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Abstract

Data gaps are ubiquitous in spectral irradiance data, anditgke effort has been put into finding
robust methods for filling them. We introduce a data-adapémd nonparametric method that allows
us to fill data gaps in multi-wavelength or in multichannetards. This method, which is based on
the iterative singular value decomposition, uses the @stogr between simultaneous measurements at
different wavelengths (or between different proxies) tiafie missing data in a self-consistent way. The
interpolation is improved by handling different time scaseparately.

Two major assets of this method are its simplicity, with feweable parameters, and its robustness.
Two examples of missing data are given: one from solar EU\énladions, and one from solar proxy
data. The method is also appropriate for building a comeasit of partly overlapping records.

1 Introduction

Solar and stellar irradiance records are often plaguedtaygdps. The proper interpolation of these missing
data is a longstanding and notoriously delicate problerh tbquires a good understanding of the data
(Wiener, 1964 Little and Rubin2002. Considerable attention has been given to this problereliddisuch

as climate sciencédpbesch et al.2007) but much less so in solar physics and in astrophysics. QOfften
limited attention that is paid to data gaps contrasts wighsthphistication of the analysis that is subsequently
performed on these data.

While short gaps can easily be filled by linear or by nonlineéerpolation, data gaps whose duration
exceeds the characteristic time scales are much more tiffecthandle. A notable exception is when
multichannel synoptic observations of the same procesawaitble, with gaps in some or in all of them.
Spectral irradiance observations, which we shall coneénion, precisely belong to that category. Our
examples will be taken from the Sun, but the results can h&/esagended to other types of multichannel
observations. Our method applies to any set of observati@isre recorded simultaneously (i.e. the time
stamps are the same for all records), are correlated with@ther, and whose time intervals fully or partly
overlap. Our main assumption is their linear correlatiarthie sense that each record can be approximated
by a linear combination of the other ones.

A strong linear correlation is typically observed betwepacaral irradiance observations made at differ-
ent wavelengths or between simultaneous measurement§eredt proxies. These synoptic records are
frequently used to assess subtle changes in the variabilitye Sun; they are often remarkably coherent
in time ¢ and in wavelength\. As a consequence, their variability can be explained imseof a few
contributions only. This property is well known for the Esine UltraViolet (EUV) [ean et al. 1982
Amblard et al, 2008 but also for the visible rangé&r@bbette and Pilewski2001), when measured from
space. The same coherency is observed among differenegrioti solar activity Pap and Guhathakurta
1992 Schmahl and KunduL994 Lean 200Q Kane 2002 Floyd et al, 2005 Dudok de Wit et al.2009.
This property is rooted in the structuring effect of the satemgnetic field. The coherency partly breaks
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down during the impulsive phase of solar flares because #trsjmn then considerably depends on the lo-
cal conditions of the solar atmosphere. Here, however, amimy applications, we consider daily or hourly
averages, so that the effect of short transients can berdexsta

This coherency in both time and wavelength is the key to themrstruction technique we shall introduce
below. By interpolating along two dimensions (in time andrgj different records), we not only improve
the quality of the reconstruction, but we also can fill adaity large data gaps without having to rely on the
tedious bookkeeping that is required by most interpolaicremes.

The nonparametric and data-adaptive method we advocassésiton the SVD or singular value decom-
position Golub and Van Loan2000, which is to linear algebra what the Fourier transform ispectral
analysis. The SVD allows the extraction of the coherent piattie solar spectral irradiance, which is then
used to fill the data gaps iteratively. The method is desdribb&ection 2, and two applications are detailed.
The first one (Sec. 3) deals with solar spectral irradianta igethe EUV. In the second application (Sec.
4) we consider a set of solar proxies with numerous gaps.

2 The reconstruction method

Let I(\,t) be a multichannel record that represents either the sotrsp irradiance at different wave-
lengths (or in different spectral bands) or a set of solaxie) or a combination thereof. All these quantities
must be sampled simultaneously; the sampling rate, howewoes not need to be constant. These data are
conveniently stored in a matrix; = [I(¢;, A;)], in which columns are time series. Each column may have
an arbitrarily large number of data gaps, as long as a rehbofraction of observations are available, say
at least 20%.

