l —4p(1 —p) [L — e "VFmI—VR)*] | (67)
can compute an analytical bound for the readout performance 2 2

of all the classical transmitters, that we call “classicdd-
ing capacity”. This capacity represents the multi-cell gen . .
aligzati(?n of%he classicgl dis)érin?ination bound of ﬁaﬁg goherent—state transmtter pc?h(l’ 0,n) = |vn)s{ynl.ie.a
provides a simple lower bound to the quantum reading Capé\gngleumode coherent state with . mean photons.
ity. In Sec[V] we compute its analytical formula for the most pyot | et us consider the clasg = coh of coherent-state
ba_15|c optl_cal memories. Then,_as we will show in ﬁ] V”'transmitterSpwh(s, r,n). By convex combination we con-
this classical bound can be easily outperformed by norielassgyy,ct the classt = ¢ of the classical transmitteys (s, r, n).

cal tr.ansmitter_s, thus proving its separation from the ¢uan The first step of the proof is the computation@f,, (|n),
reading capacity. i.e., the readout capacity restricted to coherent statesné-
ters. We first prove thalc,(®n) = x[®[pcon(1,0,7)],
i.e., the optimal coherent-state transmitter is the singdele
coherent staté,/n)s(y/n|. Then, we analytically compute
X[®|peon (1,0, n)]. Since this quantity turns out to be concave
Let us consider an optical memory which is the multi-celljn , we can use Lemnid 1 and state,,(|n) = C.(®|n),

In particular, the bound C,.(®|n) can be reached by using a

VI. CLASSICAL READING CAPACITY

generalization of the binary model described in $e¢. lll. Inghys achieving the result of the theorem.

the single-cell model of SeC.ll, information was writtem i Gjven a coherent-state transmitter

each cell in an independent fashion, by encoding one of two

possible pure-loss channefs, and¢, (binary cell). Here we Peon(8,1,1) = o) @ v(B)

consider the multi-cell version, where Alice stores a clenn s r

codeword in the whole optical memory regarded as an infi- = ® lovi) s {vi| ® ® 18:) R (Bl (68)
nite block. In particular, the block encoding is such that th i1 i1

marginal cell is described by a binary ensemble R
at the input of the cel, we have the output

(i):{¢01p7¢111_p} (62)
pu = 63 (o ()] @ ()
where0 < p < 1 andg, is a pure-loss channel with transmis- s r
sion,,. Alternatively, we can use the notation =) tullei)seil) @ Q) 18:) r(Bil
i=1 i=1
(I):{K()apvﬂlvl_p}' (63)

= Q) [Vrua)s(VeEwai| © Q) B r(Bil . (69)
i=1 i=1

Given this kind of memory, we consider the input

which is still a multimode coherent state. This is a simple
consequence of the fact thag and¢, are pure-loss channels.
Since we are computing the Holevo information on the output
signals, - references and mean photons. The average in- €NSeémble, we have the freedom to apply a unitary transforma-
formation which can be read from each cell is provided by thdiOn OVerp.. By using a suitable sequence of beam splitters
Holevo quantityx[é| pe(s,,n)]. Now, by optimizing over the and phase-shifters we can always transfpgninto the state

classical transmitters we can define the lower-bound s—
|v’$un>5<\/’€un|®|0><0|® el (70)

pC(S,’I’, n)@oo :pc(s,r,n) ®pc(s,7’, n)® ) (64)

wherep.(s,r,n) is an arbitrary classical transmitter with

C(®[n) = Cc(®@n) = 5;17? p:g;%?(n) X[®lpe(s,mn)], (65)  Then, since the Holevo information does not change under the
' . adding of systems, we can trace the s — 1 vacua and just

which represents the classical reading capacity of thealpti consider the single-mode output state
memory®. This capacity represents the multi-cell version of B
the classical discrimination bound of SEc] Ill. As before, w pu = [VEun)s{VEan] - (71)

can provide a simple analytical result. This can be achieved by considering a single-mode coherent

