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The concept of photon lifetime in a cavity is shown to be non-relevant in the case where the cavity
round-trip group delay is negative due to the presence of a strong intracavity negative dispersion.
Causality is shown to forbid the cavity spectrum from being a single Lorentzian. These features
are tested experimentally using intracavity detuned electromagnetically induced transparency in
room-temperature metastable helium.
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Since the early works of Sommerfeld [1] and Brillouin
[2, 3] on light propagation through resonant atomic sys-
tems, slow and fast light have been the subject of con-
siderable research efforts. It is now well established that
the group velocity of light can change dramatically in a
dispersive medium: slow, fast, or even negative group ve-
locity light can be observed. Moreover, such effects can,
under some conditions, occur without any pulse distor-
tion [4]. This has led to much controversy about Ein-
stein’s causality and the propagation of a signal in such
situations, which has been solved by considering the in-
formation as carried by non-analyticity points [5–9].

The question of the lifetime of photons in cavities filled
with a dispersive medium is an active subject of research,
with consequences on potential applications such as the
increase of the sensitivity of gyroscopes using fast light
[10–12]. In this context, we have recently confirmed ex-
perimentally that in the case of a slow light medium in-
serted inside an optical cavity, the photon lifetime is gov-
erned by the group velocity [13]. In this Letter, we inves-
tigate some paradoxes arising from the consideration of a
negative dispersion medium inserted inside a cavity, and
we show that in such a case the photon lifetime concept
is no longer relevant.

Let us consider a pulse of light propagating through
a dispersive medium of refractive index n(ω) and length
Lcell. If the dispersion is positive, the group velocity
vg is positive and the pulse experiences a positive group
delay τg = Lcell/vg during its propagation through the
medium (see Fig. 1(a)). On the contrary, when the
dispersion is negative enough, vg can become negative,
leading to the appearance of a negative group delay τg
through the medium. This can lead to the kind of situa-
tion sketched in Fig. 1(b), in which the outgoing pulse
leaves the medium before the incident pulse enters it
while a pulse propagates in the backward direction in-
side the medium. In these paradoxical situations, causal-
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FIG. 1: (color online) Propagation of a light pulse through
(a) a slow-light medium (the dotted curve corresponds to a
pulse propagating in vacuum), (b) a negative-light medium,
(c) a cavity containing a dispersive medium. (d,e) Series of
pulses at the output of the cavity in the case of (d) positive
and (e) negative round-trip group delay τRT

g , when the cavity
is excited by an incident pulse.

ity has been shown to be ensured by the propagation of
non-analyticity points at the speed c of light in vacuum
[7–9]. Let us now introduce such a dispersive medium
inside a resonant cavity, as shown in Fig. 1(c). In the
case of positive dispersion, i.e., slow light, we have re-
cently shown [13] that the lifetime of the photons in the
cavity is given as expected by τcav = τRTg /Π, where Π
stands for the fractional loss per cavity round trip, and
τRTg = τg + Lvac/c is the group delay for one round trip
inside the cavity with Lvac the length of the empty part
of the cavity. In the latter case, the intracavity decay-
ing intensity then invokes the simple picture of a pulse
propagating at the group velocity inside the cavity and
decaying at each round trip because of losses (see the de-
caying pulses of Fig. 1(d)). This picture does no longer
hold in the case where the intracavity dispersion is neg-
ative and is strong enough not only to make the group
delay across the cell τg negative, but also the cavity group

ar
X

iv
:1

10
7.

44
74

v1
  [

qu
an

t-
ph

] 
 2

2 
Ju

l 2
01

1

mailto:Fabien.Bretenaker@lac.u-psud.fr


2

round-trip time τRTg smaller than zero. In this case, if we
follow the same picture as in the case of positive disper-
sion, the pulse that has made one round trip inside the
cavity must exit the cavity before the initial pulse, and
is even preceded by the pulse that has undergone two
round trips inside the cavity, etc. This should lead to an
increase of the intensity with time, as shown in Fig. 1(e),
which of course looks absurd.