2.1 Basics

The method we propose exploits either the coherency in waggh, or both the coherency in wavelength
and in time. We start with a description of the first optioncdngse the second one can be readily obtained
by data embedding. Let us first assume that there are no gaesSVWD of the data matrix then yields a
separable set of functions (hereafter calieade$
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The weightss; > so > ... > sj; > 0 are positive by construction. The numbér of modes equals the
rank of the matrix, which is usually the smallest of the numBgof samples or the numbé¥, of records.
This decomposition is unique. The SVD of the data matrixaliyeyields a set of three matricés= USV”
that respectively contaia(t), the weightss, andv(\).

A key property of the SVD is that modes with heavy weights dbscsalient features of the data. That is,

the truncated expansion
K<M
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will capture the coherent part of the data while deferringpimerent fluctuations to the remaining modes.
This property has made the SVD popular in multichannel aralyatata processindd{udok de Wit 1995
Cline and Dhillon 2006. We shall use it here to reconstruct the missing values.

The performance of the reconstruction can be quantified éyrtban square error

Ne N R ) M
e:ZZ(I(ti7)\j)_IK(ti;)\j)) = Z 5%7 (4)
i=1j=1 [iayrart



which shows that by taking the few largest modes, the reoactgin error can be made arbitrarily small.
As it turns out with spectral irradiance data, the first fevighes are often orders of magnitude heavier than
the subsequent ones, so that excellent reconstructiorizecachieved with a few modes only. We implicitly
assume here that features departing from the behaviounaaset other wavelengths are unlikely to have
a solar origin (except during the impulsive phase of flareshat they can be readily discarded. This will
be illustrated below in Sec. 3.

Let us now assume that some samples are missing. The datéac@eamatrix and the SVD then cannot be
computed anymore. This problem, however, can be circureddny using the following iterative scheme
with two embedded loops:

1. Fill each gap with some adequate value (typically the mna@pmean of the record).
2. Compute the SVD.

3. Compute the approximatiaiy of the data by retaining the largest mode(s) of the SVD. Initially,
kE=1.

4. Fill the gaps withi},, as defined in Eq. 3. As long as these values have not conyeygdrck to 2.
(inner loop).

5. Increment the number of modesind start again at 2. Iterate uriti= K (outer loop).

This method seems to have emerged independently in diffeoatexts Schneider200% Beckers and Rixen
2003 Kondrashov and Ghik008; it has mostly been used for spatio-temporal data seth,seine subtle
differences $chneider2007). We refer toSchneide(200]) for discussions on optimality, convergence,
etc. Three additional adaptations, however, need to beidenes before the method can be applied to
irradiance data.

2.2 Preprocessing problems

The relative variability and the average value of the sgtecsal irradiance vary by orders of magnitude
between the soft X-ray and the visible range. The SVD, howéwvascaling-dependent and so a renormal-
isation is required. We do so by standardising each recasl; fine time average is subtracted and then a
normalisation with respect to the standard deviatign or the noise level (if known) is performed. Both
operations are affected by the value of the missing samgbethey must be repeated at each iteration. This
is particularly important for the offset subtraction. Tle@ormalisation may be done only once.

2.3 Multiscale decomposition

The solar spectral variability contains a mix of scales #ratdriven by different processes: 27-day vari-
ations are due to solar rotation, the 11-year periodicitgagsed by the solar cycle, etc. Each of these
processes leads to a specific spectral dependence; diffeadas should therefore be processed separately
when filling gaps. This feature considerably improves tlewnstruction skill and to the best of our knowl-
edge has not yet been used.

The two ranges of scales that are most frequently encouhiesolar studies are: below 81 days (which
captures solar rotation and the evolution of active regiansg above 81 days. We apply the iterative SVD
procedure described in Sec. 2.1 separately to both scatesa ffouswavelet transformNlallat, 2008

is used to decompose the data into two records at each aeratne with short time-scales and one with
long time-scales. Classical bandpass filters may also be heseause this has no significant impact on
the results. The wavelet transform, however, is betteeduiir non-stationary data. One may also want to
extract additional scales, such as the 13-day periodisggaeated with centre-to-limb effects of hot coronal
lines. This indeed results in a small but discernible improent in the reconstruction of the EUV, at the
expense of a longer computation time.



2.4 Coherency in time

The methodology so far only exploits the coherency betwéfereint wavelengths (or proxies), which is
the key property. One may also want, however, to make useeofeimporal coherency. This is useful
when there are specific times at which there is no single ghsen, or if the number of records is small
(typically Ny < 5), or if each record can be considered as a smoothly varyinvgfeem with incoherent
noise superimposed on it.

