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Abstract

Data gaps are ubiquitous in spectral irradiance data, and yet, little effort has been put into finding
robust methods for filling them. We introduce a data-adaptive and nonparametric method that allows
us to fill data gaps in multi-wavelength or in multichannel records. This method, which is based on
the iterative singular value decomposition, uses the coherency between simultaneous measurements at
different wavelengths (or between different proxies) to fill the missing data in a self-consistent way. The
interpolation is improved by handling different time scales separately.

Two major assets of this method are its simplicity, with few tuneable parameters, and its robustness.
Two examples of missing data are given: one from solar EUV observations, and one from solar proxy
data. The method is also appropriate for building a composite out of partly overlapping records.

1 Introduction

Solar and stellar irradiance records are often plagued by data gaps. The proper interpolation of these missing
data is a longstanding and notoriously delicate problem that requires a good understanding of the data
(Wiener, 1964; Little and Rubin, 2002). Considerable attention has been given to this problem in fields such
as climate science (Dobesch et al., 2007) but much less so in solar physics and in astrophysics. Often, the
limited attention that is paid to data gaps contrasts with the sophistication of the analysis that is subsequently
performed on these data.

While short gaps can easily be filled by linear or by nonlinearinterpolation, data gaps whose duration
exceeds the characteristic time scales are much more difficult to handle. A notable exception is when
multichannel synoptic observations of the same process areavailable, with gaps in some or in all of them.
Spectral irradiance observations, which we shall concentrate on, precisely belong to that category. Our
examples will be taken from the Sun, but the results can be easily extended to other types of multichannel
observations. Our method applies to any set of observationsthat are recorded simultaneously (i.e. the time
stamps are the same for all records), are correlated with each other, and whose time intervals fully or partly
overlap. Our main assumption is their linear correlation, in the sense that each record can be approximated
by a linear combination of the other ones.

A strong linear correlation is typically observed between spectral irradiance observations made at differ-
ent wavelengths or between simultaneous measurements of different proxies. These synoptic records are
frequently used to assess subtle changes in the variabilityof the Sun; they are often remarkably coherent
in time t and in wavelengthλ. As a consequence, their variability can be explained in terms of a few
contributions only. This property is well known for the Extreme UltraViolet (EUV) (Lean et al., 1982;
Amblard et al., 2008) but also for the visible range (Rabbette and Pilewskie, 2001), when measured from
space. The same coherency is observed among different proxies for solar activity (Pap and Guhathakurta,
1992; Schmahl and Kundu, 1994; Lean, 2000; Kane, 2002; Floyd et al., 2005; Dudok de Wit et al., 2009).
This property is rooted in the structuring effect of the solar magnetic field. The coherency partly breaks

1

http://arxiv.org/abs/1107.4253v1


down during the impulsive phase of solar flares because the spectrum then considerably depends on the lo-
cal conditions of the solar atmosphere. Here, however, as inmany applications, we consider daily or hourly
averages, so that the effect of short transients can be discarded.

This coherency in both time and wavelength is the key to the reconstruction technique we shall introduce
below. By interpolating along two dimensions (in time and along different records), we not only improve
the quality of the reconstruction, but we also can fill arbitrarily large data gaps without having to rely on the
tedious bookkeeping that is required by most interpolationschemes.

The nonparametric and data-adaptive method we advocate is based on the SVD or singular value decom-
position (Golub and Van Loan, 2000), which is to linear algebra what the Fourier transform is tospectral
analysis. The SVD allows the extraction of the coherent partof the solar spectral irradiance, which is then
used to fill the data gaps iteratively. The method is described in Section 2, and two applications are detailed.
The first one (Sec. 3) deals with solar spectral irradiance data in the EUV. In the second application (Sec.
4) we consider a set of solar proxies with numerous gaps.

2 The reconstruction method

Let I(λ, t) be a multichannel record that represents either the solar spectral irradiance at different wave-
lengths (or in different spectral bands) or a set of solar proxies, or a combination thereof. All these quantities
must be sampled simultaneously; the sampling rate, however, does not need to be constant. These data are
conveniently stored in a matrixIij = [I(ti, λj)], in which columns are time series. Each column may have
an arbitrarily large number of data gaps, as long as a reasonable fraction of observations are available, say
at least 20%.