. . ) ) state transmitter
Theorem 1 Let us consider an optical memory with binary

marginal cell & = {ko,p, k1,1 — p} whichisread by a clas- peon(1,0,n) = |v/n)s (/7| (72)
sical transmitter signalling n mean photons. Then, the maxi-
mum information per cell which can beread isasymptotically ~ at the input of the pure-loss channgl. For fixed marginal
equal to cell ® and fixed input energy, the reduction from the multi-
mode input of Eq.[(@8) to the single-mode output of Eq] (72)
C.(®n)=H(E), (66) s always possible, independently from the actual number of
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systems,s and r, and the specific form of the transmitter VIl. NONCLASSICAL TRANSMITTERS
Peon (8,7, 1). Thus, we can write

E ) % As before, let us consider an optical memory with binary
Ceon(®ln) = SSu,P pcﬂi}ﬁ,n) X[®pcon(s, ;)] marginal celld = {xg, s, }. This time we assume that it is
— \[®]peon(1,0,7)] . (73) reaql by using a nonclassipal transmiyigg(s, r,n). Since we
are in the asymptotic multi-cell scenario, we clearly assam
In other words, the optimal coherent-state transmittehés t co-copy inputp,..(s, 7, n) @ ppc(s,7,n)®- - - together with an
single-mode coherent statg’n) s (/n|. The next step is the optimal collective measurement of the output. The maximum
analytical computation of [®|p..»(1,0,n)]. After some Al- number of readable bits per cell is given by the conditional
gebra we get Holevo informationy[®|py..(s,,n)]. Now we ask: is this
~ guantity bigger than the classical reading capaCity®|n)?
X[®lpeon(1,0,n)] = H(E) , The first design of nonclassical transmitter is thg}éP)R trans
where H is the binary formula of the Shannon entropy andmitter p.,, (s, s, n) = |¢) (¢|** which has been first discussed
& = &(ko, k1, p,m) is given in Eq.[(6F). One can easily check in Sec[Tll. In order to beat classical transmitters, it ifisu
that [ () is a concave function of, for any o, 1, andp.  cient to considep,,,(1,1,n) = [£) ({|, i.e., a single TMSV
SinceC,,,(®|n) = H(£) is concave in the energy, we can  state per cell. This means that we have one signal nfhde
apply Lemmd1L by settin® = coh and A = ¢. Thus we irradiatingn mean photons over a target cell, which is entan-
get Co(®|n) = Ceon(®|n) = H(E) which is the result of gled with one reference mode. To quantify the advantage
Eq. (68). Itis clear that the optimal classical transmitter ~ we consider the information gain
incides with the optimal coherent-state transmitter whgh _ _
given bypeon(1,0,n). B G = X[®[pepr(1,1,n)] = Ce(@|n)

It is interesting to compare the single-cell and multi-cell . o _
classical discrimination bounds, in order to estimate thia g and check its positivity. 1iG > 0 then the EPR transmit-
which is provided by the parallel readout of the cells. Forter p_epr(l, 1,n) beats all the cla55|cal_ transmitters, retrieving
a direct comparison, let us spt= 1/2, so that the binary G b!ts per cell more thar_1 any clas_S|caI strategy. As shown
cell & is described byb — (K0, 1/2, k1, 1/2) = {0, k1) in Fig.[d, w_e_have(_? > 0 in the regime of Iow p_hotons and
Then, we compare the maximum information which achiev-Ngh reflectivities (i.e.xo or ; close tol). This is the typ-

able by using classical transmitters in the multi-cell @ad ical regime where the quantum reading of optical memories
i.e., the classical reading capacity.(®|n), with the maxi-

is advantageous, as also investigated in the single-cell sc
mum information which is achievable by classical transmit-"aro [20].
ters in the single-cell readout, i.e., the classical dmsoration

boundI.(®|n) given in Eq. [Zb). As shown in Fil 5 the ad- ! o3 1 V
vantage is quite evident. . c 0.15
1 0.2 1
0.1
05 01 05
0.05
0. 0 0
0 -0.1 0
0 0.5 1 0 0.5 1
K K