The main asset of the iterative SVD reconstruction methdd &raightforward extension to such a filtering
in time, using the concept of embedding, which has been pi@ukin the study of chaotic systems by
Broomhead and King1986. Let us expand the data matrix by appending replicatesateshifted in
time, i.e.

Bij = [L(ti, Aj) I(tivn, Aj) L(tig2, Aj) - I(tiep—1,5)] (5)

By applying the SVD to this embedded matrix we exploit botl ¢bherency in wavelength and in time. It
is important (but not mandatory) that the data be regulantyed since the method essentially computes a
weighted average of each sample with its nearest neighbblieshigher the value of the embedding dimen-
sion D, the more adjacent time steps are used in the reconstrythias leading to a stronger smoothing
in time. This is equivalent to using a symmetric finite-imgrufilter whose coefficients are obtained data-
adaptively. The particular case wherein one single recoatribedded and decomposed by SVD is called
singular spectrum analysis (SSA). In the SSA, only tempiafatmation is used and so it is important for
the embedding dimension to exceed the value of the domiraitdgin the dataGhil et al, 2002. Our
reconstruction, however, mostly relies on the strong cet@r across wavelengths or proxies to fill the gaps
and so the conditions on the value of the embedding dimer@i®much less stringent. In practice, low
values O = 2 — 5) already bring a significant improvement. The main reasokéeping this dimension
as low as possible is to reduce the computational load.

2.5 The method in practice

The three tuneable parameters of the method are: a) the mughbésignificant modes, b) the number of
scales into which the data are decomposed, and c) the enmigedidiensionD. Only the first one really
affects the outcome. A separation into two scales only (@&ithreshold between 50-100 days) is enough
to properly capture both short- and long-term evolutioms] ambedding dimensions & = 2 — 5 are
usually adequate for reconstructing daily averages. Theriaination of the optimum parameters and the
validation of the results is made by cross-validation antivei illustrated below.

The only critical question is memory and computational logdr an irradiance data set with five years of
daily values at 100 wavelengths, and an embedding dimen§ibn= 5, the size of the embedded matrix is

[1822,500]. The computation of the SVD at each iteration typically takeveral seconds. For that reason,
it may be desirable to process separately those spectrds$biaat evolve differently, such as the soft X-ray,
the EUV and the MUV bands. The routine in Matfalis available from the author.

3 First example: gap filling in the EUV flux

The Solar EUV Monitor (SEM) is a solar Extreme UltraViolet{¥) spectrometer that has been operating
continuously on the SoHO satellite since January 19@@lge et a).1998. In its first-order mode, SEM
measures the irradiance within an 8 nm bandpass centred ieolright 30.38 nm He Il line. On June
25, 1998, SoHO suffered a mission interruption, leadinghlbss of several months of data. This long
data gap considerably complicates the use of SEM data fargimosphere model validation. The SEM,
however, mostly captures chromospheric emissions, whiehighly correlated with other gauges of solar
activity. Foremost among these are:

e the f,(.7 or decimetric index, which is the solar radio flux at 10.7 crhislindex, which is measured
from the ground, captures a mix of thermal and electron ggsmnance emissions, and has been
shown to be highly correlated with the EUV fluXgpping and Detracey990.

e the Mg Il index, which is the core-to-wing ratio of the Mg IhE at 280 nm. This index is widely
used as a proxy for chromospheric activitidreck et al, 20017).
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Figure 1: Upper plot: four chromospheric proxies, averamest 80 days, using a Gaussian filter. The two
major outages are shown shaded. Bottom plot: excerpt ofédire proxies, showing daily values. The

long-term trend has been subtracted from the latter. Albrés have been normalised to their standard
deviation and shifted vertically for easier visualisation

e the intensity of the H | Lymai line at 121.57 nm, which is the brightest spectral line be2®® nm
(Woods et al.2000.

Together with the flux from the SEM, we have four quantities thave different physical origins and yet are
highly correlated, thereby opening the prospect of filling karge gaps in the SEM data. We consider daily
averages made from January 1, 1996 until April 29, 2011. Trfeat correlation between thg 7 index
and the other proxies improves when taking its square rdutiwwe shall systematically do from now on.
The correlation between these four proxies on both long bod §me-scales is illustrated in Fidj.