2.1 Basics

The method we propose exploits either the coherency in wavelength, or both the coherency in wavelength
and in time. We start with a description of the first option, because the second one can be readily obtained
by data embedding. Let us first assume that there are no gaps. The SVD of the data matrix then yields a
separable set of functions (hereafter calledmodes)

I(ti, λj) =

M
∑

k=1

sk uk(ti) vk(λj), (1)

which are orthonormal

〈〈uk(t)ul(t)〉 = 〈vk(λ)vl(λ)〉 =
{

0 if k 6= l
1 if k = l

. (2)

The weightss1 ≥ s2 ≥ . . . ≥ sM ≥ 0 are positive by construction. The numberM of modes equals the
rank of the matrix, which is usually the smallest of the number Nt of samples or the numberNλ of records.
This decomposition is unique. The SVD of the data matrix directly yields a set of three matricesI = USVT

that respectively containu(t), the weightss, andv(λ).

A key property of the SVD is that modes with heavy weights describe salient features of the data. That is,
the truncated expansion

ÎK(ti, λj) =

K≤M
∑

k=1

sk uk(ti) vk(λj) (3)

will capture the coherent part of the data while deferring incoherent fluctuations to the remaining modes.
This property has made the SVD popular in multichannel and array data processing (Dudok de Wit, 1995;
Cline and Dhillon, 2006). We shall use it here to reconstruct the missing values.

The performance of the reconstruction can be quantified by the mean square error

e =

Nt
∑

i=1

Nλ
∑

j=1

(

I(ti, λj)− ÎK(ti, λj)
)2

=

M
∑

k=K+1

s2k, (4)
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which shows that by taking the few largest modes, the reconstruction error can be made arbitrarily small.
As it turns out with spectral irradiance data, the first few weights are often orders of magnitude heavier than
the subsequent ones, so that excellent reconstructions canbe achieved with a few modes only. We implicitly
assume here that features departing from the behaviour observed at other wavelengths are unlikely to have
a solar origin (except during the impulsive phase of flares),so that they can be readily discarded. This will
be illustrated below in Sec. 3.

Let us now assume that some samples are missing. The data covariance matrix and the SVD then cannot be
computed anymore. This problem, however, can be circumvented by using the following iterative scheme
with two embedded loops:

1. Fill each gap with some adequate value (typically the temporal mean of the record).

2. Compute the SVD.

3. Compute the approximation̂Ik of the data by retaining thek largest mode(s) of the SVD. Initially,
k = 1.

4. Fill the gaps witĥIk, as defined in Eq. 3. As long as these values have not converged, go back to 2.
(inner loop).

5. Increment the number of modesk and start again at 2. Iterate untilk = K (outer loop).

This method seems to have emerged independently in different contexts (Schneider, 2001; Beckers and Rixen,
2003; Kondrashov and Ghil, 2006); it has mostly been used for spatio-temporal data sets, with some subtle
differences (Schneider, 2007). We refer toSchneider(2001) for discussions on optimality, convergence,
etc. Three additional adaptations, however, need to be considered before the method can be applied to
irradiance data.

2.2 Preprocessing problems

The relative variability and the average value of the solar spectral irradiance vary by orders of magnitude
between the soft X-ray and the visible range. The SVD, however, is scaling-dependent and so a renormal-
isation is required. We do so by standardising each record: first, the time average is subtracted and then a
normalisation with respect to the standard deviationσλj

or the noise level (if known) is performed. Both
operations are affected by the value of the missing samples,so they must be repeated at each iteration. This
is particularly important for the offset subtraction. The renormalisation may be done only once.

2.3 Multiscale decomposition

The solar spectral variability contains a mix of scales thatare driven by different processes: 27-day vari-
ations are due to solar rotation, the 11-year periodicity iscaused by the solar cycle, etc. Each of these
processes leads to a specific spectral dependence; different scales should therefore be processed separately
when filling gaps. This feature considerably improves the reconstruction skill and to the best of our knowl-
edge has not yet been used.

The two ranges of scales that are most frequently encountered in solar studies are: below 81 days (which
captures solar rotation and the evolution of active regions) and above 81 days. We apply the iterative SVD
procedure described in Sec. 2.1 separately to both scales. The à trouswavelet transform (Mallat, 2008)
is used to decompose the data into two records at each iteration: one with short time-scales and one with
long time-scales. Classical bandpass filters may also be used because this has no significant impact on
the results. The wavelet transform, however, is better suited for non-stationary data. One may also want to
extract additional scales, such as the 13-day periodicity associated with centre-to-limb effects of hot coronal
lines. This indeed results in a small but discernible improvement in the reconstruction of the EUV, at the
expense of a longer computation time.
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2.4 Coherency in time

The methodology so far only exploits the coherency between different wavelengths (or proxies), which is
the key property. One may also want, however, to make use of the temporal coherency. This is useful
when there are specific times at which there is no single observation, or if the number of records is small
(typically Nλ < 5), or if each record can be considered as a smoothly varying waveform with incoherent
noise superimposed on it.