We can try to solve this paradox by calculating the field
at the output of the cavity for any incident excitation
Ein(t) using simple linear response theory. The positive-
frequency part of the output field reads

E
(+)
out (t) =

∫ t
−∞ dt′E

(+)
in (t′) R(t− t′) , (1)

where E(+)
in (t) is the positive-frequency part of the in-

put field, and R(τ) is the response function of the cavity
which is zero for τ < 0. We can stress the fact that R is
causal by writing it as R(t) = S(t)H(t), where H is the
Heavyside step function, and S is the Fourier transform
of the cavity transmission S̃(ω) for a monochromatic in-
cident field. Then Eq. (1) simply reads

E
(+)
out (t) = [E

(+)
in ∗ (SH)](t) . (2)

We consider a cavity like the one in Fig. 1(c). The input
and output mirrors are identical, with intensity reflection
and transmission coefficients given by R and T , respec-
tively. The two other mirrors are perfectly reflecting. We
call Lm the length between the input and output mirrors.
The cavity transmission for a monochromatic field of an-
gular frequency ω is then given by

S̃(ω) =
T exp

[
iωc Lm

]
1−R exp

[
iωc (Lvac + n(ω)Lcell)

] . (3)

If we suppose that ω is close to a resonance frequency ωp
of the cavity, for which exp [i

ωp
c (Lvac + n(ωp)Lcell)] = 1,

then, at first order in (ω − ωp)/ωp, Eq. (3) becomes

S̃(ω) =
T exp

[
iωc Lm

]
1−R− iR(ω − ωp)τRTg

, (4)

leading to:

S̃(ω) =

(
T

RτRTg

)
exp

[
iωc Lm

]
γcav
2 − i(ω − ωp)

, (5)

where the cavity decay rate is given by

γcav = 2(1−R)/R τRTg ' Π/τRTg = 1/τcav . (6)

We have assumed that 1 − R � 1. In order to predict
what a measurement of the photon lifetime should give,
let us now consider the response of this cavity to a laser
field at frequency ωl which is turned off at t = 0:

E
(+)
in (t) = E0[1−H(t)]e−iωlt . (7)

In the case of a cavity with a positive round-trip group
delay τRTg , Eqs. (2), (5) and (7) lead to

E
(+)
out (t) =

S0E0e−iωl(t−
Lm
c )

γcav
2 − i(ωl − ωp)

, if t ≤ Lm

c
, (8)

E
(+)
out (t) =

S0E0e−iωp(t−
Lm
c )

γcav
2 − i(ωl − ωp)

e−
γcav

2 (t−Lm
c ) ,

if t ≥ Lm

c
, (9)

with S0 = T/RτRTg , which is the standard solution for
a decaying cavity, in agreement with the observations of
Ref. [13]. On the contrary, in the case of a negative light
cavity for which τRTg < 0, Eqs. (2), (5) and (7) lead to

E
(+)
out (t) =

S0E0(e−iωl(t−
Lm
c ) − e−(iωp+

γcav
2 )(t−Lm

c ))
γcav
2 − i(ωl − ωp)

,

if t ≤ Lm

c
, (10)

E
(+)
out (t) = 0 , if t ≥ Lm

c
, (11)

which, once again, clearly violates causality.
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FIG. 2: (color online) (a) Continuous line: typical negative
dispersion curve. The intersections of this curve with the
dashed (τRT

g = 0), dotted (τRT
g > 0), and dot-dashed (τRT

g <
0) curves determine whether the resonance is (b) single peaked
or (c) multi-peaked.

In deriving Eqs. (10) and (11), the only hypothesis
that we have made is that the cavity transmission given
by Eq. (3) could be reduced to a single Lorentzian peak
as given in Eq. (4). This hypothesis is valid as long as
the spectrum of the incident field given by Eq. (7) is
contained in a single cavity transmission peak and all
frequencies experience the same group index. In order
to examine this condition, we consider a typical nega-
tive dispersion curve as given by the continuous line in
Fig. 2(a). Let us suppose, without any loss of generality,
that the inflection point of the dispersion curve occurs at
the empty cavity resonance frequency ωp, meaning that
ωp
c (Lvac + n(ωp)Lcell) = 2pπ, where p is an integer. Let
us try to determine whether extra resonance peaks, due
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to negative dispersion, could occur in the vicinity of the
peak at ωp. If ωp + δ is the angular frequency of such an
extra peak, the resonance condition reads

ωp + δ

c
(Lvac + n(ωp + δ)Lcell) = 2pπ . (12)

To first order in δ/ωp, this condition is equivalent to

n(ωp + δ)− n(ωp) = −Lvac + n(ωp)Lcell

ωpLcell
δ . (13)