Our working hypothesis is that each of the missing sampten the SEM can be reconstructed from a linear
combination of (possibly non-simultaneous) observatifrtbe other proxies. As we shall see shortly, the
best value of the embedding dimension is 4; let us therefdeetD = 4 and first determine the optimum
number of modes. With four variables and an embedding diroerms 4, the total number of SVD modes
is 16; their weights are displayed in Fig. The first weight surpasses all the others because the fildt mo
is an average of all four proxies, which is by far the most parisous coherent feature. The inflexion point
between the few heaviest weights and the flat tail providesaenient but visual criterion for determining
the number of significant modeB@dok de Wit 1995. According to this criterion, the best interpolation
skill is for K = 5 — 6 modes out of 16.

A better validation test consists in generating a small nemalh synthetic gaps, reconstructing them, and
then checking how the residual error varies with the modedpaters. To do so, we remove 5-10 % of the
samples from each record and then compute the normalised err

GK()‘j):i$ : > (I(tia)\j)—fK(tu)\j))Qa
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Figure 2: Upper plot: distribution of the normalised weggkt/ s1, for an embedding dimension &f = 4.
The total number of modes is 16. Bottom plot: variation of theonstruction error with the number of
modesK,, for each of the four variables.

where the average is computed for synthetic gaps only. Troisgolure is repeated ten times to obtain an
estimate of the average value of the normalised error. Aevall00 % can be interpreted as an error whose
standard deviation equals the solar cycle variability ef dhiginal data. This value truly reflects the error
made by filling short data gaps. Note that it tends to undienast the error for larger gaps, unless the
length distribution of the synthetic gap matches that ofdtiginal data.

The evolution of the normalised error witfi is illustrated in Fig2, which shows a broad minimum around
K = 4 — 8, in agreement with the estimate obtained by visualisatidote that the four minima occur at
different values ofK’. The normalised error is on average larger for{if .~ index, which suggests that
this quantity is relatively more difficult to reconstructtithe others. This is not so surprising, because
it is the only emission from the radio band. The smallest radised error is obtained for the SEM, with
ex = 4.5%. This value is about half that of the estimated normalisecktminty Judge et aJ.1998,
which shows the excellent quality of the reconstructionpiactice, the optimum value df is frequently
found to be one or two units higher than the value obtainediyaV inspection. As Fig2 suggests, an
overestimation of< is preferable to an underestimation.

The choice of the embedding dimensidnhis mostly based on physical insight. Wilh = 1 (i.e. no
embedding) we assume that the missing samples are reottestiftom simultaneous observations only,
whereasD > 1 implies that the information contained in past and futursasieations is also used. Setting
D > 1 therefore involves a weighted averaging over time, whicpisropriate for records whose samples
are highly correlated in time.

In Fig. 3 we estimate the normalised error for different embeddingedisions, using the optimum number
of modes for each of them. The smallest error is obtainedricgrabedding dimension d? = 4. Larger
dimensions hardly reduce the error but do increase the ctatipuoal load substantially. As expected, the
higher the value oD, the smoother the reconstruction and the more likely thatfBatures may be missed.
This is particularly evident in August 1998, when a groupagidly evolving active regions were moving
across the solar disc. An embedding dimension of 4 propapiyuces their evolution, whereas a dimension
of 15 smears out all but the most pronounced peaks.
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Figure 3: Upper plot: variation of the reconstruction erfar the SEM with the embedding dimension
D. For each embedding dimension, the numkieof modes that minimises the error is chosen. Bottom
plot: comparison between the measured flux from the SEM @thkhe) and the flux reconstructed with
an embedding dimension @ = 4 (thick line), andD = 15 (thin line). The Mg Il index is shown for
comparison (filled curve), with arbitrary units.
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Figure 4: Reconstruction of the missing values of the Ca Kxnaking 1 to 6 modes. The upper plot shows
an excerpt at solar maximum and the bottom one at solar mminithe observations are indicated with
crosses and the different reconstructions with continlioes. Also shown is the Mg Il index (filled line),
in arbitrary units.

This example illustrates a relatively simple case becanleome record has gapsin it. Let us now, however,
consider a more frequent case in which several of the ret@agslarge gaps. Filling these gaps by standard
interpolation schemes can become very time-consumingusecaf the amount of bookkeeping that is
required to test whether gaps occur simultaneously in aévecords, etc. The SVD-based interpolation
does not require any of these tests.