0 0

bits per cell

FIG. 6: (Color online) Information gaids versus reflectivitiesko
andk1, forn = 5 (left panel) and» = 1 (right panel). Here&= pro-
vides the number of bits per cell which are gained by the shogpy
EPR transmittef¢) (£| over all the classical transmitters in the read-
out of an optical memory with marginal cefl = {0, ~1}. Note
that the highest values @f occur forkg or x; close tol (high re-
flectivities).

n

FIG. 5: Maximum number of bits per cell read by classical $ran
mitters as a function of the signal energy (mean number of ] ) ) )
photons). We compare the two classical discrimination deun ~ AS evident from Fig[b the best situation corresponds to
C.(®|n) (multi-cell readout, solid line) and.(®|n) (single-cell  having one of the two reflectivities equalltpi.e., for an “ideal
readout, dashed line). We consider a memory with binary marg memory”® = {xq < k1,1 = 1}. Given such a memory, we
cell ® = {ko, 1} Wherexko = 0.5 andk1 = 0.9. explicitly compare the information read by an EPR tranmitt
Xepr = X[®|pepr(1,1,n)] with the classical reading capacity
In the following Sec[VII, we will construct examples of C.(®|n) at low signal energy. As shown in Fig. 7 far= 1,
nonclassical transmitters which are able to outperform théhe EPR transmitter is always able to beat the classicaldioun
classical reading capacity. This will prove the separatien Itis importantto note that we can construct other simple ex-
tween the quantum reading and the classical reading capa@mples of nonclassical transmitters which can outperfoien t
ties, thus showing the advantages of quantum reading in thelassical reading capacity. An alternative example of fasic
multi-cell scenario. sical transmitter can be taken again of the fgsm(1,1,n)
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FIG. 7: Number of bits per cell as a function #f, for k1 = 1 FIG. 8: Number of bits per cell as a function ef, for x1 — xo =
(ideal memories) ana = 1 mean photons per cell. We compare 0-01 (close reflectivities) and = 1. We compare the classical read-
the classical reading capacity (dotted line) with the Holforma- ~ ing capacity (dotted line) with different nonclassicalrsenitters:
tion retrieved by various nonclassical transmitters: ERRgmitter ~ EPR transmitter (dash-dotted line), NOON state transmtiashed
(dash-dotted line), NOON state transmitter (dashed line) Bock  lin€) and Fock state transmitter (solid line).

state transmitter (solid line).
1

K.=0
0.8t 0 |
and corresponds to the NOON statel [36, 37] = e
Z 06t T T
INOON) = 27 2(12n)s[0) r + [0)sl2n)) . (74) & e
2 04r T
where signal and reference are again entangled. A further ex < 02l 7
ample of nonclassical transmitter is of the fopm.(1,0,n), T
i.e., not involving the reference mode. This is the Fockestat oks \
0 0.2 0.4 0.6 0.8 1
[n)s = (n)) "/ (ak)"|0)s - (75) K

N . FIG. 9: Number of bits per cell as a function ef, for ko = 0 and
As shown in Fig[J, these transmitters can beat not only the, _ 1 e compare the classical reading capacity (dotted ling) wi

classical reading capacity but also the EPR transnilelt|  the squeezed coherent state transmitter (dashed line)haniiock
for low values ofxg. Recently, these kinds of transmitters state transmitter (solid line).

have been also studied by Réf.|[21] in the basic context of
guantum reading with single-cell readout.

It is interesting to compare the performances of all these From the previous analysis it is evident that, in the regime
transmitters in the low-energy readout of optical memorieof low photon number (down to one photon per cell), we can
with very close reflectivities. This is shown in Figl 8 for easily find nonclassical transmitters able to beat any iclalss
k1 — ko = 0.0l andn = 1. The EPR transmittel¢) (¢| is  transmitters, i.e., the classical reading capacity. Thigair-
optimal almost everywhere, while the classical bound beatticularly evident for high reflectivitiess; or ko close tol).
the other nonclassical transmitters for low values:pfland  Thus, for the most basic optical memories, classical and-qua
ko). Thisis also compatible with the result of optimality oéth tum reading capacities are separated at low energies. én oth
TMSYV state for the problem of estimating the unknown losswords, the advantages of quantum reading are fully extended
parameter of a bosonic chanrlel|[38]. As evident from Big. &rom the single- to the optimal multi-cell scenario.
the bigger separation from the classical bound occurs fgr hi At this point a series of important considerations are in or-

reflectivities, i.e.x; close tol. der. First of all, note that we have only considered nonclas-
Itis also interesting to see what happens in the regime oical transmitters irradiating one signal per mode (ertahg
low reflectivity by considering a binary marginal c&l = or not with a single reference mode), i.e., transmittershef t