The main asset of the iterative SVD reconstruction method isits straightforward extension to such a filtering
in time, using the concept of embedding, which has been pioneered in the study of chaotic systems by
Broomhead and King(1986). Let us expand the data matrix by appending replicates thatare shifted in
time, i.e.

Eij = [I(ti, λj) I(ti+1, λj) I(ti+2, λj) . . . I(ti+D−1, λj)] . (5)

By applying the SVD to this embedded matrix we exploit both the coherency in wavelength and in time. It
is important (but not mandatory) that the data be regularly sampled since the method essentially computes a
weighted average of each sample with its nearest neighbours. The higher the value of the embedding dimen-
sionD, the more adjacent time steps are used in the reconstruction, thus leading to a stronger smoothing
in time. This is equivalent to using a symmetric finite-impulse filter whose coefficients are obtained data-
adaptively. The particular case wherein one single record is embedded and decomposed by SVD is called
singular spectrum analysis (SSA). In the SSA, only temporalinformation is used and so it is important for
the embedding dimension to exceed the value of the dominant period in the data (Ghil et al., 2002). Our
reconstruction, however, mostly relies on the strong coherency across wavelengths or proxies to fill the gaps
and so the conditions on the value of the embedding dimensionare much less stringent. In practice, low
values (D = 2 − 5) already bring a significant improvement. The main reason for keeping this dimension
as low as possible is to reduce the computational load.

2.5 The method in practice

The three tuneable parameters of the method are: a) the number K of significant modes, b) the number of
scales into which the data are decomposed, and c) the embedding dimensionD. Only the first one really
affects the outcome. A separation into two scales only (witha threshold between 50-100 days) is enough
to properly capture both short- and long-term evolutions, and embedding dimensions ofD = 2 − 5 are
usually adequate for reconstructing daily averages. The determination of the optimum parameters and the
validation of the results is made by cross-validation and will be illustrated below.

The only critical question is memory and computational load. For an irradiance data set with five years of
daily values at 100 wavelengths, and an embedding dimensionof D = 5, the size of the embedded matrix is
[1822, 500]. The computation of the SVD at each iteration typically takes several seconds. For that reason,
it may be desirable to process separately those spectral bands that evolve differently, such as the soft X-ray,
the EUV and the MUV bands. The routine in MatlabR© is available from the author.

3 First example: gap filling in the EUV flux

The Solar EUV Monitor (SEM) is a solar Extreme UltraViolet (EUV) spectrometer that has been operating
continuously on the SoHO satellite since January 1996 (Judge et al., 1998). In its first-order mode, SEM
measures the irradiance within an 8 nm bandpass centred about the bright 30.38 nm He II line. On June
25, 1998, SoHO suffered a mission interruption, leading to the loss of several months of data. This long
data gap considerably complicates the use of SEM data for upper atmosphere model validation. The SEM,
however, mostly captures chromospheric emissions, which are highly correlated with other gauges of solar
activity. Foremost among these are:

• thef10.7 or decimetric index, which is the solar radio flux at 10.7 cm. This index, which is measured
from the ground, captures a mix of thermal and electron gyro-resonance emissions, and has been
shown to be highly correlated with the EUV flux (Tapping and Detracey, 1990).

• the Mg II index, which is the core-to-wing ratio of the Mg II line at 280 nm. This index is widely
used as a proxy for chromospheric activity (Viereck et al., 2001).
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Figure 1: Upper plot: four chromospheric proxies, averagedover 80 days, using a Gaussian filter. The two
major outages are shown shaded. Bottom plot: excerpt of the same proxies, showing daily values. The
long-term trend has been subtracted from the latter. All records have been normalised to their standard
deviation and shifted vertically for easier visualisation.

• the intensity of the H I Lymanα line at 121.57 nm, which is the brightest spectral line below200 nm
(Woods et al., 2000).

Together with the flux from the SEM, we have four quantities that have different physical origins and yet are
highly correlated, thereby opening the prospect of filling the large gaps in the SEM data. We consider daily
averages made from January 1, 1996 until April 29, 2011. The linear correlation between thef10.7 index
and the other proxies improves when taking its square root, which we shall systematically do from now on.
The correlation between these four proxies on both long and short time-scales is illustrated in Fig.1.