4 Second example: reconstruction of the Ca K index

The Ca K index is the normalised intensity of the Ca Il K-lirte383.37 nm and has been advocated as
a proxy for magnetic activity, including plages, faculaeddhe network. This line is measured from the
ground, so it cannot be observed continuously. Here we denairecord of daily observations made at the
National Solar Observatory at Sacramento Pé&adil et al., 1998, in which about 66% of the samples are
missing. This index is known to be highly correlated withestlolar indices, in particular with the Mg Il
index (Foukal et al. 2009, so that the SVD method is ideally suited for filling its gaps

To reconstruct the missing values, we consider the follgvgiet of proxies that are highly correlated with
the Ca K index: the square root of tlig) 7 index, the intensity of the H | Lyman line, the Mg Il index and
the magnetic plage strength index (MP3a(ker et a].1998. The time interval ranges from Nov. 1, 1980
to July 1, 2010; all proxies have data gaps except for thetiirst These gaps occur erratically and 6% of
them exceed 10 days. In this particular example, the cobghestween proxies is crucial and indeed the
choice of the embedding dimensidhdoes not significantly affect the results. Let us tdke= 2, which

is the value that is recommended by the reconstruction.efitee maximum number of SVD modes is 10
because we have five records. Out of these, three only ard fouye significant.

The result of the reconstruction is illustrated in Fidor periods of high and low solar activity. Note that the
results obtained with different number of modes lead tolsintemporal evolutions. The reconstruction at
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Figure 5: Ca K index after reconstruction and filtering by @lattransform (continuous curve) and the dif-
ference with the observations (crosses). For easier véstian, the Ca K index has been shifted downwards
by 0.08.

solar maximum looks reasonable because it passes throeighservations while staying highly correlated
with the Mg Il index. During solar minimum, however, the obsel values of the Ca K index continue
to fluctuate whereas the reconstructed values and the otbeiep stay almost constant. The difference
between the observed Ca K index and the smoothly varyingietagction varies randomly in time, which
guestions its solar origin.

To further investigate the origin of this difference betwéiee observed and reconstructed index, we filtered
the reconstructed data with tletrouswavelet transform, which allows the separation of the slpagks
from the more regular reconstruction. The residuals, he.difference between the filtered reconstruction
and the original observations, are shown in Fgthey are found to be independent and their Gaussian
distribution only weakly varies with the solar cycle. Thésa strong indication that the residuals are mea-
surement errors rather than solar fluctuations. Their stahdeviation is 0.0008, which represents 20 %
of the solar cycle variability of the Ca K index. Our reconstion thereby provides a means for fitting the
numerous data gaps in the Ca K index while also evaluatingagh&dence interval of the observations.

5 Conclusions and additional applications

This study shows that SVD-interpolation is a powerful tegle for filling arbitrarily large gaps in multi-
wavelength, multichannel or in synoptic records. We fodusere on solar spectral irradiance observations,
which are frequently plagued by missing data. These gapsbheagistributed at random in time or in
wavelength. The main tuneable parameter is the number of @dBes that is needed to reconstruct the
data; this value may be estimated either by visualisatiobyotross-validation. The method works best
when each record can be approximated by a linear combinafitime others. Since it relies on linear
combinations only, it may be desirable to apply a nonlingaticstransform beforehand to increase the
linear correlation between the records.

For the method to work, the observations must be sampledtsinaously but not necessarily evenly. Non-
simultaneous observations can be handled by resamplingu@édibles to a common grid, for example by
Fourier decomposition (e.¢ocke and Kémpfer2009, and then filling the gaps by SVD. By alternating
between the two, both the gaps and the interpolated valuelsecprogressively refined.

This method has several applications in addition to meegpmiation. The first one is the cross-calibration
of measurements of the same quantity by different instrusa@iine Mg Il index, for example, is at present
measured by different instruments that give different atugés. These data sets are incomplete and only
partly overlap, which considerably impairs their intemgmarison. The iterative SVD method is ideally
suited for filling these gaps because the records are by tiefisirongly correlated.



A second potential application is the stitching togetheptdl solar irradiance (TSI) observations. Merging
TSI records from several instruments is a delicate and owetsial task frohlich 2002 because instru-
ments disagree on the absolute value of the TSI and often tloperate simultaneously. The iterative
SVD provides a means for estimating the different offseta self-consistent way because it allows us to
extrapolate each TSI record by assuming that its statigiitcgerties with respect to the other records do
not change in time. This property is particularly usefulébecking composites that are built from different
records, such as the TSI, the H | Lymarintensity, the Mg Il index and the sunspot indéXdtte et al.
2007. This will be detailed in a forthcoming publication.
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