The left-hand side of Eq. (13) versus δ is the continuous
line in Fig. 2(a). The right-hand side is a straight line,
as shown by the dotted, dashed, and dot-dashed lines in
Fig. 2(a). One can see that the shape of the resonance,
namely, the existence of no other solution than δ = 0,
leading to a single peak as in Fig. 2(b), or the existence
of two other resonance frequencies for δ 6= 0, leading to
two extra resonance peaks as in Fig. 2(c), depends on the
relative values of the slopes of the dispersion curve and
the line corresponding to the right-hand side of Eq. (13).
In particular, the condition for the existence of two extra
solutions reads, at first order in δ:

−dn

dω

∣∣∣∣
ωp

>
Lvac + n(ωp)Lcell

ωpLcell
, (14)

which is equivalent to τRTg < 0. We thus reach the fol-
lowing conclusion: the fact that the group delay for one
round trip inside the cavity is negative leads to the ex-
istence of satellite peaks around the resonance consid-
ered. This negates the approximation used to obtain Eq.
(4) and explains why the non-causal situation described
above can actually never be reached. Figure 2(c) illus-
trates how this condition results in thr existence of two
extra peaks for the cavity resonance labeled by the inte-
ger p. Note that in the case of slow light, the slope of the
dispersion curve in Fig. 2(a) would be reversed, allowing
only one intersection with the continuous line and thus
forbidding the existence of extra resonance peaks.

Let us be more specific about the situation in which
a medium can exhibit a strong negative dispersion. A
very popular example of negative dispersion is provided
by a gain doublet [6, 7, 14–17]. Figure 3(a) shows the
transmission |S̃(ω)|2 of the cavity versus detuning in that
case. The dashed curve corresponds to the empty cavity,
which is 2.45 m long with 29% losses per round trip. We
now suppose that a gain-doublet medium is inserted in-
side the cavity. The two gain peaks are separated by 1.5
MHz. We suppose that they are located symmetrically
with respect to the cavity resonance. The gain maxima
correspond to 28% per round trip and the full width at
half maximum of each peak is 800 kHz. In these condi-
tions, the group delay for one round trip inside the cavity
is τRTg = −3.3 ns. The corresponding intensity transmis-
sion spectrum of the cavity is reproduced as a continuous
line in Fig. 3(a). One can clearly see the two transmission
peaks corresponding to the conjugated effects of the two
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FIG. 3: (color online) (a) Theoretical cavity transmission ver-
sus detuning in the presence of (continuous line) and without
(dashed line) an intracavity gain doublet creating negative
light. (b) Corresponding decay of the intracavity intensity
when the incident field is turned off at t = 0.

additional resonance peaks and of the two gain maxima.
The main difference with respect to Fig. 2(c), which was
computed using only the real part of the dispersion and
by artificially setting the imaginary part to zero (no gain
or absorption) is that there is no central transmission
peak. This is consistent with the fact that there is no
gain peak at zero detuning. One can also notice in this
spectrum that the two lateral peaks are slightly shifted
towards the line center with respect to the positions of
the atomic resonances, which is consistent with the fact
that these gain peaks are located in a positive dispersion
spectral region.

Using Eqs. (2), (3) and (7), we calculate the tempo-
ral evolution of the intensity |E(+)

out (t)|2 at the output of
the cavity when the incident field is suddenly turned off
at t = 0. Such a decay is represented in Fig. 3(b) on a
logarithmic scale. It is clearly non-exponential. It con-
sists of a fast decay by two orders of magnitude, followed
by oscillations which correspond to beat notes between
the two peaks of the transmission spectra. It is an illus-
tration of the general principle of Fig. 2: any intracavity
negative dispersion effect which is strong enough to make
the round-trip group delay negative will cause secondary
transmission peaks to emerge that will make the cavity
decay non-exponential, forbidding one to define a photon
lifetime for this cavity.

In order to give an experimental illustration, we use an-
other system in which a large negative group delay can
be achieved: detuned electromagnetically induced trans-
parency (EIT) in a hot vapor of metastable 4He atoms
[18]. We use a 6-cm long cell filled with 1 Torr of helium
at room temperature. Some of these atoms are excited
to the 3S1 metastable state using an RF discharge at
27MHz. Metastable helium is well known for exhibiting
a pure three-level Λ system when excited at the 1.083µm
transition between the 23S1 and 23P1 energy levels using
circularly polarized light. Light at 1.083µm is provided
by a single-frequency diode laser. The frequencies and



4

0 10 20 30
0

0.2

0.4

0.6

0.8

1

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

Time (µs) 
20 30 0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
10 

P
ow

er
 (a

. u
.) 