Our working hypothesis is that each of the missing samples from the SEM can be reconstructed from a linear
combination of (possibly non-simultaneous) observationsof the other proxies. As we shall see shortly, the
best value of the embedding dimension is 4; let us therefore selectD = 4 and first determine the optimum
number of modes. With four variables and an embedding dimension of 4, the total number of SVD modes
is 16; their weights are displayed in Fig.2. The first weight surpasses all the others because the first mode
is an average of all four proxies, which is by far the most conspicuous coherent feature. The inflexion point
between the few heaviest weights and the flat tail provides a convenient but visual criterion for determining
the number of significant modes (Dudok de Wit, 1995). According to this criterion, the best interpolation
skill is for K = 5− 6 modes out of 16.

A better validation test consists in generating a small number of synthetic gaps, reconstructing them, and
then checking how the residual error varies with the model parameters. To do so, we remove 5-10 % of the
samples from each record and then compute the normalised error

ǫK(λj) =
1

σλj

√

√

√

√

1

Ngaps

∑

i={gaps}

(

I(ti, λj)− ÎK(ti, λj)
)2

,
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Figure 2: Upper plot: distribution of the normalised weightssk/s1, for an embedding dimension ofD = 4.
The total number of modes is 16. Bottom plot: variation of thereconstruction error with the number of
modesK, for each of the four variables.

where the average is computed for synthetic gaps only. This procedure is repeated ten times to obtain an
estimate of the average value of the normalised error. A value of 100 % can be interpreted as an error whose
standard deviation equals the solar cycle variability of the original data. This value truly reflects the error
made by filling short data gaps. Note that it tends to underestimate the error for larger gaps, unless the
length distribution of the synthetic gap matches that of theoriginal data.

The evolution of the normalised error withK is illustrated in Fig.2, which shows a broad minimum around
K = 4 − 8, in agreement with the estimate obtained by visualisation.Note that the four minima occur at
different values ofK. The normalised error is on average larger for the

√
f10.7 index, which suggests that

this quantity is relatively more difficult to reconstruct than the others. This is not so surprising, because
it is the only emission from the radio band. The smallest normalised error is obtained for the SEM, with
ǫK = 4.5%. This value is about half that of the estimated normalised uncertainty (Judge et al., 1998),
which shows the excellent quality of the reconstruction. Inpractice, the optimum value ofK is frequently
found to be one or two units higher than the value obtained by visual inspection. As Fig.2 suggests, an
overestimation ofK is preferable to an underestimation.

The choice of the embedding dimensionD is mostly based on physical insight. WithD = 1 (i.e. no
embedding) we assume that the missing samples are reconstructed from simultaneous observations only,
whereasD > 1 implies that the information contained in past and future observations is also used. Setting
D > 1 therefore involves a weighted averaging over time, which isappropriate for records whose samples
are highly correlated in time.

In Fig. 3 we estimate the normalised error for different embedding dimensions, using the optimum number
of modes for each of them. The smallest error is obtained for an embedding dimension ofD = 4. Larger
dimensions hardly reduce the error but do increase the computational load substantially. As expected, the
higher the value ofD, the smoother the reconstruction and the more likely that fine features may be missed.
This is particularly evident in August 1998, when a group of rapidly evolving active regions were moving
across the solar disc. An embedding dimension of 4 properly captures their evolution, whereas a dimension
of 15 smears out all but the most pronounced peaks.
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Figure 3: Upper plot: variation of the reconstruction errorfor the SEM with the embedding dimension
D. For each embedding dimension, the numberK of modes that minimises the error is chosen. Bottom
plot: comparison between the measured flux from the SEM (dashed line) and the flux reconstructed with
an embedding dimension ofD = 4 (thick line), andD = 15 (thin line). The Mg II index is shown for
comparison (filled curve), with arbitrary units.
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Figure 4: Reconstruction of the missing values of the Ca K index using 1 to 6 modes. The upper plot shows
an excerpt at solar maximum and the bottom one at solar minimum. The observations are indicated with
crosses and the different reconstructions with continuouslines. Also shown is the Mg II index (filled line),
in arbitrary units.

This example illustrates a relatively simple case because only one record has gaps in it. Let us now, however,
consider a more frequent case in which several of the recordshave large gaps. Filling these gaps by standard
interpolation schemes can become very time-consuming because of the amount of bookkeeping that is
required to test whether gaps occur simultaneously in several records, etc. The SVD-based interpolation
does not require any of these tests.