{ko, k1 } with ko = 0. For this comparison we introduce an- kind p,.(1,0,n) or p,.(1,1,n). The reason is because these
other nonclassical transmitter of the fopm.(1,0,n). This  transmitters are sufficient to beat the classical bound. How
is the squeezed coherent stiiel) = D(«)S(€)|0), where  ever, better performances can be reached by optimizing over
D(«) is the displacement operator afitt) the squeezing op- the number signals and references. In the case of the EPR
erator [24]. The squeezed coherent state is chosen with theansmitters, we expect that,, (2,2, n), which is composed
squeezing orthogonal to the displacement direction. Then wof two TMSV states signalling:/2 mean photons each, is
choose two real parametetsand¢, which are optimized un-  able to outperform,,- (1,1, n), i.e., a single TMSV state sig-
der the conditiom? + sinh?¢ = n, imposed by the mean nallingn mean photons. This is shown in Fig] 10 for the case
photon-number constraint. As shown in Hig. 9, the presencef an ideal memory and = 1 mean photons. This advan-

of squeezing is sufficient to outperform the classical negdi tage could further improve for EPR transmittees, (s, s, n)
capacity in the regime of low reflectivity. However, betterp  with higher values of. For this reason, in order to reach the
formances can be achieved by the Fock state considering higfuantum reading capacity, it is necessary to optimize ower a
values ofk;. arbitrary number of signal and reference modes, as foreseen
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by the general definition of EJ. (b1). © — 0, with § given in Eq.[(3B). In the upper panel of Fig]11
we explicitly compare the two extremal valug$®|1, ) and
Q(®|oco, n) with the classical reading capaciy.(®|n). As

0.8

07 K,=1 we can see, the single-cell guantum reading is able to beat th
— o6r 1 asymptotic multi-cell classical reading.
8 05F ,
8_ 0.4} 1
2 o3r = 0.8
2 0.2 8
) » 0.6
0.1F 8_
ol w 0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 E
K, 0.2
0

FIG. 10: Number of bits per cell as a function @f, for k1 = 1 0 0.2 04 0.6 0.8 “l
(ideal memory) aneh = 1. We compare the classical reading capac- : : : :

ity (dotted line) with two different EPR transmittergi,, (1, 1,n) Ko

(lower solid line) antpe,r (2, 2, n) (upper solid line).

Another important consideration is related to the prattica
realization of quantum reading. In order to be experiméntal
feasible, the detection scheme should be as simple as possi-
ble. For this reason, it is interesting to compare the atassi
reading capacity (which refers to the general multi-cedide
out) with the performances of EPR transmitters in the single
cell scenario, where each cell is detected independerathy fr >
the others. Thus, we consider an ideal memdry: {xg < 0 0.2 0.4 0.6 0.8 1
k1,k1 = 1} which is irradiated by a few mean photons per Ko
cell (in particular, we can consider= 5). Given this mem-

ory, we compare the optimal performanCg(®|n) of classi- g, 11: Upper panel. Number of bits per cell as a function ef,
cal transmitters assuming the multi-cell readout (asympto for »;, = 1 (ideal memory) anch = 5. We compare the classical
collective measurement) with the performance of EPR transreading capacity’.(®|n) (multi-cell readout, dotted line) with the
mittersp., (s, s, n) assuming the single-cell readout (individ- EPR transmitters used in the single-cell readout (solids)n The
ual cell-by-cell measurements). The latter quantity iggisy  lower solid line refers taQ(®|1,n), i.e., a single energetic TMSV
the mutual information statepepr (1,1, ), while the upper solid line refers Q@ (®|co, n),
i.e., the optimal EPR transmitter., (co, co,n) corresponding to
Iepr((i)|8, n)=1- H{P[i)lpepr(sa s,n)}, (76) infinite copies of TMSV states with vanishing signal energywer
panel. As in the upper panel, except that now we comparéed|n)
where H is the binary formula for the Shannon entropy andwith Q(®[1,7/2) andQ(®|oc, n/2). Despite we assume a stronger
P[®|pepr(s,5,n)] is the error probability of the single-cell €nergy constraint involving the mean total number of pheiarboth