(b) 

Tr
an

sm
is

si
on

 (a
. u

.) 

Detuning (MHz) 

Time (µs) 

P
ow

er
 (a

. u
.) 

(a) 

-200 -100 0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

  

 

 δ/2π (kHz) 

Tr
an

sm
is

si
on

 

10 20 30 0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

FIG. 4: (color online) (a) Experimental decay of the intra-
cavity intensity when the incident probe field is turned off
at t = 0. Inset: Transmission of the cell versus Raman de-
tuning δ. (b) Corresponding theoretical cavity decay. Inset:
Calculated cavity transmission profile.

Rabi frequencies of the coupling and probe beams used
in our experiment are driven by two acousto-optic modu-
lators. The cell is inserted inside a 2.4-m long triangular
ring cavity made of two plane mirrors with 2% transmis-
sion and a high reflectivity concave mirror with a 5-m
radius of curvature. A telescope expands the coupling
beam diameter up to 1 cm, which is much larger than
the probe beam diameter. The cavity is resonant only for
the probe field as two polarization beam-splitters drive
the coupling beam inside and outside the cavity [13].

With a coupling power of 5 mW, detuned by 1.44 GHz
from the maximum of the Doppler profile of the tran-
sition, the evolution of the cell transmission versus Ra-
man detuning δ exhibits the asymmetric Fano-like profile
shown in the inset of Fig. 4(a). The large one-photon de-
tuning transforms the transparency peak typical of EIT
into an asymmetric absorption peak [19]. Consequently,
in the vicinity of the transmission minimum, the system
exhibits strong negative dispersion. With our experimen-
tal parameters, we measure, using propagation of an in-
tensity modulation, a negative group delay of τg ≈ −4µs
for our 6-cm long cell. Once this cell is inserted inside
the cavity, we still apply the same coupling field to the
atom. The probe field, which has the same frequency
as the coupling field (δ = 0), is incident on the cavity
input mirror. We slowly scan the length of the cavity
using a piezoelectric actuator that carries one of the mir-
rors. When the cavity is at resonance with the probe,
we abruptly turn off the probe field using an acousto-
optic modulator. We then observe the evolution of the

intensity at the output of the cavity (see Fig. 4(a)). One
can see that the intensity starts increasing, on a time
scale shorter than 1 µs, before decreasing. This evolu-
tion is clearly non-exponential, showing once more that
a negative cavity round-trip group delay leads to a non-
exponential decay of the intracavity photons. Notice here
that the cavity length being 2.4 m, the cavity round-trip
group delay τRTg is also of the order of −4µs.

These experimental results are consistent with the the-
oretical calculations based on Eqs. (2), (3) and (7) using
the expression for inhomogeneously broadened detuned
EIT as in Ref. [18]. With a coupling Rabi frequency of
11 MHz and a Raman coherence lifetime of 13µs, we
obtain the curve of Fig. 4(b), which is similar to the
experimental result of Fig. 4(a): when the incident in-
tensity is turned off, the intensity at the output of the
cavity starts increasing before decreasing. This typical
non-exponential decay constitutes one more illustration
of the behavior described in Fig. 2.

In conclusion, we have demonstrated the fact that it is
impossible to obtain a negative group delay for one round
trip inside a resonant cavity while keeping an exponen-
tial decay of the intracavity intensity. We have shown
that this result respects causality in negative group-delay
cavities. We have illustrated this remarkable result both
numerically and experimentally, by using negative veloc-
ity light induced by a gain doublet and detuned EIT in
a metastable vapor, respectively. Our result is consistent
with the fact that slow light is usually associated with a
transparency peak, which reduces the bandwidth to be
considered. On the contrary, fast and negative group ve-
locity light appears in the case of an absorption peak,
leading to the possibility of many frequencies playing a
role, and thus the lifetime of photons in such a cavity
can no longer be simply defined. This should have inter-
esting consequences on the spontaneous emission rate of
atoms placed in such a cavity [20], with application to
the spontaneous emission noise of lasers based on such
negative light cavities.
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