4 Second example: reconstruction of the Ca K index

The Ca K index is the normalised intensity of the Ca II K-line at 393.37 nm and has been advocated as
a proxy for magnetic activity, including plages, faculae, and the network. This line is measured from the
ground, so it cannot be observed continuously. Here we consider a record of daily observations made at the
National Solar Observatory at Sacramento Peak (Keil et al., 1998), in which about 66% of the samples are
missing. This index is known to be highly correlated with other solar indices, in particular with the Mg II
index (Foukal et al., 2009), so that the SVD method is ideally suited for filling its gaps.

To reconstruct the missing values, we consider the following set of proxies that are highly correlated with
the Ca K index: the square root of thef10.7 index, the intensity of the H I Lymanα line, the Mg II index and
the magnetic plage strength index (MPSI) (Parker et al., 1998). The time interval ranges from Nov. 1, 1980
to July 1, 2010; all proxies have data gaps except for the firsttwo. These gaps occur erratically and 6% of
them exceed 10 days. In this particular example, the coherency between proxies is crucial and indeed the
choice of the embedding dimensionD does not significantly affect the results. Let us takeD = 2, which
is the value that is recommended by the reconstruction error. The maximum number of SVD modes is 10
because we have five records. Out of these, three only are found to be significant.

The result of the reconstruction is illustrated in Fig.4 for periods of high and low solar activity. Note that the
results obtained with different number of modes lead to similar temporal evolutions. The reconstruction at
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Figure 5: Ca K index after reconstruction and filtering by wavelet transform (continuous curve) and the dif-
ference with the observations (crosses). For easier visualisation, the Ca K index has been shifted downwards
by 0.08.

solar maximum looks reasonable because it passes through the observations while staying highly correlated
with the Mg II index. During solar minimum, however, the observed values of the Ca K index continue
to fluctuate whereas the reconstructed values and the other proxies stay almost constant. The difference
between the observed Ca K index and the smoothly varying reconstruction varies randomly in time, which
questions its solar origin.

To further investigate the origin of this difference between the observed and reconstructed index, we filtered
the reconstructed data with theà trouswavelet transform, which allows the separation of the sharppeaks
from the more regular reconstruction. The residuals, i.e. the difference between the filtered reconstruction
and the original observations, are shown in Fig.5: they are found to be independent and their Gaussian
distribution only weakly varies with the solar cycle. This is a strong indication that the residuals are mea-
surement errors rather than solar fluctuations. Their standard deviation is 0.0008, which represents 20 %
of the solar cycle variability of the Ca K index. Our reconstruction thereby provides a means for fitting the
numerous data gaps in the Ca K index while also evaluating theconfidence interval of the observations.

5 Conclusions and additional applications

This study shows that SVD-interpolation is a powerful technique for filling arbitrarily large gaps in multi-
wavelength, multichannel or in synoptic records. We focused here on solar spectral irradiance observations,
which are frequently plagued by missing data. These gaps maybe distributed at random in time or in
wavelength. The main tuneable parameter is the number of SVDmodes that is needed to reconstruct the
data; this value may be estimated either by visualisation orby cross-validation. The method works best
when each record can be approximated by a linear combinationof the others. Since it relies on linear
combinations only, it may be desirable to apply a nonlinear static transform beforehand to increase the
linear correlation between the records.

For the method to work, the observations must be sampled simultaneously but not necessarily evenly. Non-
simultaneous observations can be handled by resampling allvariables to a common grid, for example by
Fourier decomposition (e.g.Hocke and Kämpfer, 2009), and then filling the gaps by SVD. By alternating
between the two, both the gaps and the interpolated values can be progressively refined.

This method has several applications in addition to mere interpolation. The first one is the cross-calibration
of measurements of the same quantity by different instruments. The Mg II index, for example, is at present
measured by different instruments that give different amplitudes. These data sets are incomplete and only
partly overlap, which considerably impairs their inter-comparison. The iterative SVD method is ideally
suited for filling these gaps because the records are by definition strongly correlated.
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A second potential application is the stitching together oftotal solar irradiance (TSI) observations. Merging
TSI records from several instruments is a delicate and controversial task (Fröhlich, 2002) because instru-
ments disagree on the absolute value of the TSI and often do not operate simultaneously. The iterative
SVD provides a means for estimating the different offsets ina self-consistent way because it allows us to
extrapolate each TSI record by assuming that its statistical properties with respect to the other records do
not change in time. This property is particularly useful forchecking composites that are built from different
records, such as the TSI, the H I Lymanα intensity, the Mg II index and the sunspot index (Clette et al.,
2007). This will be detailed in a forthcoming publication.
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