readout. One can compute the upper bound signal and reference modes, the single-cell quantum rgaslistill
' able to outperform the asymptotic multi-cell classicalieg.

bits per cell
o O O O

o N b O 0o B

= 1 n —2s
Pl®|pepr(s,s,n)] < O := ) 1+ g(l - \/“_0)} » (77) Finally, it is interesting to check if the single-cell quant
) . . . reading represents a superior readout strategy even if e co
which provides a lower bound for the mutual information  sjger a stronger energy constraint, for instance if we fix the
- _ mean total number of photons in both the signal and refer-
Lepr (®ls,n) > Q(®[s,n) :=1—H(O) . (78) " ence modes for each copy of the transmitter. Note that this
approach has been first considered in Refl. [39] for individu-
ating the optimal thermal probes (i.e., the optimal squéeze
thermal vacua) for detecting the presence of loss in bosonic
channels. While this stronger energy constraint does nkéma
any difference for the classical reading capacity (sina th
Q(®|1,n) < Q(®]s,n) < Q(P|oo, n) , (79) optimal classical transmitter involves signal modes oritly)
clearly affects the EPR transmitters where the mean total en
where Q(®|1,n) corresponds to a single energetic TMSV ergy of the TMSV states is split exactly in two between sig-
state pepr(1,1,n) while Q(®|oo,n) corresponds to naland reference modes. Thus, imposing this stronger gnerg
pepr(00,00,m), i.e., infinite copies of TMSV states with constraint corresponds to compaig®|n) with Q(®[1,n/2)
vanishing energy. The quantity(®|oo, n) is computed by andQ(®|co,n/2). As shown by the lower panel of FigJ11,
taking the limit fors — oo in Eq. [Z1). In this limit, we have we see that the single-cell quantum reading is still ablestt b

Thus,Q(®|s, n) provides thaminimumnumber of bits per cell
which are read by an EPR transmitey,.-(s, s, n). For fixed
signal energyn, it is trivial to check that this quantity is in-
creasing ins. This means that for any integewe have
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the asymptotic multi-cell classical reading. C. L. and S. M. has been supported by EU under the FET-
Open grant agreement HIP, No. FP7-ICT-221889. S.P. would
like to thank Jeffrey H. Shapiro, Saikat Guha and RanjitirNai

VIIl. CONCLUSION for discussions.
In this paper we have extended the basic model of quan- Appendix A: Miscellaneous proofs
tum reading to the optimal and asymptotic multi-cell scamar
Here the classical memory is modelled as a large block dof cell 1. Reduction to pure transmitters

where information is stored by encoding a suitable channel
codeword (channel encoding). This information is then re-
trieved by probing the whole memory in a parallel fashion and
detecting the output via an optimal collective measurement, =~ . .
(channel discrimination). In this general scenario, werdefi . his is a trivial consequence of the convexity of the Holevo
the quantum reading capacity of the memory which is a non[nformanon. . . . .

Let us consider a classical memory with marginal cll

trivial quantity to compute under the assumption of phyisica hich i db bit i ” hsional o
constraints for the decoder. In the case of optical memories 1/CN IS réad by an arbitrary transmitter wirsignais an

For the sake of completeness, we show here that the max-
ization in Eq. [46) can be restricted to pure transmitters

where data encoding is realized by bosonic channels, the ma[eferences

physical constraint is energetic. This leads to define tlamegu

tum reading capacity of an optical memory as the maximum ps,r) = /dy Py by s by = [Py) Wyl (A1)
number of bits per cell which can be read by irradiating

mean photons per cell. wherep, > 0 and [ dy p, = 1. Then, the conditional Holevo

Despite the general calculation of this capacity is extigme information obeys the inequality
difficult, we are still able to provide non-trivial lower bods

in the case of optical memories with binary cells. The first x[®|p(s, )] < /dy Py X(@[¢y) - (A2)
lower bound, which we have called classical reading capacit

represents the maximum number of bits per cell which can : o
. . : n order to prove Eq[{A2), let us consider an auxiliary sys-
be read by classical transmitters. This bound has a remarlf P d ) y 5y

ably simple analytical formula and can be achieved by usin em associated with the variabje We denote byfjy)} an

: : . : Drthonormal basis of this system. Then, we can express the
a single-mode coherent state transmitter. Besides thistres 4 ' P

T > transmitter as
we have also computed other bounds by considering particu-

lar kinds of nonclassical transmitters, including the ooz
structed with TMSV states (EPR transmitters), NOON states pls,r) = Try (/ dy py Yy ®|y) <y|) : (A3)
and Fock states. Then we have shown that, in the regime of
few photons and high reflectivities, these nonclassicaistra Since the Holevo information cannot increase under partial
mitters are able to outperform any classical transmitterst  trace, then we have
showing the separation between the classical and the quantu
reading capacities. It is remarkable that using a _singlekmo x[®|p(s,7)] < x <<1)| /dy Py by © |y><y|) (A4)
or two-mode transmitter per cell is already sufficient totbea
any classical strategy. Furthermore the classical reachng _
pacity can be outperformed even if we restrict the EPR trans- = /dy Py X (2[dy) -
mitters to the single-cell readout and we adopt the stronger
energy constraint where the energy of the reference modes ¥us, for any input transmitter(s, ) we can always choose
also taken into account. a pure transmittet(s,r) = [¢)(¢| such thaty[®|p(s, )] <
In conclusion, our study considers the optimal multi-cell X[2[¢(s,)]. As aresult, the maximization in Eq. (46) can be
encoding for classical memories where we fully extends théestricted to pure transmitterg(s, r).
advantages of quantum reading, i.e., the readout by nonclas
sical transmitters. These advantages are particularbjeeati o ) ) )
in the regime of few photons with nontrivial consequences fo ~ 2-  Trviality of the unconstrained version of the capacity
the technology of data storage.

(A5)

Here we provide a simple sketched proof showing that
unconstrained quantum reading capacity simply equals the
whole data stored in the marginal cell of the memory.

Let us consider a pure transmitter in the tensor-product
form +(s) = ®* at the input of a memory with marginal

The research leading to these results has received fungelld = {¢,, p,}. At the output of the cell the arbitrary state
ing from the EU under grant agreement No. MOIF-CT-2006-js given by

039703 and the Italian Ministry of University and Research
under the FIRB-IDEAS project RBIDO8B3FM. The work of px(8) = [0z (1)]®*, (A6)
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whereg, (1) is the single-copy output state. Since the quanbecome asymptotically orthogonal. This implies that
tum channelg, are different, for any paip, and¢, there is

at least an input (pure) statesuch that X[@[(5)] = x({pa(8), pa}) — H(X) . (A9)

F[¢z (7/))7 ¢z’ (7/))] =e<l1. (A7) .
The proof can be easily extended to the weakest case where
For the sake of simplicity, let us assume that this stais ~ Eq. [A7) holds for different input stateg; wherei =
the same for all the channels, i.e., the Eq.1(A7) holds for any, - -- ,k — 1 for a k-ary variableX. In this general case,
x # 2'. Then, by exploiting the multiplicativity of the fidelity for high values of > k, we consider input states
under tensor product states, we get

— ,/,®50 L. ®Sk—1
Flpa(s), par(5)] = €, (A8) U(s) =™ @ @y

for anyx # x’. Now, since this quantity goes to zero for wheresg + - - - + sx_1 = s. Itis easy to check that the output
s — +oo we have that the multi-copy output states(s) states become asymptotically orthogonal.
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